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Abstract—W ith diverse functionalities and advanced
platform applications, Internet of Things (IoT) devices
extensively interact with each other, and these inter-
actions govern the legitimate device state transitions.
At the same time, attackers can easily manipulate
these devices, and it is difficult to detect covert device
control. In this work, we propose the device interaction
graph, which uses device interactions to profile normal
device behavior. We also formalize two types of device
anomalies, and present an anomaly detection system
CausalloT. It can automatically construct the graph
and validate runtime device events. For any violation
of interaction executions, CausalloT further checks
whether it can trigger unexpected interaction execu-
tions and tracks the affected devices.1 Compared with
existing methods, CausalloT achieves the highest de-
tection accuracy for abnormal device state transitions
(95.2% precision and 96.8% recall). Moreover, we are
the first to detect unexpected interaction executions,
and CausalloT successfully reports 91.9% anomaly
chains on real-world testbeds.

Index Terms—IoT, anomaly detection, causal discov-
ery, device interaction graph

I. INTRODUCTION

With ubiquitous sensing, actuating, and communication
capabilities, the IoT service has been playing a critical
role in human lives [1]. Smart home, one of the most
popular IoT applications, has proliferated significantly in
the past few years. As predicted by Statista [2], more
than 400 million IoT devices will be deployed at smart
homes by 2025. Besides the large-scale deployment, these
devices also interact with each other: The state change
of one device can directly affect others’ states. Figure la
shows an example of an interaction network. Each directed
edge represents a device interaction, and the color denotes
its source. For instance, user activities usually involve
sequential operations on a set of devices, which create
interactions among them (e.g., sensors to detect user
movement). Moreover, since IoT devices can change and
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sense the physical environment, they also interact with
each other if they work on the same physical channel
(e.g., temperature). Finally, with the emergence of IoT
platforms, users can install automation rules for easy de-
vice management. The automation logic specifies a device
interaction between the triggering device and the action
device. In Figure 1a, users install a rule Activate the heater
if the light is on [3], which creates an interaction between
the light switch and the heater.
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Fig. 1: Device interactions and security threats at smart
homes

Despite the convenience provided by the smart home,
there are growing concerns about its security, and Fig-
ure 1b presents two examples. First, attackers can easily
manipulate the deployed devices for their broad attack
surface [4]-[11]. As a result, covert device state tran-
sitions frequently happen, which threaten the user and
environment (e.g., mysterious light activation [4], [12] and
ghost presence [13], [14]). Second, since IoT devices ex-
tensively interact with each other, any device misbehavior
can further trigger unexpected interaction executions to
affect other devices. For example, the light activation can
trigger the execution of an automation chain [10], which
consequently activates the heater and opens the window.



The severity of smart home security promotes the need
for device monitoring and anomaly detection. Unfortu-
nately, current IoT platforms do not provide such support.
As a result, users often complain about their devices’
misbehavior [12], [14]-[18]. Specifically, users want to be
notified at once if their devices are covertly operated,
so they can initiate device recovery and risk evaluation.
Moreover, once some interactions are maliciously executed
and a group of devices collectively misbehaves, it is critical
to report the anomaly chain for later device recovery,
forensic study, and root cause localization. For example,
detecting the light activation and its consequences can
help users to pinpoint the affected devices and re-evaluate
the risk of the deployed automation rules. As another
example, detecting a suspicious presence event at the
bedroom and its consequences can help to identify burglar
intrusion and reconstruct his traces.

In order to address users’ concerns, many anomaly
detection systems have been proposed [19]-[25]. However,
few consider the nature of the prevalent device interac-
tions, and the limitation is as follows. (1) There is a lack
of understanding on how devices normally work. Since
the device interactions govern the legitimate device state
transitions, without the knowledge of these interactions
(e.g., Presence — Light), it is challenging to justify
runtime device behavior (e.g., light activation), and this
dramatically reduces the detection accuracy. (2) It is
almost impossible to track the unsolicited execution of
device interactions. As a result, when anomalies (e.g.,
a high-temperature reading and then open the window)
propagate along the interaction chain, existing solutions
cannot pinpoint all the affected devices. (3) It is difficult to
interpret the detected anomaly and provide hints for root
cause localization. Instead, the interaction can provide
additional information about the anomaly. For instance,
the context of no presence in the bedroom can help users
to reason about the detection result. Moreover, it can help
the security analyst to exclude the possibility that the
light is physically compromised, and focus more on the
investigation of the remote control.

The above discussion highlights the importance of using
device interactions for smart home anomaly detection. In
this work, we propose the device interaction graph, which
profiles the complex interaction network at end users’
smart homes (Section III). Each node in the graph repre-
sents an IoT device, and each directed edge represents an
interaction from the parent device to the child device (e.g.,
Presence — Light). Moreover, the graph maintains a set
of conditional probability tables, e.g., P(Light|Presence),
such that given the states of parent devices, the graph can
output the likelihood of the child device’s state. Based on
the graph, we formalize two types of device anomalies: the
contextual anomaly and collective anomaly (Section IV).
The former captures a device event that violates the
interaction execution (i.e., with low likelihood), while the
latter captures a sequence of device events that follows

the maliciously triggered interaction execution. In the
previous example, the light activation event is a contextual
anomaly since it is seldom activated when there was
no presence detected. The sequence of events from the
heater, temperature sensor, and window is a collective
anomaly as they follow the unsolicited execution of the

Heater — Temperature — Window interaction chain.
Finally, we present CAUSALIOT, a security system

for automated interaction mining and anomaly detection
(Section V). It first constructs an interaction graph from
the logged device events. In particular, CAUSALIOT initi-
ates the causal discovery process [26], [27], and it can re-
duce the graph complexity and increase its interpretation
capability (See Section II for more discussions). With the
interaction graph, CAUSALIOT checks if the runtime event
violates the interaction execution (contextual anomaly
detection). If that is the case, CAUSALIOT further tracks
its propagation and eventually reports the anomaly chain
to users (collective anomaly detection). In summary, we
make the following contributions.

e We provide a new perspective toward understanding
normal device behaviors at smart homes, i.e., the device
interaction graph. Moreover, we are the first to initiate
the causal discovery process for studying device interac-
tions, which requires no user intervention or background
knowledge.

o We formalize two types of smart home anomalies that
imply severe security threats: Contextual and collective
anomalies. We also design an algorithm that utilizes the
interaction graph for anomaly detection.

o« We implement a prototype CAUSALIOT and evaluate it
on real-world testbeds. The evaluation result shows that
it can identify most device interactions. For anomaly de-
tection, compared with existing methods, CAUSALIOT
achieves the best performance for contextual anomaly
detection (95.2% precision and 96.8% recall). Moreover,
we make the first step toward collective anomaly detec-
tion, and successfully report 91.9% anomaly chains.

II. BACKGROUND
A. Smart Home

At the core of smart homes are ubiquitous IoT devices
and a centralized IoT platform (e.g., openHAB [28] and
SmartThings [29]). Specifically, IoT devices are deployed
with a large number of sensors and actuators, which
allow them to sense the environment and execute pre-
defined operations. The platform is responsible for device
management. After the platform binds with the device,
it first abstracts a set of virtual device attributes (e.g.,
TemperatureSensor) to describe the device state [30]. Once
the user or the physical environment changes the device
state, the device will immediately send a device event
to the platform. As a result, the platform collects these
runtime events to track the latest device states. Usually,
the event is in the format of (timestamp, device name,
installation location, device state), and the value types



of device states are diverse (e.g., the enum on/off state
and the numeric illuminance measurement). Besides state
tracking, the IoT platform allows users to design automa-
tion rules for easy device control. These rules follow the
trigger-action programming paradigm [31], and users need
to specify the triggering device and the action device.
By doing so, when a condition is met, the platform will
operate the action device. For instance, the window will
be opened if the temperature exceeds 85°F.

An essential feature of a smart home is the widespread
device interactions, which govern legitimate device state
transitions. Nevertheless, few works discuss how to infer
the complex interaction network. Some efforts proposed
static analysis to study the automation logic [10], [32]-
[38]. However, they only focus on automation interactions
and require users to provide the source codes of their
installed automation rules [39]. In order to capture the
interaction from diverse sources while reducing user inter-
vention, a potential solution is to use logged device events
and learn the statistical association relationship among
device states [23]. Unfortunately, while the interaction
implies the association, the reverse does not hold. We
find that there are many “spurious interactions” which
stem from the intermediate factor and the common prece-
dence [40]. Going back to Figure la, since the heater is
an intermediate device in the interaction chain Light —
Heater — Temperature Sensor, the states of the light
and the temperature sensor are associated. However, they
have no direct interaction as the change of the light state
does not directly affect the temperature sensor’s state. As
another example, since the light is common precedence,
i.e., Heater < Light — Brightness Sensor, the states of
the brightness sensor and the heater are also associated.
Similarly, turning on/off the heater has nothing to do with
the brightness sensor’s state. These spurious interactions
increase the complexity of the interaction network and re-
duce the interpretation capability for the detection result.
For instance, it makes no sense to explain to users that
“a high brightness sensor reading is abnormal because the
heater was not turned on”. Therefore, a more stringent
statistical language instead of pure association is needed
to describe the interaction, and for this, we resort to the
causal primitive.

B. Causality

The questions that motivate many studies (e.g., biomed-
ical, social, and behavioral sciences [41]-[43]) are mnot
about association but causality in nature. For example,
researchers are interested in the question “whether the obe-
sity (S;) causes high COVID-19 susceptibility (S;) [44]”. In
order to make sure that there is no other factor that affects
the justification, one usually fixes all other variables, e.g.,
age, at some values. In this case, if intervening on S; can
affect the value of S;, we say that S; causes S;. Usually, a
directed edge is used to represent the causal relationship,
which points from the cause to the outcome (S; — 5;).

For a complex system that has a large number of
variables, the causal network may be too complex. As
a result, prior work [44] based on the Bayesian network
and proposed a causal graph. Specifically, it is a directed
acyclic graph with the following components: (1) a set
of nodes (variables), (2) a set of directed edges between
pairs of nodes, and (3) a joint probability distribution
over the possible values of all the variables. In particular,
the second component encodes the causal relationship.
It states that two wariables with an edge in between are
associated if one fixed all other variables at some values.
Such a requirement guarantees that each edge encodes not
only statistical association, but also a direct effect on the
outcome when the cause is intervened.

In order to identify causal relationships, a traditional
approach is to design a controlled experiment. However,
in many cases, they are too expensive or infeasible. There-
fore, causal discovery from purely observational data has
drawn much attention [45], [46]. In particular, one of the
most well-known methods is called the PC algorithm [47],
[48]. Roughly speaking, the algorithm aims to identify
a set of directed edges among variables and construct
the skeleton of the causal graph. It starts with a fully-
connected undirected graph. Then for each edge S; — Sj,
the algorithm provides a conditional independence test
framework to find a conditioning set C, such that it makes
the variables conditionally independent, i.e., S; 1 Ss|C.
Once the set is identified, no causal relationship exists
between these two variables, and the edge is removed.
Otherwise, the algorithm preserves the edge and uses a
set of empirical rules [49] to decide its orientation.

III. DEVICE INTERACTION GRAPH

The causal primitive precisely follows the definition of
device interactions that the operation on the parent device
(cause) can directly affect the child device (outcome) . As
a result, a naive approach to modeling an interaction net-
work at smart homes is to use a causal graph, where each
node represents a device state, and each edge represents an
interaction. Unfortunately, this does not work. The reason
is that a smart home is in fact a temporal system: The
device state and the interaction are time-dependent. By
checking device states at different timestamps, one can
find that the states of the devices at different timestamps
can be causally related. However, the causal graph was
not designed to model a temporal system, and it does not
encode any temporal information. To address the modeling
issue, we extend the causal graph and propose a device
interaction graph (DIG). An enhanced PC algorithm for
DIG construction is further introduced in Section V-B.
Before diving into the details, we first introduce some
symbols used throughout this paper.

ISince each interaction is interpreted as a causal relationship, in
this paper, we use the terms “parent device” and “cause” interchange-
ably. The same condition holds for the terms “child device” and
“outcome”
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Fig. 2: An example of the device interaction graph

Suppose there are n devices deployed at a smart home.
For the ith device, its state at timestamp ¢ is modeled
as a random variable S!. The timestamp is discrete and
based on the order of the device event. By default, we
call the timestamp t as “present”. As we introduced in
Section II-A, whenever there is a device state transition,
the device reports its new state by sending a device event.
For simplicity, we use e’ : {S! = st} to denote an event at
timestamp ¢t which reports the state of the ith device, and
st is its state value. Since only one device reports its state
at each timestamp, we omit the subscript ¢ for clarity.
Given a sequence of device events (el, ..., e™) and an initial
system state SO = (s9,...,s2), one can derive the system
state at each timestamp. Specifically, the system state
S7 at timestamp j € {1,...,m} is (s] ' . 80,8570,
where s7 is recorded in the event ¢/, and s, ' (k # 4) is
recorded in $71. As a result, the sequence of system states
(8% ...,8™) forms a time series. We define the device
interaction graph as follows.

Definition 1: A device interaction graph (DIG) is an
extended causal graph G = (V,&,P), where V = {S7]i €
{1,..,n},j € Z} is a set of nodes that represents time-
dependent device states, £ is a set of directed edges
that represents the causal relationship, and P is a set of
conditional probability tables (CPT) for nodes in V.
Figure 2 depicts an example. Each solid edge denotes an
interaction from the cause to the outcome. The dashed
edge represents a repeated interaction that will be intro-
duced later. Note that each node in DIG represents a tem-
poral variable. One benefit is that it is easy to orient the
interaction since the cause always comes before its effect
in time [47]. Another advantage is that the interaction
can now describe the time-dependent effect. Specifically,
for each state S7, let Ca(S7) C {S}7'|k € {1,...,n},l €
{1,...,7}} be the set of its causes, and ca(S7) be the values
of Ca(S}). The DIG maintains a conditional probability
table P(S} = s!|Ca(S!) = ca(S])), which describes the
state distribution of S{ under the interaction execution.
For instance, in Figure 2, P(S4 = 1|S572 = 1,85 = 0)
quantifies the influence of the heater on the temperature
sensor through the physical channel. As another example,
a high value of P(S% = 1|S5™' = 1,557! = 0) describes
the logic of the deployed automation rule, i.e., open the
window if the temperature is high.

Note that the number of nodes and edges in the DIG
can be extremely large. To address the complexity is-
sue, we make two mild assumptions that are common in
the temporal setting [50]—[52]. The first is the rth-order
Markov Assumption. Specifically, given a maximum time
lag 7 > 0, for each device state S7, the time lag of its
causes is smaller than 7, that is, Ca(S?) C {Si_l\k €
{1,..,n}1 € {1,..,7}}. In Figure 2, the maximal time
lag 7 = 2, and so the farthest cause for S§ is S5 2. The
second assumption is the Stationarity Assumption: The
interaction between ¢t — 7 to t holds for every ¢’ € Z. In
Figure 2, each dashed edge encodes the same interaction
as the solid edge. With these two assumptions, one only
needs to focus on the nodes during the period from t—7 to
t,ie, V={Sie{l,..,n},je{t—r,..,t}}. Moreover,
one can use the interactions during the period to explain
the logged events e’ with timestamp j < ¢, and forecast the
future device event with j > ¢. Define G¥ = (S777, ..., §9)
as the graph snapshot at timestamp j. For each S?, one
can determine the values of its causes ca(S;) from GJ.

The DIG provides an efficient way to study device
behavior. Specifically, given an event e/ and the snapshot
G, one can look up the conditional probability table and
get the likelihood of the event. The likelihood can be used
to quantify the anomalous level of the event and determine
whether it violates the interaction execution. For example,
when the heater was deactivated and the platform received
a high-temperature reading, a table lookup shows that it is
unlikely to receive the event (i.e., a low P(S4 = 1|S52 =
0,S47! = 0) value), and therefore it violates the execution
of the physical interaction. Moreover, the set of causes can
provide additional hints for the event, which helps users
to reason about the detection results. Finally, one can use
the DIG to keep track of the interaction execution. When
an interaction chain is abnormally executed, the graph can
help to track the affected devices.

IV. THREAT MODEL AND GOALS

In this work, we focus on the covert device state
transitions, which are widely reported by smart home
users [14]-[17], [53]-[56]. For example, users complain
about the smart plug events for being mysteriously turned
on at midnight [17], or ghost presence events [54], [55].
These anomalies are harmful as they usually imply severe
consequences (e.g., overheating or burglar intrusion). We
first survey the IoT attack vectors which can cause ghost
transitions, and categorize two security threats based on
the attacker’s target. Then we define two types of device
anomalies and show that the DIG can properly address
them. Finally, we present our goals and some mild as-
sumptions.

A. Smart Home Anomaly

Malicious device control. The attacker seeks to covertly
control the devices by exploiting IoT vulnerabilities.
Specifically, the attacker can physically manipulate the



device [13], exploit device firmware flaws [5], [57], lever-
age communication protocol vulnerabilities [8], [58], or
abuse physical channels [11]. As a result, the attacker can
force a device state transition without users’ consent and
awareness. Moreover, the attacker can initiate advanced
rule-level attacks [32], [59], such that he can tamper with
the device state when certain conditions hold (e.g., mali-
cious rule insertion). Since these anomalies usually violate
the interaction execution, we define them as contextual
anomalies.

Definition 2 (Contextual Anomaly): Given a DIG G, the
graph snapshot G7 at timestamp j, an anomaly score
function f, and a score threshold ¢, a contextual anomaly
is a device event e/ : {S! = s} which deviates from the
interaction execution, i.e., f(e/,G7,G) > c.

In particular, the anomaly score is calculated as follows.

F(€,67,G) =1~ P(S] = 5]|Ca(8]) = ca(s])). (1)

The larger the score is, the more unlikely the event will
be observed in the interaction execution, and therefore
the event will be more anomalous. The anomaly is con-
textual because it is rare under the context specified by
Ca(S!). For instance, when no presence was detected in
the kitchen, a plug activation event is highly suspicious as
users seldom operate the plug when not in the kitchen.
Unsolicited interaction execution. The attacker tar-
gets device interactions and aims to trigger unsolicited
interaction executions. To achieve the goal, the attacker
needs to first compromise an IoT device and promote its
state transition (i.e., create a contextual anomaly). Con-
sequently, a sequence of device events collectively happens
due to the interaction execution. For example, after break-
ing into the house, an attacker can initiate unsolicited user
activities, which create a sequence of events about contact
and presence sensors [13] (e.g., search for belongings).
Moreover, the attacker can control IoT devices to abuse
the physical channel, which affects the environment and
causes unexpected sensor readings [4] (e.g., maliciously
turn on the light and increase the brightness). Finally, the
attacker can compromise the triggering device specified in
an automation rule, which triggers the rule execution [10],
[32], [36], [59]. As a result, we define the above anomalous
event sequence as the collective anomaly.

Definition 3 (Collective Anomaly): Given a DIG G, a
sequence of graph snapshots (G7,...,G*), an anomaly
score function f, and a score threshold ¢, a collective
anomaly is a sequence of events (e’,e’t!,... eF) cre-
ated by unexpected interaction executions, such that
f@™1,G771G) > ¢ and f(7T, GIHEG) < ¢ for £ €
{0,....k}.

The collective anomaly is difficult to discover because the
involved event has a low anomaly score, which follows the
interaction execution and seems legitimate. Consider Fig-
ure la as an example. After the attacker maliciously turns
on the light, the consecutive brightness event encodes a
normal reading from the physical channel. Moreover, the

consecutive events from the heater and the window follow
the execution of user-installed automation rules. However,
since the contextual anomaly e/~! has polluted the system
states in G71¢, the low anomaly score in fact measures
the interaction execution under a malicious context. As
a result, the involved events should be anomalous in the
view of users.

While this work mainly discusses the smart home ap-
plication and its security issues, we envision that our
formalism of DIG and device anomalies can also apply to
other IoT applications. For example, in industry IoT [60], a
smart warehouse system may have the following business
logic. A sensor first detects a low inventory level for an
item, and the platform asks a programmed robot to put
the item on an autonomous truck. Then the truck delivers
the item to the warehouse. The above logic specifies an
interaction chain Sensor — Robot — Truck, and our DIG
is well-suited for describing it. With the DIG, one can fur-
ther formalize various industrial IoT anomalies according
to Definition 2 and Definition 3 (e.g., robot misbehavior
caused by command injection [60] and unsolicited truck
movement triggered by robot [61]). As another example, in
a water system, multiple sensors are deployed in different
places to monitor the water quality [62]. Depending on
their locations, sensors interact with each other, and their
readings are naturally affected by the upstream sensor
readings. A DIG that profiles the sensor network can help
to detect water pollution (reflected in abnormal sensor
readings) by checking the upstream sensor readings. More-
over, it supports tracking the flow of the polluted water,
which is reflected in a sequence of abnormal readings.

B. Security Goals and Assumptions

We aim to design an anomaly detection system that
achieves the following goals. (1) DIG construction. Given
the logged device events at smart homes, the system can
identify the underlying device interactions and construct
the DIG. Moreover, the process should be automated
without any background knowledge or user involvement
(e.g., source codes of automation rules). (2) Runtime mon-
itoring. The system can validate runtime device events,
such that it can detect contextual and collective anomalies.
Moreover, the detection process should be precise with a
small number of false and missing alarms.

Besides the Tth-order Markov assumption and the Sta-
tionarity assumption for the DIG (Section III), we also
make the following assumptions for the attackers and the
smart home. (1) The IoT platform is not compromised,
such that it can collect runtime device events and keep
track of the device state. The structure of device events
can be simple which only contains the timestamp and
device state. Jamming attacks that block communication
are not in our scope, as one can easily detect them due to
session timeout or missing sequence numbers [63]. Since
there are several existing solutions for event collection in
ToT platforms [64]-[66], the design of the collection module
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is beyond our scope. Our anomaly detection system can
be easily integrated into existing platforms and leverage
their collected device events. (2) We assume that there
is no hidden device that is not tracked by the platform.
Otherwise, it may affect other devices and introduce spuri-
ous interactions (e.g., acting as a common cause). (3) Like
other anomaly detection work [22], [23], we assume a semi-
supervised setting, where there are no or few anomalies in
the logged device events.

V. CausaLloT

We present our anomaly detection system CAUSALIOT,
and Figure 3 shows the architecture. (1) Event Preproces-
sor. The module is responsible for preprocessing logged
device events and generates graph snapshots. (2) Interac-
tion Miner. It takes the snapshots as inputs and initiates
the mining algorithm. The output is a DIG that models
the interaction network at end users’ smart homes. (3)
FEvent Monitor. The module takes the runtime device event
as input, and keeps track of the latest graph snapshot.
Moreover, it uses the DIG to check whether the event is a
contextual anomaly. For any detected contextual anomaly,
the module further initiates collective anomaly detection.

A. Event Preprocessor

Preprocessing the device event is necessary for the fol-
lowing reasons. (1) The raw events are usually noisy with
duplicated state reports [23], [39]. For example, the bright-
ness sensor periodically reports its readings, even though
the environment remains unchanged. (2) The diverse value
types of device states make it difficult to mine device
interactions. Specifically, the mining algorithm involves a
large number of conditional independence tests. However,
the issue of mixed value types can increase the time
complexity and reduce the accuracy of the test result [67].
(3) The raw events are in the structural format, which
the mining algorithm cannot directly use. As a result, it is
necessary to transform them into a set of graph snapshots.
We thus design the Event Preprocessor that initiates the
following procedures.

Event sanitation. The preprocessor first sanitizes the
logged device events by checking whether they imply du-
plicated state reports. If that is the case, the preprocessor
filters them. For the device state of the numeric type (e.g.,

the brightness reading), the preprocessor further estimates
its mean p and the standard deviation o. Readings that
violate the three-sigma rule [68] (i.e., fall outside the range
[ — 30, u+ 30]) are considered as extreme values and are
filtered out.

Type unification. After checking the list of device at-
tributes from the SmartThings’ developer website [30],
we categorize three types of device states according to
their value types: binary state, responsive numeric state,
and ambient numeric state. The binary state value usually
implies the device’s ON/OFF state, e.g., the switch. The
responsive numeric state value is zero when the device
is idle, and the value becomes positive when the device
is in use. For example, the water meter readings are
non-zero only when the user is using the sink. As a
result, one can set the threshold to zero and transform
the responsive numeric state to a binary state, which
implies the Idle/Working state of the device. Finally, the
ambient numeric state value is usually positive, because
these devices are designed for continuous measurement
of environmental factors. Since most device states are of
binary and responsive numeric types, we unify the types of
device states to the binary state. To achieve the goal, we
use the Jenks natural breaks algorithm [69] and discretize
the value of the ambient numeric state, which implies the
Low/High state of the device.

Snapshot generation. With the set of preprocessed
events, we first generate the time series (S°,...,S™) as
specified in Section III. Given the maximum time lag
7, we further concatenate every neighboring 741 sys-
tem states, and eventually generate the graph snapshots
G={G": (5977,..,89)|j € {r,...,m}}. Note that the
value of the time lag 7 affect both the graph complexity
and the capability of interaction mining. Specifically, a
significant 7 incurs more nodes in the DIG, which further
increases the time complexity of DIG construction (See
Section V-B and Section V-D). However, a smaller 7 may
miss some causes of an outcome state whose effects usually
take a long time, and these missing causes can further
affect the capability of anomaly detection. To determine
the value of 7, we first calculate the average time interval
v (in seconds) between two neighboring events. Then we
follow the previous work [23] and set a maximum duration
d = 60s, which is long enough to wait for any feedback
(e.g., automation execution) given a device operation.
Finally, we set 7 = d/v, such that the DIG can encode
the underlying device interactions.

B. Interaction Miner

The module aims to construct the DIG from the graph
snapshot. Specifically, we first design a variant of the
PC algorithm to identify the graph skeleton, i.e., the set
of edges in the graph. Then an estimation procedure is
initiated to infer the conditional probability table for each
node in the graph.
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Fig. 4: The workflow of TemporalPC

Skeleton construction. Given the graph snapshots, the
PC algorithm provides a conditional independence test
framework (Section II-B) to discover the edges among the
set of device states {S7]i € {1,....,n},j € {t —7,...,t}}.
However, the algorithm was not designed to handle a
temporal system. In particular, it uses a set of heuristic
rules for edge orientation (e.g., the Meek’s rule [49]). Un-
fortunately, these rules are not guaranteed to orient each
edge, which significantly reduces the accuracy of skeleton
construction. Instead, incorporating temporal information
can help to precisely orient each edge. As a result, we
propose our enhanced TemporalPC algorithm.

Algorithm 1 shows the pseudocode. It takes a device
state S! as the input and outputs its causes Ca(S}). To
construct the skeleton of the DIG (e.g., Figure 2), one can
initiate the algorithm for all S (i € {1,...,n}), and unify
the identified edges. Note that TemporalPC requires to
specify a conditional independence test method (Line 1 to
Line 4). Since each S/ is a binary state (Section V-A),
we use the G square test [70]. Specifically, to determine
whether two variables X and Y are conditionally inde-
pendent given a conditioning set Z, the test first sets
a null hypothesis: X 1 Y|Z is true. Then it uses the
graph snapshots to calculate a G2 statistic. The smaller
the statistic is, the more likely the null hypothesis holds
(measured by the p-value). Therefore, TemporalPC takes
an additional parameter o as input, which acts as the
significance threshold for the p-value. The null hypothesis
holds if the calculated p-value is more significant than c.
Otherwise, the algorithm will reject it and regard these
two variables as dependent variables.

To better explain the workflow of TemporalPC, we
present an example with n = 3, S! = S and 7 = 2
(Figure 4). TemporalPC starts with a fully-connected
graph, where each time-lagged device state (i.e., the state
with a smaller timestamp) is a parent of S% (Line 5). We
here exploit the temporal knowledge that the cause always
comes before its effect in time. As a result, each edge is au-
tomatically oriented from the time-lagged device state to
the present state S. Then TemporalPC iterates over each
dimensionality [, enumerates the subset of parents with

size [, and initiates a series of conditional independence
tests for each edge (Line 12 to Line 20). For example, to
test the edge Si™' — S% with I = 0, TemporalPC sets an
empty conditioning set and checks whether S{~' 1l S%.
Since the result shows that they are independent, the
corresponding edge is removed (Line 14 to Line 18). The
same condition holds for the state S§72.

After TemporalPC finishes the test with [ = 0, there are
four remaining parents. Then it increases the dimension-
ality with [ = 1, and generates the conditioning set with
size one from the remaining parents. For example, Tempo-
ralPC enumerates three conditioning sets ({S5 '}, {S5~11,
and {Si721) for testing the edge Si ™2 — Si As a
result, it identifies that ST=% 1 S4|{S%~?}, and therefore
the edge is removed. Similarly, it also identifies that
ST Ul SE{SE7?}, and removes the edge Si' — Si.
After TemporalPC finishes the test with [ = 1, it further
increases [. The algorithm terminates when the number
of the remaining parents is smaller than [ + 1 (Line 9
to Line 11), because in this case, the algorithm cannot
generate any conditioning set for the test. In Figure 4,
the algorithm terminates when [ = 2. As a result, the
preserved edges are the identified device interactions, and
the set of causes for S4 is identified (i.e., {Si™, S5721).

One can check from Figure 2 that the removed edge
Si=2 5 S is in fact a spurious interaction created by the
intermediate state 55_2. Specifically, the association first
goes from S12 to S173, then it goes to S% along the chain
Si™3 — 872 — St As another example, the removed
edge 8571 — 8¢ is also a spurious interaction created by
the common cause S5 2, ie., S5 « Si72 — SL. With
the stringent conditional independence test, TemporalPC
can successfully remove these spurious interactions.
CPT estimation. After TemporalPC identifies the
causes of each device state S! for i € {1,...,n}, these
interactions form the skeleton of the DIG (Figure 2). The
next step is to estimate the conditional probability table
for each S?. To this end, we use the mazimum likelihood es-
timation [71]. Specifically, let P(S! = st|Ca(S?) = ca(S}))
be the parameter that we aim to estimate. The main idea
is to determine the value P(s!|ca(S?)) which maximizes
the likelihood of observing the collected graph snapshots.
As a result, the value is calculated as P(s!|ca(S?)) =

P](s‘?;c ;?éfs)f))) = #;#?L;(“éf):)», where #(*) is the number of the
snapshots satisfying the condition. For example, suppose
there are 100 snapshots with S5 = 1 and Si™' = 0,
among which 80 snapshots are with S4 = 1. The maximum
likelihood estimation will calculate as P(S4 = 1]S572 =
1,501 =0) =08 and P(S4 = 0|52 = 1,85 =0) =
0.2, respectively.

C. Event Monitor

Finally, the Event Monitor module takes the DIG and
runtime device events as inputs, and initiates anomaly
detection. The main idea is that for each incoming event, it
first leverages Eq.(1) to calculate the anomaly score. Then




Algorithm 1 TemporalPC

Input: The graph snapshots G, the maximum time lag 7,
the outcome S?, and threshold a

Output: The set of causes Ca(X})

1: Function CI(X,Y,Z)

2 Test X 1L Y|Z using test statistic measure [
3: return p-value
4
5

: Skeleton Construction
: Initialize the preliminary set of causes Ca(Sf ) =
{S;fk cje{l,..,nhke{l,..,7}}
6: Let { = —1
7: while [ <n do
8: =1 +1
9: if |Ca(S!)] — 1< then
10: Break
11:  end if
12:  for all parent S;_k € Ca(S!) do
13: for all subset C; C Ca(SH\{S:™*} with |C| =1

do
14: p-value « CI(Si7",S,Cy)
15: if p-value > a then
16: Remove S:* from Ca(S})
17: Break
18: end if
19: end for

20: end for
21: end while
22: return Ca(CY)

it uses Definition 2 and Definition 3 to determine whether
the event is anomalous.

Phantom state machine. To calculate the anomaly
score, the module dynamically tracks the latest graph
snapshot, which is achieved by the phantom state machine.
Specifically, the machine maintains a memory for storing
the recent 7 + 1 system states. When an event e’ comes,
the phantom state machine first preprocesses the event
and derives the current system state S*. Then the machine
records it and slides the stored system states to remove the
one with the oldest timestamp. By doing so, the machine
continuously tracks the latest snapshot of the graph, i.e.,
Gt = (8t77,..,S"). The phantom state machine also
supports the query of device states. For example, given
a runtime event {S! = st}, the state machine can fetch
the values of its causes ca(S?) from G*.

Score threshold calculator. According to Definition 2,
a score threshold is needed to distinguish the contextual
anomaly and the legitimate event. To this end, we resort
to the logged events. We first calculate the anomaly score
for each logged event. Then we rank these scores and get
a score distribution. Finally, we select the gth percentile
as the score threshold [72]. The parameter ¢ can be
interpreted as the confidence level about the logged events’
normality. Since there are few anomalies in the logged

events (Section IV-B), one can set a significant value, e.g.,
99.

Anomaly detection procedure. Algorithm 2 shows the
pseudocode of the detection procedure. Specifically, it
takes an event stream, the constructed DIG, the calculated
score threshold, and an integer kn.x > 1 as inputs. The
outputs are the alarms about the detected contextual and
collective anomalies. In particular, the parameter Kk ax
specifies the maximum length of the collective anomaly
which users want to detect. When kn.x = 1, the al-
gorithm seeks to detect the contextual anomaly. When
kmax > 1, besides the detection of the contextual anomaly,
the algorithm further tracks the collective anomaly with
a maximum length of kn.x — 1. The setting of Kkpax
depends on the specific smart home usage. A possible
way is that users can use existing automation analysis
techniques [32], [37], [59] to identify the maximum length
of the automation chain and let k. be the maximum
length. By doing so, when the longest automation chain
is maliciously triggered, the algorithm can reconstruct the
whole chain.

The detection procedure starts with initializing a phan-
tom state machine PM (Line 1). Moreover, it initializes
an empty list W for recording the detected anomalies.
Whenever an event {S! = st} comes, PM first updates the
graph snapshot and fetches the values of Ca(S!) (Line 4).
Then the procedure looks up the conditional probability
table in the DIG, and calculates the anomaly score using
Eq.(1) (Line 5). Depending on the length of the event list
|W|, the procedure interprets the score differently. When

Algorithm 2 k-Sequence Anomaly Detection

Input: Runtime event stream FE, the device interaction
graph G, the score threshold ¢, and the maximum
length kpax

1: Initialize a phantom state machine PM, and an empty
anomaly list W < ||

2: for all ¢! : {S! =s!} € E do

3:  PM.Update(e?)

4 ca(St) « PM.Get(Ca(S}))

5. score < 1 — P(S! = st|Ca(S!) = ca(SY))

6: if (|W| > 0 and score < ¢) or ([W| =0 and score >
¢) then

7: W.append((e!, ca(St)))

8 end if

9:  if |W| = kpax or (0 < |W| < kpax and score > ¢)
then

10: Raise an alarm and report W to users for amend-

ment

11: W ]

12:  end if

13: end for

the list is empty, it checks whether the score is larger
than the threshold c. If that is the case, the event will
be reported as a contextual anomaly and appended to the



list. Moreover, additional information for later anomaly
interpretation is recorded (i.e., the value of its causes).
However, if the list is not empty, the procedure checks
whether the score is smaller than the score threshold. If
it holds, the event will be determined as a member of
the collective anomaly, and will also be appended to W.
When the list size |W| is equal to kpax or an abrupt
event with a significant anomaly score happens during the
collective anomaly detection, the tracking process ends,
and the anomalous event list is reported to users for device
recovery.

D. Computational complezity analysis

We here analyze the computational complexity of the
Interaction Miner and Event Monitor modules. Interaction
Miner involves the skeleton construction process and the
CPT estimation process, and the former plays a dominant
role in determining the computational complexity. Specif-
ically, since our TemporalPC algorithm follows PC’s con-
ditional independence test framework, its computational
complexity is of the same order as PC. Let n be the num-
ber of nodes in DIG, and & be the maximum degree of any
node. The maximum number of conditional independence
tests required by TemporalPC is O(n*) [73]. For Event
Monitor, the computational complexity for validating a
runtime event is O(1), as it only involves a table lookup for
calculating an anomaly score and a comparison operation
with a constant threshold. Considering the realistic sources
of device interactions (Section I), the value of k is usually
limited, and the time complexity of our approach can be
polynomial. Moreover, there have been attempts [74]-[76]
which aim to improve the scalability of PC. Their solutions
can be easily integrated into our TemporalPC algorithm.
As a result, besides the smart home, our system can also
be applied in other large-scale smart applications where
the number of devices is significant, e.g., industrial IoT.

VI. EVALUATION
A. Ezperimental Setup

We use open-source smart home datasets for the evalua-
tion. Specifically, we find two real-world testbeds which in-
vite a participant to live in and collect the generated device
events: CASAS [77] and ContextAct [78]. Table I shows an
overview of the deployed devices. CASAS collected 32,388
device events during a 30-day living experience, while
ContextAct collected 54,748 events for seven days. Since
the purpose of these testbeds is to study users’ daily-living
activities, there are few anomalies in the logged events.
Moreover, as ContextAct is an advanced testbed with
diverse types of devices, we mainly present its evaluation
results in this section. The results of CASAS are further
presented in our technical report [79].

Automation rule generation. Note that both testbeds
do not install any automation rule. As a result, it is infeasi-
ble to evaluate CAUSALIOT’s performance for automation
mining and detection of automation-related anomalies

TABLE I: Overview of device information
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TABLE II: Automation rules in ContextAct

Rule ID Description
R1 If anyone reaches the living room, activates dishwasher
R2 If anyone leaves bathroom, activate stove
R3 If the heater is on, activate bedroom player
R4 If anyone opens the fridge door, turn on the kitchen light
R5 If the kitchen is bright, turn on the bathroom light
R6 If bedroom player is deactivated, activate electric curtain
R7 If the electric curtain is activated, turn on the dining room light

(e.g., chained automation execution). To address it, we
inject device events that simulate a set of automation rules
and their functionalities. By doing so, we aim to generate
a synthetic dataset that contains the original traces and
the execution of the installed automation rules. We first
identify the devices which are suitable for being the trig-
gering and action devices, respectively. In particular, the
brightness and the presence sensors are not suitable for
the action device, as they are not bound to any actuator.
Then we randomly select the triggering and action devices
to generate automation rules. Eventually, we generate 12
automation rules, and Table IT shows several examples.
Note that some rules are chained together. For instance,
R6 and RT are chained together for the event of the electric
curtain activation. As another example, R4 and R5 are
chained together for the common physical channel, i.e.,
the high brightness in the kitchen.

Finally, we traverse the original dataset and identify a
set of candidate positions where the last event matches
the trigger of the installed automation rules. At each
candidate position, an event that simulates the action
device’s behavior is supposed to be injected. However,
some candidate positions are not suitable for event in-
jection. Specifically, we check the real-world automation
execution and find that the rule will not be executed if the
action device’s state has already followed the automation
rule. For instance, given that the stove has already been
activated, if the presence sensor in the bathroom was just
deactivated, rule Ry would not be executed. Therefore, we
further check the action device’s state at each position and
inject the event of the action device if its state does not
follow the automation execution. Totally 5,004 events are
injected into the dataset.

Event preprocessing. The raw events are preprocessed
as specified in Section V-A. We construct the IoT time
series and split them for training and testing purposes. In
particular, 80% time series are used as the training data
for DIG construction, while the remaining 20% time series
are used for the evaluation of anomaly detection.

Ground truth construction. Finally, the evaluation
requires a set of ground-truth device interactions. We



traverse all the neighboring events and extract the device
pairs as the candidate interaction. Then for each candidate
interaction, we manually examine the involved devices by
asking the following questions. (1) Is there any daily-life
activity in which users operate these two devices sequen-
tially? (2) Do they work on the same physical channel?
(3) Do they form the logic of any automation rule? If the
candidate interaction passes any test, it will be accepted
as a ground-truth interaction. As a result, we identified
196 ground-truth interactions.

B. Interaction Mining FEvaluation

With the training data, CAUSALIOT initiates the Tem-
poralPC algorithm for DIG construction (Section V-B). It
takes two parameters as inputs: The maximum time lag
7 and the significance threshold a. In particular, we set
T = 2 as it is large enough to cover the period for the in-
teraction execution. We set o = 0.001 since it is a common
practice for stringent conditional independence tests [45],
[80]. The evaluation metric we used is the precision and
recall. Specifically, for each ground-truth interaction, if the
graph contains an interaction that matches the cause and
outcome, it is counted as a true positive (TP). Otherwise,
a false negative (FN) is counted. On the other hand, for
each interaction encoded in the graph, if it is not a ground-
truth interaction, we will count it as a false positive (FP).
Given the above definition, the precision is calculated as
TP:';%, and the recall is TPZ%.

The evaluation result shows that CAUSALIOT success-
fully identifies 190 interactions with 95.9% precision and
97.0% recall. In particular, for all the 12 automation
rules, CAUSALIOT successfully identified them. We further
categorize the identified interactions according to their
sources, which are listed in Table III. (1) The user interac-
tion encodes the device usage pattern for different user ac-
tivities. For example, P(S;laycr =0/P: 2., =1)=0.836
captures the user preference when she is going to sleep,
i.e., turning off the music. (2) The physical interaction
describes how the devices affect and sense the brightness
channel. For instance, the light activation increases the
brightness, and the brightness sensor senses the change.
(3) The automation interaction encodes the functionality

of the installed automation rule. For example, P(P%, .. =
IPE, L oom = 0) = 0.946 shows the influence of the

triggering device (presence sensor) on the action device
(stove), which follows the logic of rule R2. (4) Finally,
autocorrelation usually contains information about device
usage time. For instance, P(W’, . = 0[W/ * = 1) = 0.792
shows that the user usually finishes the usage of the
sink within a short period. On the contrary, P(Pl .. =
0[PL 2. = 1) = 0.116 implies that the usage of the stove
usually lasts for a long time.

CAUSALIOT also successfully rejects 280 candidate in-
teractions. Specifically, it rejects 87 of them because the
involved device states are independent, which are reflected

by the high p-values. For example, it rejects the candidate
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interaction Biiving — Wiitchen because the p-value for
testing Biiving 1 Whiitchen is 0.953, which is far more
significant than the threshold 0.001. The remaining 193
interactions are shown to be spurious because CAUSALIOT
identifies some conditioning sets which make the involved
devices conditionally independent. Most spurious inter-
actions are attributed to the intermediate factor. For
instance, the interaction Spjayer — Dpathroom is rejected
because the device Pheater acts as an intermediate device
in the chain Splayer — Pheater — Dbathroom- On the
other hand, some spurious interactions are attributed
to a common cause. For example, CAUSALIOT rejects
the interaction Biiving — PEgining, because they share a
common cause Biiving ¢ Diiving — PEdining-

Finally, CAUSALIOT reports eight false positives and
misses six ground-truth interactions, respectively. We find
that most false positives are related to the brightness
sensor. For instance, CAUSALIOT reports a spurious in-
teraction Biliving — Bbedroom, while the change of the
living room’s brightness does not necessarily affect that
of the bedroom. A further investigation shows that these
spurious interactions are attributed to unmeasured en-
vironmental factors (e.g., sunrise and weather). These
factors can be the common cause of the brightness sensors
in different rooms. However, the testbed did not measure
them, and the interaction graph did not consider them. We
will discuss potential solutions in our technical report [79].
For missing interactions, they are mainly due to the low
occurrence of the interaction execution. For example, there
are only two instances of the Pgiqge — Weink execution,
which makes it difficult to detect the state dependency
between these two devices.

C. Conteztual Anomaly Detection Evaluation

Anomaly generation. We survey the previously re-
ported security threats and categorize four malicious cases
as listed in Table IV: (1) sensor fault [21], [22], [81], (2)
burglar intrusion [13], (3) remote control [4], [18], [58], and
(4) malicious automation rule [59], [82], [83]. To simulate
the first three cases, we first traverse the testing data and
randomly select 5,000 candidate positions. At each posi-
tion, we randomly generate a spoofed device event, which
promotes the unsolicited device state transition. These
events imply anomalous sensor readings (e.g., fluctuating
brightness levels), unexpected presence (e.g., presence-
on and contact-open events), and unsolicited actuator
operations (e.g., switch on and off), respectively. Then we
inject the corresponding anomalous system state into the
time series. As a result, we create three testing time series,
each of which contains 16,950 system states. For the case
of malicious automation rules, we randomly generate a set
of malicious rules that aim to control the devices under
some conditions (e.g., if users leave the kitchen, activate
the stove). Then we follow the procedure as specified in
Section VI-A and simulate their executions. Eventually,



TABLE III: Identified device interactions in ContextAct

Sources Category Number Example Description
Use-after-Use 42 Pheater = Dbathroom, Peurtain = Splayer Sequential operations over devices
User Use-after-Move 24 Ckitchen — Poven, PEbathroom — Dbathroom Move to room and operate devices
Activity Move-after-Use 45 Dbathroom — PEliving; Pdishwasher — PEdining Operate devices then move
Move-after-Move 27 PELitchen — PEdining, PEbedroom — PEliving Traces of user movements
Physical Channel Brightness 18 Diiving — Bliving; Pstove = Biitchen Change and sense the brightness level
Automation N/A 12 PEpathroom — Pstove, Pheater = Splayer Logics of installed automation rules
Autocorrelation N/A 22 sink = Wsink; Poven — Poven Devices’ state flipping

TABLE IV: Contextual anomaly and detection accuracy

Creation
Method
Tnsert anomalous
sensor readings
Insert unexpected
presence events
Tnsert fipped
state events
Tnsert conditional
transition events

Anomaly
Description
Fluctuating
brightness level
Suspicious
presence report
Ghost actuator
operation
Execution of
hidden rules

Case Accuracy | Precision | Recall F1

Sensor
Fault
Burglar
Intrusion
Remote
Control
Malicious
Rule

0.978 0.964 0.960 0.962

0.978 0.957 0.968 0.962

0.972 0.945 0.962 0.953

0.989 0.943 0.984 0.963

we generate 2,000 malicious events and create a testing
time series with 13,950 system states.

Evaluation results. With the testing data, CAUSALIOT
initiates 1-sequence algorithm for the detection of contex-
tual anomalies, and the results are shown in Table I'V. For
each anomaly case, we first compare the injected positions
and the alarming positions. Then we check the number
of true, false, and missing alarms. The results show that
CAUSALIOT achieves a high detection accuracy with an
average of 95.2% precision and 96.8% recall. Below we
describe several examples showing how CAUSALIOT works
to pinpoint the anomaly.

(1) Fluctuating brightness report. CAUSALIOT raises an
alarm for a high brightness reading after checking the
time-lagged states of the dimmer, oven, and stove. Given
the deactivation of these causes, CAUSALIOT determines
that the event violates the physical interactions (in terms
of a low likelihood of 0.02%). Moreover, the reported
context (i.e., values of causes) implies the potential fault
of the sensor.

(2) Covert door control. A kitchen-door event is reported
after CAUSALIOT checks the states of the presence sensors
deployed in neighboring rooms. Given that no presence
was detected, CAUSALIOT determines that the door event
violates the users’ normal traces. Similarly, it reports
a mysterious dimmer event after checking the presence
sensors deployed in the bedroom and study room. The
context shows that these devices are likely to suffer from
the remote control.

(3) Malicious automation execution. CAUSALIOT finds
that every time the presence sensor in the kitchen is deac-
tivated, the stove will be turned on. It further checks the
state of the fridge (as users usually use them sequentially),
and its deactivation state confirms that the stove event is
anomalous.

We also examine the false and missing alarms. Specifi-
cally, the false alarms are mainly due to user behavioral
deviations. For example, the training data shows that users
rarely (0.26%) move to the living room after operating the
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stove. However, the behavior becomes frequent (7.61%) in
the testing data. Since the Pyiove — PEpbedroom interaction
has changed its execution, the stove event is regarded as
an anomaly by the outdated interaction graph. While it is
arguable whether false alarms due to behavioral deviations
should be counted [23], we still count them because they
do not stem from our anomaly injection scheme. We also
discuss potential solutions in our technical report [79]. On
the other hand, the missing alarm is mainly caused by
spurious brightness interactions. For example, a spurious
Baining = Cbedroom interaction can mitigate the abnormal
level of a malicious door-unlocking event that happens in
the daytime.

Baseline comparison. We select three popular anomaly
detection methods as the baseline and make comparisons
with CAUSALIOT. These baselines show potentials for
detecting the contextual anomaly [21]-[23], [84], and we
categorize them according to the taxonomy of the detec-
tion technique [85].

e (Stochastic Learning) kth-order Markov chain [21], [22].
It first uses the training data to estimate the likelihood
of the current system state given the preceding k system
states. If a runtime event implies a system state transi-
tion that never happens, it is reported as an anomaly.
In particular, we set k = 7 in our evaluation.
(Classic Machine Learning) One class support vector
machine [84]. It takes the training system states as in-
puts and learns a classification boundary. Then for each
runtime event, OCSVM performs a classification task
and determines whether the system state is anomalous
or not.
(Data Mining) HAWatcher [23]. The rule-based method
uses a set of inferred rules to detect device anomalies.
It first utilizes background knowledge (e.g., the device
location) and association tests to learn a set of event-
to-state rules (e.g., Eﬂ;;‘i ~s Sheater) Then for each
runtime event, HAWatcher identifies the related rules
and validates the corresponding state. If any rule is
violated, the event is marked as anomalous.

The comparison result is shown in Figure 5. CAusaLIoT
achieves the best performance for all the anomaly cases.
For the baselines, the Markov model achieves a relatively
good recall. However, it heavily relies on the temporal
order among events, and many disordered IoT events
(e.g., the periodic brightness report) can cause unexpected
system state transitions. As a result, a large number of
false alarms are generated. Our method, on the contrary,



carefully selects device interactions based on the persistent
state dependencies. As a result, it is more resilient to
disordered events. OCSVM also achieves a good recall.
However, the number of false positives is large (56.2%
in average), which makes the detection system useless.
Moreover, it cannot provide any information for anomaly
interpretation. Finally, HAWATCHER achieves the lowest
accuracy, and the main reason is the flawed rule construc-
tion process. Specifically, it rejects a large number of de-
vice interactions for rule construction because they do not
follow the spatial constraint (e.g., PEkitchen — PEdining)
or the functionality dependency (e.g., Pstove — Britchen)-
However, these interactions are beneficial for profiling
normal device behavior. The result shows that the smart
home is a complex system, and there exists no reliable
background knowledge for understanding the inter-device
relationship. On the contrary, our work presents a pow-
erful method for mining device interactions without back-
ground knowledge.
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Fig. 5: Comparisons for contextual anomaly detection

D. Collective Anomaly Detection

Finally, we initiate the evaluation for collective anomaly
detection. We simulate three malicious cases as follows.
(1) burglar wandering. After the burglar breaks into the
house, he opens the doors and searches for each room,
which creates a sequence of contact/presence events [13].
(2) actuator manipulation. The attacker initiates a se-
quence of unsolicited actuator operations for some mali-
cious task. For instance, he can turn the light on and off
and use the light as a covert communication channel to
transfer information [4]. As another example, he activates
a set of devices used in an activity of daily life (e.g., the
kitchen light, stove, and fridge for cooking), such that he
can camouflage himself as the normal user and cause severe
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TABLE V: Collective anomaly and detection accuracy

% detected

anomali
93.2%
92.6%
88.6%
89.3%
88.1%
81.3%
98.7%
97.0%
95.5%

Avg. detection
length
2.000

Case
Description

Avg. anomaly
length
2.000
2481
3.003
2.000
2.509
2.982
2.000
2.454
3.001

k, % tracl‘ﬁcd

Burglar
Wandering

2.474
2.968
2.000
2.452
2.912
2.000
2.449
3.001

Tilegal
Actuator
Operations
Chained
Automation
Rules
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consequences (e.g., fire accident). (3) chained automation
rules. With the knowledge of the deployed automation
rules, the attacker can selectively target a triggering device
and cause the chained automation execution [32], [36]. For
example, after he hijacks the fridge and covertly activates
it, the fridge misbehavior triggers the automation R4 and
turns on the light. The high brightness further triggers the
execution of R5, which eventually turns on the bathroom
light.

For each malicious case, we first randomly select 1,000
positions in testing data to generate contextual anomalies.
Based on the ground truth, we propagate each contextual
anomaly and generate a sequence of events that follow
the interaction execution at smart homes. For instance,
given that a bedroom presence is injected as the contextual
anomaly, we further simulate the attacker’s trace and in-
ject presence events in the study room and the living room.
Note that the length of these sequences is bounded by a
parameter kp.y, which quantifies the maximum number of
interaction executions and affected devices. For instance,
given the case of chained automation rules and kpax = 3,
we simulate the scenario where at most two automation
rules are chained together, and at most three devices are
affected. In this evaluation, knax ranges from two to four,
and the average length of the anomaly chain is listed in
Table V.

Finally, CAUSALIOT initiates the k-sequence anomaly
detection with k = k4. Since we are the first to report
abnormal interaction executions and initiate collective
anomaly detection, no baselines are selected for compari-
son. In particular, we are interested in the following two
questions about the performance of CAUSALIOT. (1) Can
it detect the existence of abnormal interaction executions,
i.e., any subsequences of the collective anomalies? (2) Can
it track the whole sequence and identify all the affected
devices? Table V shows the evaluation result. CAUSALIOT
achieves an average of 91.9% detection accuracy for the
above three malicious cases. Moreover, CAUSALIOT suc-
cessfully reconstructs 90.8% of the detected anomalies. For
the remaining 9.2% anomalies, while not fully tracked,
CAUSALIOT can still collect most of the involved events.
One can check that the average detection length is close to
the average anomaly length with an average of only 0.17
missing events.

We further investigate the root cause of the detection
result for missing anomalies. Specifically, some missing
alarms are attributed to the missing detection of the
contextual anomaly. As a result, CAUSALIOT mistakenly



regards the whole sequence as a normal interaction execu-
tion and does not initiate the collective anomaly tracking.
The remaining missing alarms are due to the inability
of collective event tracking. That is, after CAUSALIOT
detects the contextual anomaly, the anomaly score of the
consecutive event is still high. As a result, the consecutive
event acts as an abrupt event and stops anomaly tracking.
In summary, based on the accurate contextual anomaly
detection and interaction profiling, CAUSALIOT performs
very well for collective anomaly detection.

VII. RELATED WORK
A. Causality

The understanding of the causal relationship has
evolved from the deterministic functional equations [86]—
[88] to the stochastic functional equations [44], [89] in
the last century. Specifically, [44] proposed a structural
causal model which uses structural equations to describe
the causal relationship among variables. Researchers also
base on the bayesian network [70] and propose a graphi-
cal representation of the model, i.e., the causal bayesian
network (or causal graph for simplicity). Compared with
the bayesian network, the edges in the causal graph de-
scribe more complex relationships among variables: They
encode both the conditional dependence relationship and
causal relationship in terms of intervention [90]. Due to
its transparent and interpretable representation of causal
relationships, the structural causal model has been widely
used in economics [91], [92], epidemiology [93], [94], and
social sciences [95], [96]. Our work makes a first step
towards utilizing the causal model in the IoT ecosystem
to interpret the prevalent device interactions.

Prior works propose various methods to infer the causal
model [47], [48], [73], [97]-[100]. Specifically, constraint-
based methods aim to efficiently search for a causal
graph [47], [48], [73], and they can encode various in-
dependence test methods to handle different types of
data/dependence formats. Equation-based methods lever-
age the noise term in the structural equations and test
asymmetry between the causal and effect [97], [98]. How-
ever, they cannot identify the causal relationship without
any assumption on the function [101]. Recently, represen-
tation learning methods have been proposed [99], [100].
Generally speaking, any methods described above can be
extended to handle the temporal setting. Considering their
benefits and popularity, we extend one of the most famous
constraint-based methods, the PC algorithm, and use it for
causal discovery for device interaction mining.

B. Detection of Smart Home Security Threats

Many prior trials focus on detecting threats in specific
IoT applications and functionalities. In particular, [10],
[32], [36]—[38], [59], [102]-[104] extensively study the secu-
rity issues of the automation rules. However, their methods
largely depend on the accessibility of the source codes, and
cannot handle the case where the automation rules come
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from multiple platforms and each platform uses different
programming languages. Instead, CAUSALIOT uses a data-
driven approach to adequately address the challenge of
automation inference. Moreover, our work can detect and
track unsolicited automation executions at runtime, which
these works cannot address.

[39], [65], [105] leverage the idea of “contextual in-
tegrity” and design a set of security policies for device
access control. Specifically, they highlight that one can
use external conditions (e.g., user location or the state of
other devices) to justify a device operation. Unfortunately,
they require significant human efforts (e.g., user survey
or runtime application prompt) to infer the user prefer-
ence for device operations. Our work focuses on studying
the inter-device relationship for profiling normal device
behavior. We use the causal primitive to describe the
device interaction, and we design a TemporalPC algorithm
for automatic DIG construction. It can also handle more
sophisticated security threats which are not considered by
prior work (e.g., unsolicited interaction execution).

Finally, many anomaly detection systems utilize data
mining techniques to profile the normal system behav-
ior [19]-[22], [106]. The main difference between these
detectors and our work is that we exploit the nature
of the widespread device interactions and use them to
profile legitimate smart home usage. As a result, our work
achieves better detection accuracy. Moreover, the knowl-
edge of device interactions can provide helpful information
for explaining the detection result, which was unsupported
by prior work.

VIII. CONCLUSION

One unique feature of smart homes is the high volume
of device interactions. Since they are well-suited for pro-
filing normal device behavior, a promising direction is to
utilize them for device anomaly detection. In this work,
we propose the device interaction graph and take the
first step toward automated graph construction from the
logged device events. Moreover, we formally categorize two
types of smart home anomalies and utilize the interaction
graph for runtime anomaly detection. We built a prototype
CAUSALIOT and evaluated it on the real-world testbed
against seven malicious cases. The result shows that it
outperforms existing methods and can handle new types
of anomalies that were not considered by prior work.
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