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Abstract

In the past few years, overlay networks have received much attention but there has been little study on the
“ interaction” of multiple, co-existing overlays on top of a physical network. In addition to previously introduced
concept of overlay routing strategy such as selfish routing, we introduce a new strategy called “overlay optimal
routing”. Under this routing policy, the overlay seeks to minimize its weighted average delay by splitting its traffic
onto multiple paths. We establish that (i) the overlay optimal routing can achievebetter delay compared to selfish
routing and (ii) there exists a Nash equilibrium when multiple overlays adopt this strategy. Although an equilibrium
point exists for overlay optimal routing and possibly for selfish routing, we show that the interaction of multiple
overlay routing may not be Pareto optimal and that some fairness anomalies of resource allocation may occur.
This is worthy of attention since overlay may not know the existence of other overlays and they will continue
to operate at this sub-optimal point. We explore two pricing schemes to resolve the above issues. We show that
by incorporating a proper pricing scheme, the overlay routing game can be led to the desired equilibrium and
avoid the problems mentioned above. Extensive fluid-based simulations are performed to support the theoretical
claims.
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1. Introduction

The fundamental design philosophy of the Internet is to build a robust, highly scalable and evolvable
network. To achieve scalability, a hierarchical form of routing is adopted in which routing policies are
left to network operators. Static routing, meaning that link costs are kept constant, is used to keep things
simple. When traffic demand changes, congestion control at the source regulates the traffic load rather
than tries to find an alternate path which has a higher available network bandwidth or better performance.
Although such design choices might not achieve the optimal performance, they are considered as the
contributing factors to the scalability and robustness, hence the success of Internet.

This form of simple but sub-optimal network design allows a more intelligent traffic routing policy
at the application layer. For the past few years, there has been tremendous interest on the routing and
deployment of overlay or peer-to-peer networks[2,15]. These networks provide features like resiliency[2]
and services such as content delivery and large scale file distribution[1]. In particular, application-layer
routing schemes are shown to effectively address the problems of traditional IP routing. Measurements
from Refs.[2,15,16]indicate that in the current Internet, not only a large percentage of flows can find a
better route by relaying packets with the assistance of overlay nodes, but also able to ensure a higher QoS
guarantee. From a theoretic point of view, application layer routing is an optimization problem in which
an overlay maximizes its utility based on the available network resources.

Although the concept of overlay networks has received much attention in recent years, there has been
little focus on the “interaction” of “ co-existence” of overlay networks. In this work, we consider scenarios
in which multiple overlays are constructed on top of a physical network. These overlays may share some
physical links or nodes, but they may not realize the existence of other overlays. Each overlay is “selfish”
by nature in that it performs overlay routing so as to optimize its own performance without considering
the impact on other overlays. In particular, we explore this form of interaction and how the interaction
can affect the network stability, performance and fairness in resource allocation.

For the traditional overlay routing, the strategy is to select thebest path for a given flow so that the
performance, say end-to-end delay, can be minimized. Note that this form of overlay routing doesnot
split the flow among all available paths, but rather selects a path which has the minimum delay. Because
the existence of this flow will increase the congestion level of the traversed links, the average delay of this
flow is generally not minimized[14]. In Ref.[11], authors present an architectural framework of shared
routing underlay so as to offer a query service for all overlays above the physical network. For instance,
an overlay can find out the congestion level or delay of a physical link. In Refs.[6,7], authors show that
when overlays have the ability to assign traffic among its available paths, it can minimize the average
delay. These results suggest the feasibility of implementing an optimal routing scheme for an overlay
network.

In this paper, we seek to understand the interaction of multiple overlays. We first propose the “overlay
optimal routing” policy and show that it has a better performance than classical overlay selfish routing
[13,14,18]. Secondly, we model the interaction of overlays as a non-cooperative strategic game and show
that when multiple overlays use the overlay optimal routing policy, there always exists aNash equilibrium,
under very mild assumptions about the delay functions of the overlay’s links and general network topology.
Thirdly, we point out that in general, when multiple overlays use “any” form of application layer overlay
routing policy, the equilibrium point is not Pareto (or social) optimal. More importantly, the interaction
may lead to some resource fairness anomaly. That is, at the equilibrium point, it is possible for some
overlays to obtain a higher percentage of the common resource (e.g., link bandwidth) as compared to
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other overlays, and cause these overlays to experience a significant performance degradation. To overcome
the performance and fairness issues, we propose two pricing schemes to resolve these issues.

The outline of the paper is as follows. In Section2, we present the mathematical models for selfish
routing and overlay optimal routing. In Section3, we study the interaction between co-existing overlays
as a non-cooperative strategic game, and show that under a general network topology, the overlay optimal
routing has a Nash equilibrium. In Section4, we illustrate that when multiple overlays interact with each
other, there exist some potential performance and fairness problems. In Section5, we present two pricing
schemes to solve the above mentioned problems. Related work is given in Section6 and finally, Section
7 concludes.

2. Mathematical models for overlay routing

We begin this section by formally defining the physical network and various co-existing overlays. We
then present the “overlay optimal routing” policy and formulate it as a constrained convex optimization
problem. We also illustrate the relationship between classical selfish routing and overlay optimal routing.

2.1. Formulation of overlay network routing problem

Consider aphysical network with a setJ of resources, which denotes a set of physical links. For each
link j ∈ J, let Cj represent its finite capacity (unit is bps). The number of links in the network is finite
such that|J| = m. Let aroute r be a non-empty subset ofJ, and denoteR as the set of all possible routes
of the physical network. Since the setJ is finite, the number of possible routes is also finite, say,|R| = q.
We useA to represent anm × q matrix withAjr = 1 if j ∈ r, which indicates that linkj ∈ r, andAjr = 0
otherwise. Thus, the matrixA defines a 0–1 link-route indicator matrix (Ajr, j ∈ J, r ∈ R).

An overlay network is a connected subgraph of the underlying physical network which consists of a set
of logical nodes and logical links. A logical path is interpreted as a set of logical links, each of which may
consist of one or more physical links. The logical topology of the overlay network heavily depends on how
this overlay is organized. With proper translation, we can map every logical path to a set of corresponding
physical links. Thus, the routing matrix for overlays can be similarly defined asA(s), which is a partial
matrix ofA. We allow multiple overlays to co-exist on top of a physical network and these overlays may
share some of the physical resources inJ. Within an overlay, there can be “multiple” source–sink pairs and
each source–sink is associated with a traffic flowf, which has a constant traffic demand ofxf (units is bps).
Though the overlay’s traffic demand may be variant, we seek to simulate a static underlay environment and
non-variant overlay traffic, to explore the essential properties and implications due to overlays’ interaction
in a less dynamic environment. However, we will show in Section4 that even when each overlay has one
single source–sink, there will be undesirable interaction between overlays and the situation can get worse
when there are more source–sink pairs within an overlay. For the ease of presentation, we use the term
source–sink or flow interchangeably to denote a particular traffic transmission within an overlay.

DenoteN as a finite set (with|N| = n) which represents all overlays on top of a physical network.
Suppose that for each overlays ∈ N, there is a finite setFs of source–sink pairs. For each flowf ∈ Fs,
there is a setRf of different paths (may not be disjoint) that can be used by the flowf to deliver information
from its source to its sink, whereRf is a non-empty subset of all possible pathsR in the physical network.
Hence,Rf contains all possible paths for the flowf from its source to its sink. LetH be an

∑
s∈N |Fs| × q
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matrix and we haveHfr = 1 if r ∈ Rf (f ∈ Fs, s ∈ N, r ∈ R) such that router serves flowf in overlay
s, and we setHfr = 0 otherwise. Again,H defines a 0–1 indicator matrixH = (Hfr, f ∈ Fs, r ∈ R),
specifying all possible routes that can be used by flowf in the overlays.

Each overlay has the ability to control the routing of its trafficwithin its overlay network. Therefore,
source nodes of an overlay network may choose to split and assign their traffic onto different paths so that
the weighted average delay of thewhole overlay network can be minimized. Note that this is different
from the traditional overlay routing, because normally a source node in an overlay merely chooses a
currently best path from a set of available paths, i.e., minimum end-to-end delay, assigningall its traffic
along this path. For each flowf in the overlays, there is a traffic demandxf (in terms of bps) assigned to
the corresponding source–sink pair. The overlay needs to decide, for all its flows, how to assign traffic to
every possible pathr ∈ Rf so as to optimize its desired performance. Thus, each flowf in the overlays
has a routing decision vectory(s,f ) = (y(s,f )

1 , y
(s,f )
2 , . . . , y

(s,f )
|Rf | )

T, wherey(s,f )
k is the amount of traffic along

pathk for flow f in overlays, and
∑|Rf |

k=1 y
(s,f )
k = xf where|Rf | is the total number of paths available

for the flow f. For the compactness of presentation, we rewrite the routing decision for overlays as a
concatenation of the flow vectors of all its source–sink pairs:y(s) = (y(s,f1), y(s,f2), . . . , y(s,f|Fs |)).

We say that a flow vectory = (y(s), s ∈ N) = (y(1), y(2), . . . , y(n)) supports traffic ratex = (xf , f ∈
Fs, s ∈ N)T if Hy = x. In other words, summing the rateyr on the router serving the flowf for all possible
routes is equal to the overall traffic demandxf . We call a flow patternfeasible if for y = (yr, r ∈ R),
y ≥ 0 andAy ≤ C, whereC = (Cj, j ∈ J). In other words, the aggregate rate of traffic that traverses link
j is no more than the capacityCj of link j.

2.2. Overlay optimal routing

Let dj(lj) denote the delay function for the physical linkj ∈ J, wherelj is theaggregate rate of traffic
that traverses linkj. In this work, we only assume that the delay function is continuous, non-decreasing,
and convex. Note that this is a reasonable assumption since this applies to a link with a fixed propagation
delay, or a link whose delay is represented by general queueing delay models. The end-to-end delay of a
route is the sum of delay for each physical link that comprises this route. For a particular overlays ∈ N,
the weighted average delay for this overlays is

delay(s) = 1∑
f∈Fs

xf

∑
f∈Fs

∑
k∈Rf

y
(s,f )
k · D

(f )
k , (1)

whereD
(f )
k = ∑

j∈k dj(lj) is the end-to-end delay of pathk for flow f. Note thatxf is a given traffic
demand, which can be treated as a constant and will not affect the optimization procedure that we will
carry out in later sub-section.

Let L = (l1, l2, . . . , lm)T denote a traffic rate vector for all physical links in the network. We define a
delay functionD(L) : Rm → Rm, where for each rate vectorL, this function returns a delay vector for all
physical links:

D(L) = (d1(l1), . . . , dj(lj), . . . , dm(lm))T, j ∈ J (2)

whereL = (l1, l2, . . . , lj, . . . , lm)T, j ∈ J.
Let A(s,f ) be anm × |Rf | routing matrix for the flowf in the overlays, of which the definition is

similar to that ofA. Therefore,A(s,f ) is the partial matrix ofA(s). For the ease of presentation, we
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rewrite A(s) = (A(s,f1), A(s,f2), . . . , A(s,f|Fs |)), andA = (A(1), A(2), . . . , A(n)). With these notations, one
immediately obtains the following result of representing the traffic rate vector in the physical network:

L =
∑
s∈N

∑
f∈Fs

A(s,f )y(s,f ) =
∑
s∈N

A(s)y(s) = Ay. (3)

The weighted average delay for an overlays can be expressed in a compact form as:

delay(s)(y(s); y(−s)) = 1∑
f∈Fs

xf

· y(s)T
[
A(s)TD(L)

]
= 1∑

f∈Fs
xf

· y(s)T
[
A(s)TD

(∑
i

A(i)y(i)

)]

(4)

wherey is a feasible flow pattern of vector (yr, r ∈ R) = (y(1), y(2), . . . y(s), . . . , y(n)) andy(−s) denotes
the vector of traffic flows in other overlays except the overlays.

Finally, the overlay optimal routing for an overlays can be expressed as a constrained optimization
problem that represents the interaction with other overlays in the network. Mathematically, we have:

OVERLAY(s) [y(s); A, H, C, x, y(−s)] : (5)

Minimize y(s)T
[
A(s)TD

(∑
i

A(i)y(i)

)]
(6)

s.t. for ∀f ∈ Fs,

|Rf |∑
k=1

y
(s,f )
k = xf , (7)

Ay ≤ C, y(s) ≥ 0 (8)

For this optimization problem, overlays considers other overlays’ routing decisions asfixed when it
makes the routing decision by solving the above optimization problem. Note that the objective function
of this optimization problem is continuous, differentiable and convex. Since the feasible region defined
by constraints in the optimization problem of Eq.(5) is convex and compact, the optimal value and the
minimizer can be found by the Lagrangian method. Furthermore, an alternative solution is to apply the
marginal cost flow approach[14] discussed shortly. During the interaction process among these overlays,
each overlays computes its current best strategyy(s) given other overlays’ routing strategiesy(−s), which
is assumed to be invariant in the computation.

2.2.1. Illustration of notations and overlay networks
To illustrate the concept and various notations, let us consider the physical (or underlying) network

depicted inFig. 1(a). The physical network consists of 12 physical nodes and a set of physical links.
There are two co-existing overlay networks above the physical network, in which overlay 1 has two
source–sinks while overlay 2 has one single source–sink pair. Each overlay is a logical network using a
set of physical nodes and logical links. In general, the topology of an overlay network depends on how
the overlay is organized andFig. 1(b) shows one possibility of the logical topologies. A physical node can
also belong to multiple overlays, i.e., nodeC, I belong to both overlays. Every logical link is interpreted
as a physical route between two neighbor overlay nodes, which is determined by the underlying IP level
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Fig. 1. (a) A physical network with two co-existing overlays. (b) Two overlays and their routing decisions. Overlay 1 has two
flows while overlay 2 has one flow. Each flow has one unit of traffic.

routing, i.e., the shortest path routing algorithm. The logical link to physical path mappings are depicted
in Fig. 1(b).

For each source node in both overlays, there is a set of available logical paths to the corresponding sink.
Tables inFig. 1(b) list the set of available paths for each source–sink pair in each overlay. The routing
decision vectory(s), s = 1, 2, assigns a non-negative amount of traffic to each of these available paths
such that the sum of the amount of flow over all paths is equal to the traffic demand of the flow. In this
example, the traffic demand ofeach flow is 1 unit. These overlays interact with each other due to the
fact that the logical paths in different overlays have overlapping physical links. For example, the logical
pathsAF–FD, KF–FL in overlay 1 andGE–EJ in overlay 2 has the common physical linkEF. Similar
situation occurs for linksBC, CD, HI, etc. As we will discuss later, since one overlay’s routing decision
depends on the routing decision of other overlays, there will be inevitable interaction between the routing
behaviors of different overlays.

2.3. Relationship between global optimal routing, selfish routing and overlay optimal routing

In this section, we present the relationship between global optimal routing[3], selfish routing and
overlay optimal routing. These routing schemes are solving three different types of system optimization
problems, however, there is a fundamental distinction between their objectives and this provides users
a spectrum of efficiency and fairness for operating an overlay network. Let us use the same network
illustrated inFig. 1to show how these three routing strategies work. Note that the delay of each link is a
function of the aggregate rate of traffic that traverses this link. InTable 1, we list out the delay function
of each physical link. We denotedj(lj) as the delay function of linkj andlj as the aggregate traffic rate
of link j. For the simplicity of presentation, the first set of links inTable 1has a “linear” delay function
(i.e., delay proportional to the aggregate traffic), while the rest of the links in the network have a constant
delay of zero or one unit of time.

Let us consider the overlay routing decision vector:y(1,1) = (y(1,1)
1 , 1 − y

(1,1)
1 )T denotes the traffic rate

through routesAC–CD andAF–FD for the first flow in overlay 1, respectively, andy(1,2) = (y(1,2)
1 , 1 −

y
(1,2)
1 )T denotes traffic rate through routesKF–FL andKI–IL for the second flow in overlay 1, respectively.

Similarly,y(2,1) = (y(2,1)
1 , y

(2,1)
2 , 1 − y

(2,1)
1 − y

(2,1)
2 ) denotes the traffic rate through routesGC–CJ, GE–EJ
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Table 1
Delay function of physical links

Delay function Physical links

dj(lj) = lj AB, BC, EF, FJ, HI

dj(lj) = 0 FD, DJ, KE, GE, JL

dj(lj) = 1 AE, GB, GH, KH, CD, IJ, IL

andGI–IJ for the flow in overlay 2. We assume the traffic demand for all the flows in both overlays is
one unit, and there is no underlying traffic in the physical network. For the simplicity of presentation, we
assume the capacity for each link is sufficiently large to support the given traffic flow demand.

The classical global optimal routing[3] is a centralized routing policy and the objective of it is to
minimize the weighted average delay for “all” traffic in the physical network. Due to the lack of space,
we will not repeat its theoretical formulation here (readers can refer to Ref.[3]) but just give the optimal
solution for the example illustrated inFig. 1: y(1,1) =

(
3
8,

5
8

)
, y(1,2) =

(
1
8,

7
8

)
andy(2,1) =

(
1
2,

1
2, 0

)
. Note

that in general, the solution to the global optimal routing may not be unique.
Selfish routing, on the other hand, is actually a greedy strategy which maximizes local benefit for

a single user. From the theoretical aspect of selfish routing, each user controls aninfinitesimally small
portion of traffic and selects a path with the shortest delay. In real networks, the smallest unit is a packet.
So the closest approximation of implementing the selfish routing is to assign each packet to the path which
currently has the shortest delay. To allow end users to choose routes by themselves, either source routing
(e.g., Nimrod[4]) or overlay routing (e.g., Detour[15] or RON[2]) can be used. In overlay routing, end
users can find multiple overlay paths, with the assistance of other nodes in the same overlay relaying
packets to the sink. Based on the result in Ref.[14], this is equivalent to solving the following constrained
convex optimization problem:

SELFISH [y; A, H, C, x] :

Minimize
∑
j∈J

∫ lj

0
dj(t) dt,

s.t. Hy = x; Ay ≤ C; L = Ay; y ≥ 0.

The Karush–Kuhn–Tucker (KKT) condition for the solution of selfish routing is that every route with
non-zero traffic serving the same source–sink pair has the same end-to-end delay, moreover, it should be
the minimum among all available routes. The equilibrium routing decisions for two overlays arey(1,1) =(

3
4,

1
4

)
, y(1,2) =

(
3
4,

1
4

)
andy(2,1) =

(
0, 1

2,
1
2

)
. The detailed derivation is omitted here, and interesting

readers can refer to Ref.[8]. In general, the equilibrium point for a selfish routing scheme may not be
unique.

While selfish routing represents egoism from an end users’ perspective, overlay optimal routing rep-
resents such selfishness from a larger entity’s point of view. A special case is that when there are only
two overlays, the interaction can be modeled similarly as a duopoly game[5]. For an individual over-
lay, overlay optimal routing achieves optimum within one overlay’s range, similar to the way global
optimal routing achieves global optimality within theentire underlying physical network throughtraffic
engineering. Overlays can obtain from a common routing underlay the routing information of the under-
lying network, e.g., topology of physical network, delay function of physical links, current traffic rate of
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Table 2
End-to-end delays of different routing strategies

Weighted delay, delay(s) = 1∑
f∈Fs

xf

∑
f∈Fs

∑
k∈Rf

y
(s,f )
k · D

(f )
k Overlay 1 Overlay 2 Overall delay

Centralized global optimal routing 2.50 2.38 2.46
Selfish routing 2.63 2.75 2.67
Overlay optimal routing 2.46 2.53 2.48

different links[11]. With these information, overlays adaptively regulate traffic within the overlay so that
the average delay of the overall traffic is minimized. In the case that there are multiple overlays co-existing
above the same physical network, it is very likely that there will be partially overlapping paths. Moreover,
one physical node may belong to several overlays. Thus, there will be interaction if multiple overlays
optimize their performance simultaneously.

To illustrate the routing decisions and the existence of Nash equilibrium of the overlay routing game, let
us use the same example illustrated inFig. 1. To find the Nash equilibrium, we need to first calculate the
best response of each overlay to the routing decisions of other overlays. Given the fixed routing strategies of
other overlays during the period of the optimization process, this is the solution of the convex optimization
problem in Eq.(5). That is, for every path with non-zero traffic serving the same source–sink pair, the
“marginal length” of these paths should be the same. In here, the length of a link is defined as thefirst
derivative of the weighted delay for this link. Furthermore, the length should be minimum among all
available routes serving this source–sink pair. One can rewrite the first derivative of the weighted delay
for each linkj as (lj · dj(lj + l∗j ))′ = dj(lj + l∗j ) + lj · d ′

j(lj + l∗j ), wherelj is the aggregate traffic of its own
overlay that traverses linkj, andl∗j denotes other traffic traversing linkj. Similarly, in here we only give
the equilibrium routing decisions for two overlays, when both of them take theoverlay optimal routing

strategy:y(1,1) =
(

35
72,

37
72

)
, y(1,2) =

(
83
216,

133
216

)
andy(2,1) =

(
11
36,

49
108,

13
54

)
. Detailed derivation can also be

referred to Ref.[8].
Finally, Table 2depicts the performance measures in terms of weighted average delay for the three

routing strategies. From the table, one can observe that three routing strategies achieve different overall
performances, as well as the performance for individual overlays, representing a spectrum of efficiency
and fairness for different routing strategies. For global performance, global optimal routing achieves the
best while selfish routing achieves the worst. For individual overlays, selfish routing is still the worst
among three of them, which again verifies the efficiency loss stated in previous studies[14]. When one
considers the performance of the overlay optimal routing, we observe that the weighted delay of overlay 1
decreases while the weighted delay of overlay 2 increases, when compared to their respective performance
achieved using the global optimal routing. It is intriguing to find one overlay achieves a better performance
at the expense of the other overlay. In later sections, we will explore the fairness and resource allocation
issues of this phenomenon.

3. Nash equilibrium for the overlay optimal routing

In this section, we present the game theoretic analysis of the interaction between co-existing overlays
which are using the overlay optimal routing policy. We also present results of the fluid simulations to
demonstrate the network stability.
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Based on the mathematical formulation of the overlay optimal routing we presented in the previous
section, one can model the interaction between multiple co-existing overlays as a Nash routing game.
First, a finite set of playersN consists of all overlays, whereN = {1, 2, . . . , n}. Second, the strategy that
an overlay can take is a vector of flow on all available paths, wherein each component of the vector is
non-negative and satisfies the transmission demand. Further, the rate vector should satisfy the capacity
constraint of each link. Formally, the set of action profiles for overlays is:

Γs = {y(s)|y(s) ∈ Rrs+, (Hy)s = xs, Ay ≤ C} (9)

where R+ denotes the set of non-negative real numbers andrs = ∑
f∈FS

|Rf |. If y =
(y(1), y(2), . . . , y(s), . . . , y(n))T satisfying the above constraint, then it is a feasible strategy profile. Fur-
thermore, we define a preference relation�s for players. For any two feasible strategy profilesy andy′,
we sayy�sy

′ (players prefers strategy profiley to y′) if delay(s)(y) ≤ delay(s)(y′), where delay(s)(y) is
the average delay for overlays as defined by Eq.(1). Thus, it is equivalent to defining the payoff function
for players as the negative of delay(s)(y).

We formulate the interaction between co-existing overlays as ann-player non-cooperative strategic
game, which we call theoverlay optimal routing game: Goverlay〈N, (Γs), (�s)〉. We have the following
definition ofNash equilibrium.

Definition 1. A feasible strategy profiley∗ ∈ Γ1 × · · · × Γn, y
∗ = (y∗(1), . . . , y∗(s), . . . , y∗(n))T is called

a Nash equilibrium if for every players ∈ N, delay(s)(y∗(1), . . . , y∗(s), . . . , y∗(n)) is less than or equal to
delay(s)(y∗(1), . . . , y

′(s), . . . , y∗(n)) for any other feasible strategy profiley′(s).

The analysis of this strategic routing game is based on a discrete time model, that is, each overlay
calculates its optimal strategy at every routing update. Note that the routing update period can be different
for different overlays. We assume one overlay has sufficient time to complete this optimization before
other overlays begin their optimization process. In the following sections, we prove the existence of Nash
equilibrium in general networks, then we use extensive fluid simulations to illustrate our result.

In the following, we show that the overlay routing gameGoverlay〈N, (Γs), (�s)〉 possesses a Nash
equilibrium for a general network setting as long as the delay function for each physical link is continuous,
non-decreasing and convex.

Lemma 1. A strategic game 〈N, (Γs), (�s)〉 has a Nash equilibrium if for all players s ∈ N that (1) the
set Γs of action profiles for player s is a non-empty compact convex subset of a Euclidean space and (2)
the preference relation �s is (a) continuous and (b) quasi-concave on Γs.

Proof. Note thatLemma 1provides a standard approach to prove the existence of Nash equilibrium in a
strategic game. For detailed proof ofLemma 1, readers can refer to Ref.[12]. �
Lemma 2. In the overlay optimal routing game Goverlay〈N, (Γs), (�s)〉, the set Γs of action profiles for
overlay s is a non-empty compact convex subset of a Euclidean space.

Proof. The set of action profiles for overlays is defined asΓs = {y(s)|y(s) ∈ Rrs+, (Hy)s = xs, Ay ≤ C}.
Since the feasible region is closed and bounded,Γs is compact, and because all constraints are
affine functions, the feasible region which is the intersection of half-spaces and hyperplanes, is also
convex. �
Lemma 3. The preference relation �s in an overlay optimal routing game Goverlay〈N, (Γs), (�s)〉 is
continuous and quasi-concave on Γs.



238 W. Jiang et al. / Performance Evaluation 62 (2005) 229–246

Proof. for the sake of limited space, please refer to a detailed proof in Ref.[8]. �
Theorem 1. In the overlay optimal routing game Goverlay〈N, (Γs), (�s)〉, there exists a Nash equilibrium
if the delay function delay(s)(y(s); y(−s)) is continuous, non-decreasing and convex.

Proof. By Lemmas 1–3, we can immediately show this result.�
We use matlab simulink to perform a fluid-based simulation on a network with six co-existing overlays.

We show the existence of Nash equilibrium and the variation of routing decisions for different overlays.
Readers can refer to Ref.[8] for a detailed description of simulation results.

4. Anomalies due to overlay interaction

In this section, we discuss some intrinsic problems of overlays interaction. These problems include
sub-optimality in performance and certain fairness anomaly in resource allocation. It is important to point
out that these problems are not unique to overlay optimal routing policy, but rather, common to all forms of
application layer routing that have interaction among overlays. Since many overlays are now appearing
in the Internet, unregulated application routing may degrade the performance of all users. Worse yet,
because overlay may not realize the existence of other overlays, these problems will persist due to the
convergence to the equilibrium point.

Let us use an example to illustrate these issues. A physical network consisting of six nodes is depicted
in Fig. 2. There are two overlays in the network: overlay 1 consists of nodesA, C andE while overlay
2 consists of nodesB, D andF. For overlay 1, all logical links map to the corresponding physical links
except for the logical link between nodes C and E, which corresponds to the physical linksC–D–E. For
overlay 2, all logical links map to the corresponding physical links except for the logical link between
nodes B and D, which corresponds to the physical linksB–C–D. Thus, the physical linkC–D is the
common link which isshared by these two overlays.

4.1. Sub-optimality of Nash equilibrium

Assume that both overlays have one source–sink pair and one unit of traffic demand:x1 = x2 = 1.0.
We define the following delay functions for various physical links in the physical network:dA,E(y) =

Fig. 2. A simple network with two overlays to illustrate potential problems.
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a + y; dC,D(y) = byα; dB,F (y) = c + y, while other links have zero delay. Here,y represents the ag-
gregate traffic traversing a link, anda, b, c and α are some non-negative parameters of the delay
functions.

Let us consider the routing decisions of these two overlays. For overlay 1, it routesy
(1,1)
1 fractional

unit of traffic through the logical pathA–C–E and (1− y
(1,1)
1 ) fractional unit of traffic via the logical path

A–E. On the other hand, overlay 2 routesy
(2,1)
1 fractional unit of traffic through the logical pathB–D–F

and (1− y
(2,1)
1 ) fractional unit of traffic viaB–F. Similarly, the KKT conditions for overlay 1 is

a + 2[1 − y
(1,1)
1 ] = b[y(1,1)

1 + y
(2,1)
1 ]α + y

(1,1)
1 · bα[y(1,1)

1 + y
(2,1)
1 ]α−1 (10)

while the Karush–Kuhn–Tucker conditions for overlay 2 is

c + 2[1 − y
(2,1)
1 ] = b[y(1,1)

1 + y
(2,1)
1 ]α + y

(2,1)
1 · bα[y(1,1)

1 + y
(2,1)
1 ]α−1. (11)

wherey
(1,1)
1 , y

(2,1)
1 ∈ [0, 1].

One can easily show that in the overlay optimal routing game described above, the Nash equilibrium
point isnot Pareto optimal. A Pareto optimal point is defined as a strategy profile for all overlays such
that no overlay can use another routing strategy that can decrease its own weighted average delaywithout
increasing other overlays’ weighted average delay. Although all overlays perform an individual optimiza-
tion at every routing update and that the system will finally reach a Nash equilibrium point, the equilibrium
may be inefficient since there exists another routing strategy at whichall overlays can achieve a better
performance than at the Nash equilibrium.

To show the sub-optimality of the Nash equilibrium in the optimal routing game for the network
depicted inFig. 2, we consider the KKT conditions specified by Eqs.(10) and (11). Assume we have the
following parameters for the delay functions:α = 1, a = 1, b = 1 andc = 2.5, one can simply verify that
the Nash equilibrium in this example is{y(1,1)

1 = 0.5, y
(2,1)
1 = 1}, that is, overlay 1 uses both paths while

overlay 2 uses a single path, which consists of the shared link. The weighted average delay for overlays 1
and 2 is both 1.5. However, if we consider another routing strategy profile of{y(1,1)

1 = 0.4, y
(2,1)
1 = 0.9},

one can find that the weighted average delay for overlays 1 and 2 are 1.48 and 1.43, respectively, which
arelower than the delay achieved at the Nash equilibrium.

4.2. Fairness paradox

Another more severe problem is the notion of fairness in resource allocation. We use the same network
in Fig. 2 to illustrate the problem. Note that these two overlays are symmetric, each having two paths:
a shared path and a private path. Although overlay 2 is “worse off” by having a private path (linkB–F )
with higher delays than that of overlay 1’s private path (linkA–E), as in the previous example, it is able
to achieve the same average delay as overlay 1 in the Nash equilibrium. This is because overlay 2 is able
to fully take advantage of the lower delay of the shared path, whereas it only makes sense for overlay 1
to send part of its traffic over the shared link due to its superior private path. In fact, one can find delay
functions such that the situation isarbitrarily worse.

To illustrate, note that the delay function for the shared linkC–D is dC,D(y) = byα. One can ask for
what values ofa andc, which are the parameters of the delay functions for the private link of overlays 1
and 2, so that the Nash equilibrium solution remains at{y(1,1)

1 = 0.5, y
(2,1)
1 = 1}? The values fora andc
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Fig. 3. Delay1/delay2 ratio vs. (a) log(α): unfairness becomes unbounded and (b) parameterb with a = 2, c = 4 andα = 1:
bounded unfairness.

do exist, in particular, whenb = 1 anda < c, we have:

a =
(

3

2

)α

+ α

2

(
3

2

)α−1

− 1; c =
(

3

2

)α

+ α

(
3

2

)α−1

.

In Section4.1, we showed whena < c andα = 1, delay1 = delay2. Whenα > 1:

delay1 =
(

3

2

)α

+ α

4

(
3

2

)α−1

− 1

4
; delay2 =

(
3

2

)α

,

and observe now that delay1 becomesgreater than delay2. This implies that the overlay 2 is able to achieve
better performance despite starting with aworse private link in an otherwise symmetric situation with
overlay 1. Furthermore, as we increaseα, this unfairness can beunbounded, that is:

delay1
delay2

∣∣∣∣∣
α→∞

= ∞

and this is depicted inFig. 3(a). This type of anomaly also exists in other operating range, for example,
whena = 2, c = 4, α = 1 and we vary the values ofb, one can observe that overlay 1 will have a worse
performance compared to overlay 2 (though the unfairness is bounded in this case). In summary, we
illustrate that there exist delay functions for the links such that although overlay 1 seemingly has better
paths than overlay 2, it is destined to lose the routing game to overlay 2 by an arbitrary margin: a rather
“paradoxical” situation.

5. Pricing

In the previous section, we observed some undesirable properties achieved at the equilibrium due to
unregulated competition between overlays for the common resources. In this section, we explore some
pricing schemes to address these potential problems, namely (a) sub-optimality at the Nash equilibrium
and (b) fairness anomaly issues. We show the efficiencies of our pricing schemes and give their economic
interpretations.
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5.1. Pricing mechanism to improve end-to-end delay

In the previous sections, we show that the Nash equilibrium achieved at the overlay optimal routing
game has a performance gap compared to the global optimal routing, in terms of the weighted average
delay for the overall traffic in the network. Furthermore, the Nash equilibrium is not Pareto optimal. In
this section we explore a pricing scheme such that the overlay routing game can be led to an efficient
equilibrium, i.e., the operating point achieved by the global optimal routing.

The basic idea of the pricing scheme is to introduce a price (cost per unit traffic) for every physical link
in the network. When overlays make their routing decisions, not only should they consider the end-to-end
delays, but also the total price they have to pay to the network operators for consuming the bandwidth.
Formally, for each linkj, we set a pricep(s)

j for each overlays in the network, which is the per unit
charge for the traffic in overlays by the linkj. Note that in here we adopt a price-discriminating strategy:
different prices for users in different overlays. Under this pricing scheme, each overlay tries to optimize
the following objective function:

Minimize
∑
j∈J

1∑
f∈Fs

xf

· [l(s)j · dj(l
(s)
j + l

(−s)
j ) + l

(s)
j · p

(s)
j ] (12)

whereinl
(s)
j denotes the traffic of overlays on link j, andl

(−s)
j denotes traffic on linkj other than overlay

s. Note that the constraints to this optimization problem is the same as the overlay optimization given in
Eq.(5). Such a pricing scheme has the following interpretations: an overlay aims to minimize the average
delay and the cost it has to pay to the network operators simultaneously. If the pricep

(s)
j is set properly

to reflect the economic relationship with the delay metric, i.e., to the same order of delay on linkj, one
can gain a balance between overlays’ performance and the cost it has to pay. Let us state how the price
of each link should be set so as to achieve global optimality.

Theorem 2. In the overlay optimal routing game Goverlay if (a) the objective function of each overlay is
set as in Eq. (12) and (b) p

(s)
j = l

(−s)
j · d ′

j(lj), where lj = l
(s)
j + l

(−s)
j , then the Nash equilibrium achieves

the same performance as the global optimal routing.

Proof. The objective of the global optimal routing is to minimize the weighted average delay for the
overall traffic in the network, which is

∑
j∈J lj · dj(lj), wherelj is the total traffic on linkj. Thus, the

KKT condition for the optimal point achieved at the global optimal routing can be written as: for every
router with non-zero traffic, and router′ with zero-traffic, serving the same source–sink pair/flowf

∑
j∈r

[lj · dj(lj)]
′ = uf ≤

∑
j∈r′

[lj · dj(lj)]
′.

On the other hand, the KKT condition for the optimization problem defined in Eq.(12) requires that for
every router with non-zero traffic, and router′ with zero traffic, serving the same flowf in overlays,
must satisfy:

∑
j∈r

[l(s)j · dj(l
(s)
j + l

(−s)
j ) + l

(s)
j · p

(s)
j ]′ = uf ≤

∑
j∈r′

[l(s)j · dj(l
(s)
j + l

(−s)
j ) + l

(s)
j · p

(s)
j ]′.
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We expand the expression and substitutep
(s)
j = l

(−s)
j · d ′

j(lj), and we have∑
j∈r

[dj(l
(s)
j + l

(−s)
j ) + l

(s)
j · d ′

j(l
(s)
j + l

(−s)
j ) + l

(−s)
j · d ′

j(l
(s)
j + l

(−s)
j )] = uf

⇔
∑
j∈r

[dj(lj) + lj · d ′
j(lj)] = uf

⇔
∑
j∈r

[lj · dj(lj)]
′ = uf

which proves that the Nash equilibrium of the overlay routing game under this pricing scheme has the
same KKT condition as that of global optimal routing.�

5.2. Pricing mechanism to improve fairness

One important incentive for the network operators (ISPs) to perform network upgrade is to in-
crease profit. Furthermore, it is desirable if the pricing and revenue sharing schemes correctly rep-
resent the contribution of different ISPs, while provide fair resource allocation to the users in the
network. In the previous section, we have observed some fairness anomalies due to unregulated
competition between overlays. Worse yet, such unfairness can even be unbounded for general sit-
uations. In here, we explore another pricing scheme that can achieve a spectrum of fairness bal-
anced between the performance and the cost, and reflects the economic benefit for the network
operators.

Our pricing scheme is based on the following two natural arguments. Firstly, pricing should reflect
users’ willingness to pay, meaning that those users who pay more have more opportunity to receive better
performance. Secondly, the network operators set prices to maximize their own economic interests. Before
proceeding to the formal pricing model, we make some additional assumptions, for both simplicity and
ease of presentation. In here we assume that those “common” physical links in the network represent
network operators and have their own economic interests. The argument is that an overlay network may
reside over many ISPs and these physical links constitute the bottleneck links within one ISP. This is
because one provider’s egress traffic is often charged by its downstream providers and these bottleneck
links often get saturated before other links do.

Under this assumption, the pricing scheme can be decomposed into two components, one for the
overlay users and the other for the network operators. For each physical link, it is interpreted as a logical
ISP which tries to maximize its own economic benefit. Each linkj sets a pricepj, which is the charge
for per unit traffic traversing this link, to maximize its own profit. The profit of a linkj is defined as
Pj(lj) = pj · lj − cj(lj), where the first part accounts for the revenue received by the link, while the
latter partcj(lj) is interpreted as the operating cost at current congestion level. Note that a link sets the
same price forall overlays and there is no price discriminate. Formally, each linkj solves the following
optimization problem:

Maximize Pj(lj) = lj · pj − cj(lj) (13)

To maximize the profit, linkj would not set the price arbitrarily large, otherwise no overlay would choose
to traverse this link. Given a fixed pricepj, the optimal aggregate traffic on a linkj to maximize the profit
can be obtained by solving dPj/dlj = pj − c′

j(lj) = 0, thus havingpj = c′
j(lj). To match the actual
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Fig. 4. Price–traffic curves for links with different delay functions, withCj = 10 units.

bandwidth consumption demand, linkj will set its price bypj = c′
j(lj). Note that the operating costcj(lj)

is a non-decreasing function of the aggregate traffic on the link. We argue that this is an approach for
links to estimate the traffic demand on them. This equivalently determines the supply curve for the link
resources.

For the overlays, each of them is associated with a load functionUs(y(s); y(−s)) that it wants to minimize.
With the prices set by the links, one overlays determines its routing by solving the following optimization
problem:

Minimize Us(p
(s); p(−s)) = αs · delay(s) +

∑
j∈J

l
(s)
j · pj (14)

where delay(s) is the average delay and the latter part accounts for the total payment for consuming the
link bandwidth.αs is interpreted as thesensitivity factor, which is determined by the overlay to reflect
the overlay’s own preference balanced between the performance and the cost. Namely, the largerαs is,
the more overlays claims for a better performance. Also note that the constraints to this optimization
problem is the same as the overlay optimization given in Eq.(5). By writing down the KKT condi-
tions to this optimization problem, it is easy to show that the overlay routing game under objective
function in Eq.(14) has a Nash equilibrium whenpj is considered as a fixed parameter by overlays.
The routing decisions made by the overlays actually determine the demand curve of the link resources
(bandwidth).

To see how this pricing scheme works, the cost function of linkj can be set in the following way:
cj(lj) = log[lj · dj(lj)], such that the cost of operating a link increases logarithmically with the weighted
delay on that link. In other words,lj · dj(lj) can be interpreted as the total “bits” carried by this link.
Therefore, the price of a link is determined:

pj = c′
j(lj) = 1

lj
+ d ′

j(lj)

dj(lj)
(15)

wherein the second part can be interpreted as theelasticity of the delay function of linkj. In Fig. 4, we
plot the price–traffic curve for different delay functions. In here some observation is made. Firstly, the
price function is a decreasing function of the traffic traversing it. The justification is that whenless traffic
traverses a link, the link bears alower delay, which implies ahigher price. Therefore, for overlays that
choose links with lower delay to ensure a better performance, they have to pay more to buy the service.
Note that inFig. 4(c), though the price tends to be an increasing function when the traffic rate exceeds
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half of the capacity, the high delay when the rate approaches the capacity prevents overlays from using
this link.

6. Related Work

With the increasing popularity of overlay networks, there exists an opportunity for end users of overlay
network to choose the routing path and this is called theoverlay routing. Usually, the objective of these end
users is to choose routes with the minimum delay (or smallest loss rate, maximal available bandwidth).
This behavior is considered selfish by nature and is also called the selfish routing. In Ref.[8], we consider
interaction of multiple overlays and the associated anomalies when each overlay has a single flow
only.

Network routing scheme which achieves the global optimality was studied by Bertsekas and Gallager
[3]. Such a global optimal routing achieves the minimum average latency forall the traffic in the network
by solving a centralized optimization problem. Based on this global optimal performance, Roughgarden
and Tardos[14] showed that the global performance measure will be reduced if each end user performs
selfish routing. Under the theoretical framework that each infinitesimal bit of information is sent in a
selfish manner and that the link’s delay function is linear, authors[14] provided the theoretical upper
bound for this efficiency loss. Instead of making a selfish decision on an infinitesimal basis, a more prac-
tical framework[13,18]is to make a selfish routing decision on a per flow basis. Unfortunately, this type
of selfish routing will cause severe routing oscillations[17] due to simultaneous routing update. Recent
measurements in real network environment[13] show that selfish routing achieves a close-to-optimal per-
formance in terms of average delay, but at the cost of overloading some links and it is difficult to achieve
an equilibrium[10]. In Ref.[18], authors proposed a probabilistic routing scheme to implement the selfish
routing in dynamic environments so as to ensure that the selfish behaviors of end users will converge to
anequilibrium point, i.e., the routing decision stabilizes but it maynot optimize the average delay for the
flow.

Our work differs from the selfish routing listed above in that we considermulti-path routing which
aims atminimizing the weighted average delay for an overlay and at the same time, guarantees the
system will reach an equilibrium point. We use a non-cooperative game theoretic framework to show the
existence of the Nash equilibrium. The seminal work to ours is by Zhang and co-workers[9], wherein
authors use a two-player game to model the interaction between one overlay and the underlying ISP.
Different from their work, we focus on the interaction between multiple co-existing overlays. Not only
do we prove the existence of Nash equilibrium under general network settings, but we also present some
undesirable properties of the equilibrium point and we propose two pricing strategies to alleviate the
problems.

7. Conclusion

In this paper, we study the interaction of multiple overlays on top of a physical network. In particular,
each overlay will perform application layer routing so as to optimize its individual performance. We
first propose the concept of overlay optimal routing and illustrate that it can achieve better performance
than the classical selfish routing policy. We use the constrained convex optimization framework to
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characterize the selfish routing and the overlay optimal routing. To understand the interaction, we use a
non-cooperative game theoretic framework and analyze the property of the Nash equilibrium point under
general network settings. Through illustration, we demonstrate some inherent anomalies of this form
of individual routing optimization, namely the performance measure is sub-optimal and the fairness
paradox in terms of performance and allocation of common resource. These two issues are important
since overlay may not be aware of the existence of other overlays in the network. The implication
is that they will continually operate at the sub-optimal point and that some overlays may experience
poor performance due to the unregulated application layer routing. To resolve the above issues, we
present two pricing schemes in which one can have a finer control about the performance and resource
distribution.
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