
(2,3)-Tree

Yufei Tao

ITEE
University of Queensland

COMP3506/7505, Uni of Queensland (2,3)-Tree



We have learned that the binary search tree (BST) solves the
dynamic predecessor search problem with good performance
guarantees. In this class, we will learn another structure—called
the (2,3)-tree—that settles the problem with the same asymptotic
guarantees.

The (2,3)-tree, however, serves as a representative structure where
all the data items are kept at the leaf nodes (recall that this is not
true for the BST). Its update algorithm does not rely on rotations,
but is instead based on splits and merges. This is an important
technique for designing dynamic data structures.

COMP3506/7505, Uni of Queensland (2,3)-Tree



Recall:

Dynamic Predecessor Search

Let S be a set of integers. We want to store S in a data structure to
support the following operations:

A predecessor query: give an integer q, find its predecessor in S ,
which is the largest integer in S that does not exceed q;

Insertion: adds a new integer to S ;

Deletion: removes an integer from S .

COMP3506/7505, Uni of Queensland (2,3)-Tree



3-Ary Tree

Recall that a 3-ary tree T is a rooted tree where each internal node has
at most 3 child nodes.

In this course, we say that T is a good 3-ary tree if all the following are
true:

All the leaves of T are at the same level.

Every internal node has at least 2 child nodes.

COMP3506/7505, Uni of Queensland (2,3)-Tree



Example

Only the first tree is a good 3-ary tree.

COMP3506/7505, Uni of Queensland (2,3)-Tree



A Good 3-Ary Tree is Balanced

Theorem: If a good 3-ary tree has n leaf nodes, the height of the tree is
O(log n).

Proof: Suppose that the height of the tree is h. Thus, all the leaf nodes
are at level h − 1. Since every internal node has at least 2 child nodes,
the number of nodes at level h − 2 is at most n/2. Similarly, the number
of nodes at level h − 3 is at most n/22. By the same reasoning, the
number of nodes at level 0 is at most n/2h−1. Therefore:

1 ≤ n

2h−1

which solves to h ≤ 1 + log2 n.

COMP3506/7505, Uni of Queensland (2,3)-Tree



(2,3)-Tree

A (2,3)-tree on a set S of n integers is a good 3-ary tree T satisfying all
the following conditions:

1 Every leaf node—if not the root—stores either 2 or 3 data elements,
each of which is an integer in S .

2 Every integer in S is stored as a data element exactly once.

3 For every internal node u, if its child nodes are v1, ..., vf (f = 2 or
3), then

1 For any i , j ∈ [1, f ] such that i < j , all the data elements in
the subtree of vi are smaller than those in the subtree of vj .

2 For each i ∈ [1, f ], u stores the a routing element, which is an
integer that equals the smallest data element in the subtree of
vi .

The space consumption is clearly O(n).

COMP3506/7505, Uni of Queensland (2,3)-Tree



Example

The following is a (2,3)-tree on S = {5, 12, 16, 27, 38, 44, 49, 63, 81, 87,
92, 96}.

5 12 16 27 38 44 49 63 81 87 92 96

5 16 44 81 92

5 44

data element

z1 z2 z3 z4 z5

u2 u3

u1

routing element

The tree has 5 leaf nodes z1, z2, ..., z5, and 3 internal ndoes u1, u2, u3.

Let v be a child of u. The routing element e corresponding to v
can be obtained from v in O(1) time (think: how?).

COMP3506/7505, Uni of Queensland (2,3)-Tree



Predecessor Search

Consider a predecessor query with search value q. Without loss of
generality, we assume that q has a predecessor in S—this can be easily
ensured by manually inserting −∞ into S .

We answer the query using using a (2,3)-tree T on S as follows:

1 Set u ← the root of T

2 If u is a leaf, return the predecessor of q among the data elements
in u.

3 Otherwise, let e be the predecessor of q among the routing
elements in u.

4 Set u to the child node corresponding e.

5 Repeat from Line 2.

COMP3506/7505, Uni of Queensland (2,3)-Tree



Example

Suppose that we want to find the predecessor of q = 85.

5 12 16 27 38 44 49 63 81 87 92 96

5 16 44 81 92

5 44

data element

z1 z2 z3 z4 z5

u2 u3

u1

routing element

At the root u1, the predecessor of q (among the routing elements
there) is 44. So we descend to u3.

At u3, the predecessor of q is 81. So we descend to z4.

At z4, report the predecessor of q among all the data elements
there, namely, 81.

COMP3506/7505, Uni of Queensland (2,3)-Tree



Time of a Predecessor Query

The (2,3)-tree has height O(log n), as proved earlier.

The query algorithm spends O(1) time at each level of the tree.

Therefore, the total query time is O(log n).

COMP3506/7505, Uni of Queensland (2,3)-Tree



Next we will discuss how to support insertions and deletions in
O(log n) time per update. We will first clarify two fundamental
operations: split and merge. The update algorithms are based on
these operations.

COMP3506/7505, Uni of Queensland (2,3)-Tree



Split

We say that an internal/leaf node u overflows if it contains 4
routing/data elements.

A split operation takes an overflowing node u, and does the following:

1 Create two nodes u1, u2 such that

1.1 u1 contains the two smaller routing/data elements of u.

Note: if a routing element e corresponds to a child v of u,
assigning e to u1 implies also making v a child of u1, still with
e being the routing element for v .

1.2 u2 contains the two larger routing/data elements of u.

2 Remove u from T .

3 If u had a parent p, then

3.1 Make u1 a child of p, in replacement of u.
3.2 Make u2 a child of p.

4 Otherwise, create a new root with u1, u2 as the child nodes.

COMP3506/7505, Uni of Queensland (2,3)-Tree



Example

45 59 67

u

82

25 45

p

... ... ... ...

45 59 67

u1

82

25 45

p

... ... ... ...

u2

67

⇒

Node u overflows, and is split into u1 and u2.

Each split takes O(1) time.

COMP3506/7505, Uni of Queensland (2,3)-Tree



Sibling

Suppose that an internal node u has child nodes v1, ..., vf (f = 2 or 3),
with routing elements e1, ..., ef satisfying e1 < ... < ef . Then:

vi is the left sibling of vi+1 for every i ∈ [1, f − 1].

vi+1 is the right sibling of vi for every i ∈ [1, f − 1].

Example

5 12 16 27 38 44 49 63 81 87 92 96

5 16 44 81 92

5 44

data element

z1 z2 z3 z4 z5

u2 u3

u1

routing element

Node z4 is the right sibling of z3, and the left sibling of z5.

COMP3506/7505, Uni of Queensland (2,3)-Tree



Merge

We say that a non-root internal/leaf node u underflows if it contains only
1 routing/data element.

A merge operation takes two nodes u1, u2 where (i) u1 is the left sibling
of u2, and (ii) exactly one of them is underflowing. This operation does
the following

1 Move all the routing/data elements of u2 into u1.

Note: if a routing element corresponds to a child of u2, the
child now becomes a child of u1.

2 Remove u2 from T .

3 Remove the routing element for u2 in its parent p.

4 If u1 overflows, split u1.

COMP3506/7505, Uni of Queensland (2,3)-Tree



Merge Example 1

⇒45 59 67

u1

25 45

p

... ... ...

u2

67

45 59 67

u1

25 45

p

... ... ...

Node u2 underflows, and is merged with its left sibling u1.

Each merge takes O(1) time.

COMP3506/7505, Uni of Queensland (2,3)-Tree



Merge Example 2

⇒45 59 67

u1

25 45

p

... ... ...

88

...

u2

88

45 59 67

u1

25 45

p

... ... ...

88

...

Node u2 underflows, and is merged with its left sibling u1. However, now

u1 overflows, and needs to be split. See the next slide.

COMP3506/7505, Uni of Queensland (2,3)-Tree



Merge Example 2

⇒
45 59 67

u1

25 45

p

... ... ...

88

...

45 59

u1

25 45

p

... ... ... ...

67 88

u2

67

The final situation after the split.

In general, a merge may trigger a split. Since we have shown that
a split takes O(1) time, the cost of treating an underflowing node
is O(1) overall in any case.

COMP3506/7505, Uni of Queensland (2,3)-Tree



We are now ready to discuss the update algorithms, starting with
insertions before attending to deletions. As we will see, these algo-
rithms do not involve rotations, and may look simpler than those
of the AVL-tree.

COMP3506/7505, Uni of Queensland (2,3)-Tree



Insertion

To insert a new integer e into a (2,3)-tree T , we carry out the following
steps:

1 Perform a predecessor search with value e. Let z be the leaf node
that the search ends up with. This is the leaf where e will be stored.

2 Add e as a new data element into z . Set u ← z .

3 If u does not overflow, return (the insertion is done).

4 Otherwise:

Split u.
Set u to its parent p, and repeat from Line 3.

COMP3506/7505, Uni of Queensland (2,3)-Tree



Example

Suppose that we want to insert 60 into the following tree. It should go
into Leaf z3 (found be predecessor search).

5 12 16 27 38 44 49 63 81 87 92 96

5 16 44 81 92

5 44

data element

z1 z2 z3 z4 z5

u2 u3

u1

routing element

Now z3 overflows, and needs to be split.

5 12 16 27 38 44 49 60 81 87 92 96

5 16 44 81 92

5 44

z1 z2 z3 z4 z5

u2 u3

u1

63

COMP3506/7505, Uni of Queensland (2,3)-Tree



Example

Splitting z6 makes its parent u3 overflow, which also needs to be split.

5 12 16 27 38 44 49 60 81 87 92 96

5 16 44 81 92

5 44

z1 z2 z3 z4 z5

u2 u3

u1

63

z6

60

Now the insertion completes.

5 12 16 27 38 44 49 60 81 87 92 96

5 16 44 81 92

5 44

z1 z2 z3 z4 z5

u2 u4

u1

63

z6

60
u3

81

COMP3506/7505, Uni of Queensland (2,3)-Tree



Time of Insertion

The predecessor search obviously takes O(log n) time.

Then the insertion may trigger an overflow at each level. Since fixing an
overflow with a split takes only O(1) time, overall the insertion finishes in
O(log n) time.

COMP3506/7505, Uni of Queensland (2,3)-Tree



Deletion

To delete an integer e from a (2,3)-tree T , we carry out the following
steps:

1 Find the leaf z containing e (with predecessor search).

2 Remove e from z . Set u ← z .

3 If u does not underflow, return (the deletion is done).

4 If u underflows and is the root of T , delete u from T (the height of
T decreases by 1).

5 Otherwise:

Take either the left or right sibling u′ of u.
Merge u with u′.
Set u to its parent p, and repeat from Line 3.

COMP3506/7505, Uni of Queensland (2,3)-Tree



Example

Suppose that we want to delete 44 from the following tree. Remove it
from Leaf z1, which then underflows.

44 49 60 81 87 92 96

44 81 92

44

z1 z3 z4

u3

63

z2

60
u2

81

u1

Merging z1 with its right sibling z2 causes their parent u2 to underflow.

49 60 81 87 92 96

49 81 92

44

z3 z4

u3

63

z1

u2

81

u1

COMP3506/7505, Uni of Queensland (2,3)-Tree



Example

Merging u2 with its sibling u3 causes u1 to underflow.

49 60 81 87 92 96

49 81 92

49

z3 z4

63

z1

u2

u1

But since u1 is the root, we simply remove it from the tree (which now
has only 2 levels). This is the end of the deletion.

49 60 81 87 92 96

49 81 92

z3 z4

63

z1

u2

COMP3506/7505, Uni of Queensland (2,3)-Tree



Time of Deletion

The predecessor search takes O(log n) time.

Then the deletion may trigger an underflow at each level. Since fixing an
underflow with a merge (possibly followed by a split) takes only O(1)
time, overall the deletion finishes in O(log n) time.

COMP3506/7505, Uni of Queensland (2,3)-Tree



Summary

Now we know that a (2,3)-tree on a set of n integers has the following
guarantees:

Space consumption O(n)

Predecessor query O(log n) (how to support in successor query also
in O(log n) time?)

Insertion O(log n) time

Deletion O(log n) time.

COMP3506/7505, Uni of Queensland (2,3)-Tree



So, we have learned two structures—the AVL-tree and the (2,3)-tree—for
solving the dynamic predecessor search problem. Which one do you like
better?

Regardless of your choice, pay attention to the differences in the
methodology behind the two structures. Observe that both of them need
to guarantee that the tree height is O(log n), but they have done so in
different ways.

COMP3506/7505, Uni of Queensland (2,3)-Tree


