Two Methods for Solving Recurrences

Yufei Tao

Department of Computer Science and Engineering Chinese University of Hong Kong

 \mathbb{R}^n **Yufei Tao** [Two Methods for Solving Recurrences](#page-16-0)

Ξ

 QQ

← ロ ▶ → 何 ▶ → ヨ ▶ →

We have seen how to analyze the running time of recursive algorithms by recurrence. Thus, it is important to sharpen our skills in solving recurrences. Today, we will learn two techniques for this purpose: the master theorem and the substitution method.

Ξ

 Ω

 4 O \rightarrow 4 $\overline{7}$ \rightarrow 4 $\overline{2}$ \rightarrow 4

Master Theorem

Yufei Tao 2018 19 [Two Methods for Solving Recurrences](#page-0-0)

The Master Theorem

Let $f(n)$ be a function that returns a positive value for every integer $n > 0$. We know:

$$
f(1) = O(1)
$$

$$
f(n) \leq \alpha \cdot f(\lceil n/\beta \rceil) + O(n^{\gamma}) \qquad (\text{for } n \geq 2)
$$

where $\alpha \geq 1$, $\beta > 1$, and $\gamma \geq 0$ are constants. Then:

• If
$$
\log_{\beta} \alpha < \gamma
$$
, then $f(n) = O(n^{\gamma})$.

• If
$$
\log_{\beta} \alpha = \gamma
$$
, then $f(n) = O(n^{\gamma} \log n)$.

• If
$$
\log_{\beta} \alpha > \gamma
$$
, then $f(n) = O(n^{\log_{\beta} \alpha})$.

The theorem can be proved by carefully applying the "expansion method" we saw earlier (recall that the method writes $f(n)$ into terms with increasingly smaller values of n). The details are tedious and omitted from this course.

G.

 Ω

イロト イ押 トイヨト イヨト

Consider the recurrence of binary search:

$$
f(1) \leq c_1
$$

$$
f(n) \leq f(\lceil n/2 \rceil) + c_2 \qquad (\text{for } n \geq 2)
$$

Hence, $\alpha = 1$, $\beta = 2$, and $\gamma = 0$. Since $\log_{\beta} \alpha = \gamma$, we know that $f(n) = O(n^0 \cdot \log n) = O(\log n).$

D. QQ

Consider the recurrence of merge sort:

$$
f(1) \leq c_1
$$

$$
f(n) \leq 2 \cdot f(\lceil n/2 \rceil) + c_2 n \quad \text{(for } n \geq 2\text{)}
$$

Hence, $\alpha = 2$, $\beta = 2$, and $\gamma = 1$. Since $\log_{\beta} \alpha = \gamma$, we know that $f(n) = O(n^{\gamma} \cdot \log n) = O(n \log n).$

[Two Methods for Solving Recurrences](#page-0-0)

D. QQ

イロト イ母 トイラト イラト

Consider the recurrence:

$$
f(1) \leq c_1
$$

$$
f(n) \leq 2 \cdot f(\lceil n/4 \rceil) + c_2 \sqrt{n} \qquad (\text{for } n \geq 2)
$$

Hence, $\alpha = 2$, $\beta = 4$, and $\gamma = 1/2$. Since $\log_{\beta} \alpha = \gamma$, we know that $f(n) = O(n^{\gamma} \cdot \log n) = O(\sqrt{n} \log n).$

Yufei Tao [Two Methods for Solving Recurrences](#page-0-0)

D. QQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

Consider the recurrence:

$$
f(1) \leq c_1
$$

$$
f(n) \leq 2 \cdot f(\lceil n/2 \rceil) + c_2 \sqrt{n} \qquad (\text{for } n \geq 2)
$$

Hence, $\alpha = 2$, $\beta = 2$, and $\gamma = 1/2$. Since $\log_{\beta} \alpha > \gamma$, we know that $f(n) = O(n^{\log_\beta \alpha}) = O(n).$

Yufei Tao [Two Methods for Solving Recurrences](#page-0-0)

D. QQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

Consider the recurrence:

$$
f(1) \leq c_1
$$

$$
f(n) \leq 13 \cdot f(\lceil n/7 \rceil) + c_2 n^2 \qquad (\text{for } n \geq 2)
$$

Hence, $\alpha = 13$, $\beta = 7$, and $\gamma = 2$. Since $\log_{\beta} \alpha < \gamma$, we know that $f(n) = O(n^{\gamma}) = O(n^2)$.

Yufei Tao [Two Methods for Solving Recurrences](#page-0-0)

D. QQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

The Substitution Method

Yufei Tao Nethods for Solving Recurrences

K ロ ▶ K 御 ▶ K 聖 ▶ K 聖 ▶ │ 聖 │ 約९०

Consider the recurrence:

$$
f(1) = 1
$$

$$
f(n) \le f(n-1) + 3n \quad \text{(for } n \ge 2\text{)}
$$

We suspect that $f(n)=O(n^2);$ the problem is how to prove it. The substitution method provides a way of proving it by mathematical induction.

Yufei Tao [Two Methods for Solving Recurrences](#page-0-0)

重

 Ω

イロト イ押ト イミト イミト

Let us reason as follows. Assume $f(n) \leq c \cdot n^2$ for some constant $c.$ For the base case of $n = 1$, this holds as long as $c \ge 1$.

Suppose that this is correct for all $n \leq k - 1$. Now let us see what conditions c needs to satisfy to ensure correctness for $n = k$. We have:

$$
f(k) \leq f(k-1) + 3k
$$

\n
$$
\leq c(k-1)^2 + 3k
$$

\n
$$
= ck^2 - 2ck + c + 3k
$$

To make the above at most ck^2 , it suffices to guarantee

$$
c+3k \leq 2ck
$$

As $k > 2$, we can set c to any value at least 2.

Combining all the above, we conclude that $f(n) \leq 2n^2 = O(n^2)$.

イロメ イタメ イラメイラメ

Remark: It is important to have a good guess about $f(n)$. If the guess is wrong, you will not be able to make the argument work. To see this, try "proving" $f(n) \leq cn$.

∍

 Ω

 $A \sqcup A \rightarrow A \sqcap A \rightarrow A \sqsupseteq A \rightarrow A \sqsupseteq A$

Consider the recurrence:

$$
f(1) = 1
$$

$$
f(n) \leq 5f(\lfloor n/5 \rfloor) + 3n \quad \text{(for } n \geq 2)
$$

We will prove that $f(n) = O(n \log n)$ with the substitution method.

[Two Methods for Solving Recurrences](#page-0-0)

E

 QQ

 $A \cup B \cup A \cup B \cup A \cup B \cup A \cup B \cup A$

Assume $f(n) \leq 1 + c \cdot n \log_5 n$ for some constant c. For the base case of $n = 1$, this holds as long as $c > 1$.

Suppose that this is correct for all integers $n \leq k - 1$. Now let us see what conditions c needs to satisfy to ensure correctness for $n = k$. We have:

$$
f(k) \leq 5f(\lfloor k/5 \rfloor) + 3k
$$

\n
$$
\leq 5(1 + c\lfloor k/5 \rfloor \log_5\lfloor k/5 \rfloor) + 3k
$$

\n
$$
\leq 5c(k/5) \log_5(k/5) + 3k + 5
$$

\n
$$
= ck(\log_5 k - 1) + 3k + 5
$$

\n
$$
= ck \log_5 k - ck + 3k + 5
$$

To make the above at most $1 + c k \log_5 k$, it suffices to make sure

$$
3k+4 \leq ck
$$

for all $k \ge 2$. Setting $c \ge 5$ achieves the purpose. This concludes the proof that $f(n) \leq 1 + 5n \log_5 n = O(n \log n)$.

重

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Consider the recurrence:

$$
f(1) = f(2) = f(3) = 1
$$

$$
f(n) \le f(\lceil n/5 \rceil) + f\left(\left\lceil \frac{7n}{10} \right\rceil\right) + n \qquad (\text{for } n \ge 4)
$$

This is really a non-trivial recurrence (the master theorem is not applicable here). We will prove that $f(n) = O(n)$ using the substitution method.

[Two Methods for Solving Recurrences](#page-0-0)

∍

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Goal: To prove $f(n) \leq \alpha n$ for some constant $\alpha > 0$.

Base case ($n \leq \beta$): We need $\alpha \cdot n \geq f(n)$ for all $n \leq \beta$. **Induction:** Assuming correctness for $n \leq k - 1$ for any $k \geq \beta + 1$, we aim to show $f(k) \leq \alpha k$. We have:

$$
f(k) \leq \alpha([k/5]) + \alpha([7/10)k]) + k
$$

\n
$$
\leq \alpha(k/5 + 1) + \alpha((7/10)k + 1) + k
$$

\n
$$
= \alpha(9/10)k + 2\alpha + k
$$

We need:

$$
\alpha(9/10)k + 2\alpha + k \leq \alpha k
$$

\n
$$
\Leftrightarrow (\alpha/10 - 1)k \geq 2\alpha
$$

\n
$$
\Leftrightarrow (\alpha/10 - 1)\beta \geq 2\alpha
$$

Choose $\beta = 40$. The above becomes $\alpha > 20$.

Hence, $\alpha = \max\{20, f(40)/40, f(39)/39, ..., f(1)/1\}$ and $\beta = 40$ give a working inductive argument.

重

 Ω

イロト イ母 トイラト イラトー