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We have seen how to analyze the running time of recursive algorithms by

recurrence. Thus, it is important to sharpen our skills in solving

recurrences. Today, we will learn two techniques for this purpose: the

master theorem and the substitution method.
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Master Theorem
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The Master Theorem

Let f (n) be a function that returns a positive value for every integer
n > 0. We know:

f (1) = O(1)

f (n) ≤ α · f (dn/βe) + O(nγ) (for n ≥ 2)

where α ≥ 1, β > 1, and γ ≥ 0 are constants. Then:

If logβ α < γ, then f (n) = O(nγ).

If logβ α = γ, then f (n) = O(nγ log n).

If logβ α > γ, then f (n) = O(nlogβ α).

The theorem can be proved by carefully applying the “expansion

method” we saw earlier (recall that the method writes f (n) into terms

with increasingly smaller values of n). The details are tedious and

omitted from this course.
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Example 1

Consider the recurrence of binary search:

f (1) ≤ c1

f (n) ≤ f (dn/2e) + c2 (for n ≥ 2)

Hence, α = 1, β = 2, and γ = 0. Since logβ α = γ, we know that

f (n) = O(n0 · log n) = O(log n).
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Example 2

Consider the recurrence of merge sort:

f (1) ≤ c1

f (n) ≤ 2 · f (dn/2e) + c2n (for n ≥ 2)

Hence, α = 2, β = 2, and γ = 1. Since logβ α = γ, we know that
f (n) = O(nγ · log n) = O(n log n).
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Example 3

Consider the recurrence:

f (1) ≤ c1

f (n) ≤ 2 · f (dn/4e) + c2
√
n (for n ≥ 2)

Hence, α = 2, β = 4, and γ = 1/2. Since logβ α = γ, we know that
f (n) = O(nγ · log n) = O(

√
n log n).
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Example 4

Consider the recurrence:

f (1) ≤ c1

f (n) ≤ 2 · f (dn/2e) + c2
√
n (for n ≥ 2)

Hence, α = 2, β = 2, and γ = 1/2. Since logβ α > γ, we know that

f (n) = O(nlogβ α) = O(n).
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Example 5

Consider the recurrence:

f (1) ≤ c1

f (n) ≤ 13 · f (dn/7e) + c2n
2 (for n ≥ 2)

Hence, α = 13, β = 7, and γ = 2. Since logβ α < γ, we know that

f (n) = O(nγ) = O(n2).
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The Substitution Method
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Example 6

Consider the recurrence:

f (1) = 1

f (n) ≤ f (n − 1) + 3n (for n ≥ 2)

We suspect that f (n) = O(n2); the problem is how to prove it. The

substitution method provides a way of proving it by mathematical

induction.
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Let us reason as follows. Assume f (n) ≤ c · n2 for some constant c . For
the base case of n = 1, this holds as long as c ≥ 1.

Suppose that this is correct for all n ≤ k − 1. Now let us see what
conditions c needs to satisfy to ensure correctness for n = k. We have:

f (k) ≤ f (k − 1) + 3k

≤ c(k − 1)2 + 3k

= ck2 − 2ck + c + 3k

To make the above at most ck2, it suffices to guarantee

c + 3k ≤ 2ck

As k ≥ 2, we can set c to any value at least 2.

Combining all the above, we conclude that f (n) ≤ 2n2 = O(n2).
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Remark: It is important to have a good guess about f (n). If the guess is

wrong, you will not be able to make the argument work. To see this, try

“proving” f (n) ≤ cn.
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Example 7

Consider the recurrence:

f (1) = 1

f (n) ≤ 5f (bn/5c) + 3n (for n ≥ 2)

We will prove that f (n) = O(n log n) with the substitution method.
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Assume f (n) ≤ 1 + c · n log5 n for some constant c . For the base case of
n = 1, this holds as long as c ≥ 1.

Suppose that this is correct for all integers n ≤ k − 1. Now let us see
what conditions c needs to satisfy to ensure correctness for n = k. We
have:

f (k) ≤ 5f (bk/5c) + 3k

≤ 5(1 + cbk/5c log5bk/5c) + 3k

≤ 5c(k/5) log5(k/5) + 3k + 5

= ck(log5 k − 1) + 3k + 5

= ck log5 k − ck + 3k + 5

To make the above at most 1 + ck log5 k , it suffices to make sure

3k + 4 ≤ ck

for all k ≥ 2. Setting c ≥ 5 achieves the purpose. This concludes the

proof that f (n) ≤ 1 + 5n log5 n = O(n log n).
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Example 8

Consider the recurrence:

f (1) = f (2) = f (3) = 1

f (n) ≤ f (dn/5e) + f

(⌈
7n

10

⌉)
+ n (for n ≥ 4)

This is really a non-trivial recurrence (the master theorem is not
applicable here). We will prove that f (n) = O(n) using the substitution
method.
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Goal: To prove f (n) ≤ αn for some constant α > 0.

Base case (n ≤ β): We need α · n ≥ f (n) for all n ≤ β.
Induction: Assuming correctness for n ≤ k − 1 for any k ≥ β + 1, we aim to show
f (k) ≤ αk. We have:

f (k) ≤ α(dk/5e) + α(d(7/10)ke) + k

≤ α(k/5 + 1) + α((7/10)k + 1) + k

= α(9/10)k + 2α+ k

We need:
α(9/10)k + 2α+ k ≤ αk

⇔ (α/10− 1)k ≥ 2α

⇐ (α/10− 1)β ≥ 2α

Choose β = 40. The above becomes α ≥ 20.

Hence, α = max{20, f (40)/40, f (39)/39, ..., f (1)/1} and β = 40 give a work-
ing inductive argument.
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