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Outline

1 An array-based implementation of the binary heap.

2 A heap building algorithm with O(n) time complexity.
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Review: Priority Queue

A priority queue stores a set S of n integers and supports the
following operations:

Insert(e): Adds a new integer to S .

Delete-min: Removes and returns the smallest integer in S .
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Review: Binary Heap

Let S be a set of n integers. A binary heap on S is a binary tree
T satisfying:

1 T is complete.

2 Every node u in T corresponds to a distinct integer in S —
the integer is called the key of u (and is stored at u).

3 If u is an internal node, the key of u is smaller than those of
its child nodes.

CSCI 2100, The Chinese University of Hong Kong Binary Heaps in Dynamic Arrays



5/21

Storing a Complete Binary Tree Using an Array

Let T be any complete binary tree with n nodes. We can linearize the
nodes in the following manner:

Put the nodes at a higher level before those at a lower level.

Within the same level, order the nodes from left to right.

Store the linearized node sequence in an array A of length n.
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Example

1

39 8

26 2379 54

93

1

2 3

4 5 6 7

8

Stored as

1 39 8 26 2379 54 93

Index: 1 2 3 4 5 6 7 8

A
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Property 1: The rightmost leaf node at the bottom level is stored
at A[n].

Example:

1

39 8

26 2379 54

1

2 3

4 5 6 7

8
93

1 39 8 26 2379 54 93

Index: 1 2 3 4 5 6 7 8

A
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Property 2: Suppose that node u of T is stored at A[i ]. Then,
the left child of u is stored at A[2i ], and the right child at A[2i +1].

Example:

1

39 8

26 2379 54

93

1

2 3

4 5 6 7

8

1 39 8 26 2379 54 93

Index: 1 2 3 4 5 6 7 8

A
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Property 2 implies:

Property 3: Suppose that node u of T is stored at A[i ]. Then,
the parent of u is stored at A[bi/2c].
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Now we are ready to implement the insertion and delete-min
algorithms on the array representation of a binary heap.

CSCI 2100, The Chinese University of Hong Kong Binary Heaps in Dynamic Arrays



11/21

Insertion Example

1 39 8 26 2379 54 93 15

Insert 15 and swap-up.

1 39 8 26 23 7954 9315

1 398 26 23 7954 9315

Index: 91 2 3 4 5 6 7 8

91 2 3 4 5 6 7 8

91 2 3 4 5 6 7 8

1

39 8

26 2379 54

1593

1

39 8

26 2315 54

93 79

1

15 8

26 2339 54

93 79
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Delete-min Example

1 398 26 23 7954 9315

398 26 2379 54 9315

398 26 2379 54 9315

398 2623 7954 9315

Index: 9

1 2 3

3 6 7

7

Replace 1 with 79 and swap-down.

1 2 3

1 2

4 5 6 7 8

4 5 6 7 8

4 5 8

3 61 2 4 5 8

1

15 8

26 2339 54

93 79

79

15 8

26 2339 54

93

8

15 79

26 2339 54

93

8

15 23

26 7939 54

93
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Performance Guarantees

Combining our analysis on (i) binary heaps and (ii) dynamic arrays, we
obtain the following guarantees on a binary heap implemented with a
dynamic array:

Space consumption O(n).

Insertion: O(log n) time amortized.

Delete-min: O(log n) time amortized.
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Next, we will see a heap building algorithm that runs in O(n) time.
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Fixing a Messed-Up Root

First, consider the following root-fixing problem. Suppose that we are
given a complete binary tree T with root r such that

the left subtree of r is a binary heap;

the right subtree of r is a binary heap.

However, the key of r may not be smaller than the keys of its children.
We need to fix the issue and makes T a binary heap.

This can be done in O(log n) time using the swap-down operation from

the delete-min algorithm.
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Example

25

15 8

26 2339 54

93 79 ⇒

2515

8

26 2339 54

93 79 ⇒

25

15

8

26

23

39 54

93 79
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Building a Heap

Given an array A that stores a set S of n integers, we can turn A into a
binary heap on S using the following simple algorithm (which views A as
a complete binary tree T ).

For each i = bn/2c downto 1

- Apply swap-down to the subtree of T rooted at A[i ] to fix its
root.

Think: Are the conditions of the root-fixing problem always
satisfied?
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Example

139 826 2354 9315

i

1 39 826 2354 9315

i

1 398 26 2354 9315

i

1 398 26 2354 9315

i
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Running Time

Now let us analyze the time of the building algorithm. Suppose that T
has height h. Without loss of generality, assume that all the levels of T
are full – namely, n = 2h − 1 (why no generality is lost?).

Observe:

A node at Level h − 1 incurs O(1) time in swap-down; 2h−1 such
nodes.

A node at Level h − 2 incurs O(2) time in swap-down; 2h−2 such
nodes.

A node at Level h − 3 incurs O(3) time in swap-down; 2h−3 such
nodes.

...

A node at Level h − h incurs O(h) time in swap-down; 20 such
nodes.
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Running Time

Hence, the total time is bounded by

h∑
i=1

O
(
i · 2h−i

)
= O

(
h∑

i=1

i · 2h−i

)

We will prove that the right hand side is O(n) in the next slide.
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Running Time

Suppose that

x = 2h−1 + 2 · 2h−2 + 3 · 2h−3 + ... + h · 20 (1)

⇒ 2x = 2h + 2 · 2h−1 + 3 · 2h−2 + ... + h · 21 (2)

Subtracting (1) from (2) gives

x = 2h + 2h−1 + 2h−2 + ... + 21 − h

≤ 2h+1

= 2(n + 1) = O(n).
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