
1/21

Binary Heaps in Dynamic Arrays

CSCI 2100 Teaching Team

Department of Computer Science and Engineering
Chinese University of Hong Kong

CSCI 2100, The Chinese University of Hong Kong Binary Heaps in Dynamic Arrays



2/21

Outline

1 An array-based implementation of the binary heap.

2 A heap building algorithm with O(n) time complexity.

CSCI 2100, The Chinese University of Hong Kong Binary Heaps in Dynamic Arrays



3/21

Review: Priority Queue

A priority queue stores a set S of n integers and supports the
following operations:

Insert(e): Adds a new integer to S .

Delete-min: Removes and returns the smallest integer in S .

CSCI 2100, The Chinese University of Hong Kong Binary Heaps in Dynamic Arrays



4/21

Review: Binary Heap

Let S be a set of n integers. A binary heap on S is a binary tree
T satisfying:

1 T is complete.

2 Every node u in T corresponds to a distinct integer in S —
the integer is called the key of u (and is stored at u).

3 If u is an internal node, the key of u is smaller than those of
its child nodes.

CSCI 2100, The Chinese University of Hong Kong Binary Heaps in Dynamic Arrays



5/21

Storing a Complete Binary Tree Using an Array

Let T be any complete binary tree with n nodes. We can linearize the
nodes in the following manner:

Put the nodes at a higher level before those at a lower level.

Within the same level, order the nodes from left to right.

Store the linearized node sequence in an array A of length n.

CSCI 2100, The Chinese University of Hong Kong Binary Heaps in Dynamic Arrays



6/21

Example

1

39 8

26 2379 54

93

1

2 3

4 5 6 7

8

Stored as

1 39 8 26 2379 54 93

Index: 1 2 3 4 5 6 7 8

A

CSCI 2100, The Chinese University of Hong Kong Binary Heaps in Dynamic Arrays



7/21

Property 1: The rightmost leaf node at the bottom level is stored
at A[n].

Example:

1

39 8

26 2379 54

1

2 3

4 5 6 7

8
93

1 39 8 26 2379 54 93

Index: 1 2 3 4 5 6 7 8

A

CSCI 2100, The Chinese University of Hong Kong Binary Heaps in Dynamic Arrays



8/21

Property 2: Suppose that node u of T is stored at A[i ]. Then,
the left child of u is stored at A[2i ], and the right child at A[2i +1].

Example:

1

39 8

26 2379 54

93

1

2 3

4 5 6 7

8

1 39 8 26 2379 54 93

Index: 1 2 3 4 5 6 7 8

A

CSCI 2100, The Chinese University of Hong Kong Binary Heaps in Dynamic Arrays



9/21

Property 2 implies:

Property 3: Suppose that node u of T is stored at A[i ]. Then,
the parent of u is stored at A[bi/2c].

CSCI 2100, The Chinese University of Hong Kong Binary Heaps in Dynamic Arrays



10/21

Now we are ready to implement the insertion and delete-min
algorithms on the array representation of a binary heap.

CSCI 2100, The Chinese University of Hong Kong Binary Heaps in Dynamic Arrays



11/21

Insertion Example

1 39 8 26 2379 54 93 15

Insert 15 and swap-up.

1 39 8 26 23 7954 9315

1 398 26 23 7954 9315

Index: 91 2 3 4 5 6 7 8

91 2 3 4 5 6 7 8

91 2 3 4 5 6 7 8

1

39 8

26 2379 54

1593

1

39 8

26 2315 54

93 79

1

15 8

26 2339 54

93 79

CSCI 2100, The Chinese University of Hong Kong Binary Heaps in Dynamic Arrays



12/21

Delete-min Example

1 398 26 23 7954 9315

398 26 2379 54 9315

398 26 2379 54 9315

398 2623 7954 9315

Index: 9

1 2 3

3 6 7

7

Replace 1 with 79 and swap-down.

1 2 3

1 2

4 5 6 7 8

4 5 6 7 8

4 5 8

3 61 2 4 5 8

1

15 8

26 2339 54

93 79

79

15 8

26 2339 54

93

8

15 79

26 2339 54

93

8

15 23

26 7939 54

93

CSCI 2100, The Chinese University of Hong Kong Binary Heaps in Dynamic Arrays



13/21

Performance Guarantees

Combining our analysis on (i) binary heaps and (ii) dynamic arrays, we
obtain the following guarantees on a binary heap implemented with a
dynamic array:

Space consumption O(n).

Insertion: O(log n) time amortized.

Delete-min: O(log n) time amortized.

CSCI 2100, The Chinese University of Hong Kong Binary Heaps in Dynamic Arrays



14/21

Next, we will see a heap building algorithm that runs in O(n) time.

CSCI 2100, The Chinese University of Hong Kong Binary Heaps in Dynamic Arrays



15/21

Fixing a Messed-Up Root

First, consider the following root-fixing problem. Suppose that we are
given a complete binary tree T with root r such that

the left subtree of r is a binary heap;

the right subtree of r is a binary heap.

However, the key of r may not be smaller than the keys of its children.
We need to fix the issue and makes T a binary heap.

This can be done in O(log n) time using the swap-down operation from

the delete-min algorithm.

CSCI 2100, The Chinese University of Hong Kong Binary Heaps in Dynamic Arrays



16/21

Example

25

15 8

26 2339 54

93 79 ⇒

2515

8

26 2339 54

93 79 ⇒

25

15

8

26

23

39 54

93 79

CSCI 2100, The Chinese University of Hong Kong Binary Heaps in Dynamic Arrays



17/21

Building a Heap

Given an array A that stores a set S of n integers, we can turn A into a
binary heap on S using the following simple algorithm (which views A as
a complete binary tree T ).

For each i = bn/2c downto 1

- Apply swap-down to the subtree of T rooted at A[i ] to fix its
root.

Think: Are the conditions of the root-fixing problem always
satisfied?

CSCI 2100, The Chinese University of Hong Kong Binary Heaps in Dynamic Arrays



18/21

Example

139 826 2354 9315

i

1 39 826 2354 9315

i

1 398 26 2354 9315

i

1 398 26 2354 9315

i

CSCI 2100, The Chinese University of Hong Kong Binary Heaps in Dynamic Arrays



19/21

Running Time

Now let us analyze the time of the building algorithm. Suppose that T
has height h. Without loss of generality, assume that all the levels of T
are full – namely, n = 2h − 1 (why no generality is lost?).

Observe:

A node at Level h − 1 incurs O(1) time in swap-down; 2h−1 such
nodes.

A node at Level h − 2 incurs O(2) time in swap-down; 2h−2 such
nodes.

A node at Level h − 3 incurs O(3) time in swap-down; 2h−3 such
nodes.

...

A node at Level h − h incurs O(h) time in swap-down; 20 such
nodes.

CSCI 2100, The Chinese University of Hong Kong Binary Heaps in Dynamic Arrays



20/21

Running Time

Hence, the total time is bounded by

h∑
i=1

O
(
i · 2h−i

)
= O

(
h∑

i=1

i · 2h−i

)

We will prove that the right hand side is O(n) in the next slide.

CSCI 2100, The Chinese University of Hong Kong Binary Heaps in Dynamic Arrays



21/21

Running Time

Suppose that

x = 2h−1 + 2 · 2h−2 + 3 · 2h−3 + ... + h · 20 (1)

⇒ 2x = 2h + 2 · 2h−1 + 3 · 2h−2 + ... + h · 21 (2)

Subtracting (1) from (2) gives

x = 2h + 2h−1 + 2h−2 + ... + 21 − h

≤ 2h+1

= 2(n + 1) = O(n).

CSCI 2100, The Chinese University of Hong Kong Binary Heaps in Dynamic Arrays


