CSCI2100 Tutorial 8

CSCI 2100 Teaching Team, Spring 2023

Review on Hash Table

- $S = a$ set of n integers in [1, U]
- Main idea: divide S into a number m of disjoint "buckets"
- Set $m = \Theta(n)$
- Guarantees
	- Space consumption: $O(n)$
	- Preprocessing cost: $O(n)$
	- Query cost: $O(1)$ in expectation

Review on Hash Table

- Divide S into a number m of disjoint buckets:
	- Choose a function h from $\lceil 1, U \rceil$ to $\lceil 1, m \rceil$
	- For each $i \in [1, m]$, create an empty linked list L_i
	- For each $x \in S$:
		- Compute $h(x)$
		- Insert x into $L_{h(x)}$
- \cdot Important: choose a good hash function h

Review on Hash Table

- Construct a universal family
	- Pick a prime number p such that $p \geq m$ and $p \geq U$
	- Choose an integer α from $[1, p 1]$ uniformly at random
	- Choose an integer β from $[0, p-1]$ uniformly at random
	- Define a hash function:

 $h(k) = 1 + ((\alpha k + \beta) \mod p) \mod m$

Example

- Let $S = \{19, 36, 63, 53, 14, 9, 70, 26\}$
- We choose $m = 10$, $p = 71$, suppose that α and β are randomly chosen to be 3 and 7, respectively
- $h(k) = 1 + (((3k + 7) \text{mod } 71) \text{ mod } 10)$

Relationships between Hash Functions and Queries

- Let H be the universal family defined in the previous slides
- Given a function $h \in H$ and an integer $q \in [1, U]$:
	- Define $cost(h, q) = |\{x \in S \mid h(x) = h(q)\}|$

query value

Hash Table

- Worst-case expected query cost: $O(1)$
- Worst-case query cost: $O(n)$
- Question:
	- Can we improve the worst-case query cost?

- Replace linked lists with sorted arrays
- $O(n \log n)$ preprocessing cost

- Query: whether 29 exists
- Step 1:
	- Access the hash table to obtain the address of corresponding array
		- $O(1)$ time

- Query: whether 29 exists
- Step 2:
	- Perform binary search on the array to find the target
		- $O(log n)$ time
- Overall worst-case complexity: $O(\log n)$

- This method retains the $O(1)$ worst-case expected query time.
- Proof:
	- Suppose we look up an integer q
	- Define random variable $X_{h(q)}$ to be the length of array that corresponds to the hash value $h(q)$
	- Expected query time:

$$
E[\log_2 X_{h(q)}] = \sum_{l=1}^n \log_2 l \Pr(X_{h(q)} = l)
$$

\n
$$
\leq \sum_{l=1}^n l \Pr(X_{h(q)} = l)
$$

\n
$$
= E[X_{h(q)}]
$$

\n
$$
= O(1)
$$

The Two-Sum Problem (Revisited)

- Problem Input:
	- An array A of n distinct integers (not necessarily sorted).
- Goal:
	- Determine whether if there exist two different integers x and y in A satisfying $x + y = v$
- Example: find a pair whose sum is 20

Solution 1: Binary Search the Answer

- Goal: Find a pair (x, y) such that $x + y = v$
- Observe that given x, $y = v x$, is determined
- Solution:
	- Sort A
	- For each x in A:
		- set y as $v x$
		- Use binary search to see if y exists in the sequence
- Time complexity: $O(n \log n)$

Solution 2: Using the Hash Table

- Step 1 and 2:
	- Choose a hash function h and create an empty hash table H
	- Insert each x in A into $L_{h(x)}$
- Step 3:
	- For $i = 1$ to n
		- Set y as $v A[i]$
		- Check if y is in the hash table; if it is, return yes
	- Return no

Time Complexity

- Step 1 and 2: $O(n)$
- Step 3:
	- The step issues n queries (one for each y)
	-
	- We know $E[X_i] = O(1)$
- **Fig. 7**
 Example 1 and 2: $O(n)$
 Example 3:

The step issues *n* queries (one for each y)

Let X_i be the time of the *i*-th query

We know $E[X_i] = O(1)$

The worst-case expected cost of step 3 is $\Sigma_i E[X_i] = O(n)$ • The step issues *n* queries (one for each *y*)
• The step issues *n* queries (one for each *y*)
• Let X_i be the time of the *i*-th query
• We know $E[X_i] = O(1)$
• The worst-case expected cost of step 3 is $\Sigma_i E[X_i] = O(n)$
- Overall: $O(n)$ in expectation

Sorting by Frequency (a Regular Exercise)

- Problem input:
	- Let S be a multi-set of n integers. The frequency of an integer x as the number of occurrences of x in S .
- Goal: Produce an array that sorts the distinct integers in S by frequency.

• The final state:

Counting Sort!

- Now we sort the numbers by frequency.
- Key observation: each frequency is in $[1, n]$.
- We can carry out the sorting with counting sort in $O(n)$ time.

Total time complexity: $O(n)$ expected time.