
CSCI2100 Tutorial 8

CSCI 2100 Teaching Team, Spring 2023

Review on Hash Table

• = a set of integers in
• Main idea: divide into a number of disjoint

“buckets”
• Set
• Guarantees

• Space consumption:
• Preprocessing cost:
• Query cost: in expectation

Review on Hash Table

• Divide into a number of disjoint buckets:
• Choose a function from to
• For each , create an empty linked list
• For each :

• Compute
• Insert into (௫)

• Important: choose a good hash function

Review on Hash Table

• Construct a universal family
• Pick a prime number p such that and
• Choose an integer from uniformly at

random
• Choose an integer from uniformly at

random
• Define a hash function:

Example
• Let

• We choose , suppose that and are randomly chosen
to be 3 and 7, respectively

•

Relationships between Hash Functions
and Queries

…

ଵ ଵ ଵ … ଵ

ଶ ଶ ଶ … ଶ

… … …. … ….

ு |ு| |ு| … |ு|

Average

• Let be the universal family defined in the previous slides
• Given a function and an integer

• Define
query value

Hash Table

• Worst-case expected query cost:
• Worst-case query cost:

• Question:
• Can we improve the worst-case query cost?

Hash Table: Improving the Worst Cost

• Replace linked lists with sorted arrays
• preprocessing cost

NIL10 6 28 2 14 29 9 26

2 6 9 10 14 26 28 29

NIL18

NIL24

18

24

Hash Table: Improving the Worst Cost

• Query: whether 29 exists
• Step 1:

• Access the hash table to obtain the address of
corresponding array

• time

2 6 9 10 14 26 28 29

18

24

Hash Table: Improving the Worst Cost

• Query: whether 29 exists
• Step 2:

• Perform binary search on the array to find the target
• time

• Overall worst-case complexity:

2 6 9 10 14 26 28 29

18

24

Hash Table: Improving the Worst Cost

• This method retains the worst-case expected
query time.

• Proof:
• Suppose we look up an integer
• Define random variable to be the length of array that

corresponds to the hash value
• Expected query time:

ଶ ଶ

ୀଵ

ୀଵ

The Two-Sum Problem (Revisited)

• Problem Input:
• An array of distinct integers (not necessarily sorted).

• Goal:
• Determine whether if there exist two different integers and in A

satisfying

• Example: find a pair whose sum is 20

11 3 17 7 2 13

Solution 1: Binary Search the Answer

• Goal: Find a pair such that
• Observe that given x, , is determined
• Solution:

• Sort A
• For each in A:

• set as
• Use binary search to see if exists in the sequence

• Time complexity:

Solution 2: Using the Hash Table

• Step 1 and 2:
• Choose a hash function and create an empty hash table
• Insert each x in A into ௫

• Step 3:
• For i = 1 to n

• Set as
• Check if is in the hash table; if it is, return yes

• Return no

Time Complexity

• Step 1 and 2:

• Step 3:
• The step issues n queries (one for each y)

• Let be the time of the -th query

• We know

• The worst-case expected cost of step 3 is ∑ 𝐸 𝑋 = O 𝑛

• Overall: in expectation

Sorting by Frequency
(a Regular Exercise)
• Problem input:

• Let be a multi-set of integers. The frequency of an integer as
the number of occurrences of in .

• Goal: Produce an array that sorts the distinct integers in by
frequency.

10 8 8 12 9 9 12 12

12 8 9 10

input:

output:

12 : 3 occurrences
8 : 2 occurrences
9 : 2 occurrences
10 : 1 occurrence

Using a Hash Table to Obtain Frequencies

10 8 8 12 9 9 12 12

NIL

NIL

NIL

Using a Hash Table to Obtain Frequencies

10 8 8 12 9 9 12 12

(10,1) NIL

NIL

Using a Hash Table to Obtain Frequencies

10 8 8 12 9 9 12 12

(10,1) NIL

NIL

(8,1) NIL

Using a Hash Table to Obtain Frequencies

10 8 8 12 9 9 12 12

(10,1) NIL

NIL

(8,2) NIL

Using a Hash Table to Obtain Frequencies

10 8 8 12 9 9 12 12

(10,1) NIL

NIL

(8,2) NIL

(12,1)

Using a Hash Table to Obtain Frequencies

• The final state:

10 8 8 12 9 9 12 12

(8,2)

(10,1)

(12,3)

(9,2)

NIL

NIL

NIL

Counting Sort!

• Now we sort the numbers by frequency.
• Key observation: each frequency is in .
• We can carry out the sorting with counting sort in time.

12 8 9 10

Total time complexity: expected time.

Counting sort(8,2)

(10,1)

(12,3)

(9,2)

NIL

NIL

NIL

