CSCI2100: Midterm

Problem 1 (10%). Prove: if f(n) = O(nlogn) and g(n) = O(y/n), then there are constants o > 0
and 3 > 0 such that f(n) 4+ g(n) < a-nlogyn for all n > . Part of the proof has been written for
you. You need to fill in the three blanks.

Proof. Since f(n) = O(nlogn), there exist constants ¢y, ca such that, for all n > ¢g, we have
f(n) < cinlogyn.
Since g(n) = O(y/n) there exist constants ¢}, ¢, such that, for all n > ¢}, we have
g9(n) < cjv/n < ¢inlogyn.
Thus, for n satisfying , it holds that
f(n) +g(n) < (c1+¢cy) -nlogyn.
Hence, setting o = and 8 = completes the proof. O

Write your answers in the answer book in this format: “Blank 1: ...”, “Blank 2: ...”, and “Blank 3:
”

Solution. Black 1: n > max{ce,c,}. Black 2: a = ¢; + ¢}. Blank 3: § = max{c, c,}.

Problem 2 (5%). Give a counterexample to disprove the following statement: if functions
f(n) = O(nlogn) and g(n) = O(y/n), then f(n) + g(n) = Q(nlogn).

Solution. f(n)=g(n)=1.

Problem 3 (10%). Let S be a set of n integers, and ki, ko arbitrary integers satisfying 1 < ky <
ko < n. Suppose that S is given in an array. Give an O(n) expected time algorithm to report all
the integers whose ranks in S are in the range [k, k2]. Recall that the rank of an integer v in S
equals the number of integers in S that are at most v.

Solution. Apply the k-selection algorithm to find the integer p; € S whose rank is kq, and then
apply the algorithm again to find the integer po € S whose rank is ky. Finally, scan S to report
every integer that falls in [p1, pa].

Problem 4 (10%). Let S; and Sz be two sets of integers (they may not be disjoint) with
|S1] = |S2| = n. We know that S; and Ss have been sorted, i.e., each set is given in an array where
its elements are in ascending order. Give an algorithm to compute S; U Se in O(n) time.

Solution. Let A; (resp., A2) be the array storing S; (resp., Sz). Create an array A of size 2n to
contain the output. Set ¢ = j = 1. Repeat the following until ¢ > n or j > n:

o If A[i] > Aslj], append A;]i] to A and increase ¢ by 1.
o If Ai[i] < Asj], append As[j] to A and increase j by 1.

e Otherwise, append A;[i] to A and increase both ¢ and j by 1.



Finally, if i < n (resp., j < n), append the remaining elements of Aj(resp., A2) to A.

Problem 5 (6%). Suppose that we use quick sort to sort the array A = (35,12, 5,55,43, 78,90, 82).
Remember that the algorithm first randomly picks a pivot element from A and then solves two
subproblems recursively. Let us assume that the pivot is 35. What are the input arrays of those
two subproblems, respectively?

Solution. (12,5), (55,43,78,90,82).

Problem 6 (6%). Let A be the following array of 10 integers: (8, 5, 6, 2, 12, 1, 10, 17, 11, 9).
Suppose that we use counting sort to sort the array, knowing that all the integers are in the domain
from 1 to 20. Recall that the algorithm (as described in the class) generates an array B where each
element is either 0 or 1. Give the content of B.

Solution. (1,1,0,0,1,1,0,1,1,1,1,1,0,0,0,0,1,0,0,0).

Problem 7 (10%). Let S be a set of n integers that have been sorted in an array. Give an algorithm
that, given any integers x and y with z < y, finds the number of integers in S covered by the interval
[,y]. Your algorithm must finish in O(logn) time. For example, if S = {5,12,35,43,55,78,82,90},
your algorithm should output 2 if x = 30 and y = 45.

Solution. Perform binary search to find the successor of x in A (which is the smallest element in
A larger than or equal to ). Let i be the successor’s position index (i.e., A[i] is the successor).
Perform binary search to find the predecessor of y in A (which is the largest element in A smaller
than or equal to x). Let j be the predecessor’s position index. Return j —i + 1.

Problem 8 (30%). Let S; be a set of n integers that have been sorted in an array. Let Sy be
another set of m integers that have not been sorted. Answer the following questions.

1. (8%) Give an algorithm to find S; NSz in O(mlogn) time.
2. (10%) Give an algorithm to find S} N Sy in O(n + mlogm) time.

3. (12%) Suppose that all the integers in S; are in the domain from 1 to 100n (whereas the
domain for Sy is arbitrary). Give an algorithm to find S; N S in O(n 4+ m) time.

Solution.

1. Let A; be the array storing S1. For each integer e € So, check whether e € S; with binary
search and, if so, output e. Each binary search costs O(logn) time. Thus, the total cost is
O(mlogn).

2. Sort S in O(mlogm) time; let Ag be the sorted array As. Then, we perform a synchronous
scan over A1 and As to output S; NSy as follows. First, set 4 = 1 and j = 1. Then, repeat the
following until @ > |A;] or j > |As|: if A;[i] = As[j], output A;[i] and increase both ¢ and j by
one. If Aj[i] > As[j], increase j by one; if A;[i] < As[j], increase i by one. The synchronous
scan takes O(m + n). So the overall cost is O(n + mlogm).

3. Discard from Sy all the integers that are outside the range [1,100n]. Use counting sort to
sort (the remaining elements of) Sy in O(m + 100n) = O(m + n) time. Then, perform a
synchronous scan as described for Problem 8(2) to report S; N Sa. The total cost is O(m + n).



Problem 9 (13%). Let A be an array of n distinct integers (not necessarily sorted). We denote
the i-th number in A as A[i], for i € [1,n]. We call A[i] a local mazimum in any of the following
scenarios:

e i =1and A[l] > A[2];
e i =n and A[n] > Aln —1];
o ic[2,n—1], A[i] > A[i + 1], and A[i] > Ali — 1].

For example, if A = (35,12,5,55,43,78,90, 82), then 35, 55, and 90 are all the local maxima. Design
an algorithm to find an arbitrary local maximum in O(logn) time.

Solution. Set k = |n/2|. In O(1) time, check if A[k] is a local maximum. If not, then there are
three possibilities:

1. Alk — 1] < A[k] < A[k +1];
2. Alk — 1] > A[k] > A[k + 1];
3. Alk] < Alk — 1] and A[k] < A[k + 1].

In the first case, recursively look for a local maximum in the subarray Alk + 1: n| (i.e., everything
from A[k + 1] to A[n]). In the second case, recurse in the subarray A[l: k — 1]. In the third case,
you can recurse either in A[1: k—1] or [k +1:n]. If f(n) is the running time on an input of size n,
we have f(n) < O(1) + f([n/2]), which yields f(n) = O(logn).



