Depth First Search

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

1/37

Yufei Tao Depth First Search

Today, we will discuss the depth first search (DFS) algorithm, which is
an elegant algorithm for solving many non-trivial problems. In this
lecture, we will see one such problem: cycle detection. We will assume
directed graphs because the extension to undirected graphs is
straightforward.

2/37

Yufei Tao Depth First Search

CPaths and Cycles)

Let G = (V, E) be a directed graph.

Recall:

A path in G is a sequence of edges (v1, v2), (v2, v3), ..., (Ve, Vet1),
for some integer / > 1. We may also denote the path as
Vi — Vo — ... — Vpyd.

We now define:

A path v — v» — ... = vy is called a cycle if vy = v»g.

3/37

Yufei Tao Depth First Search

a h

(’O—»O

Acycle: d > g—f—e—d.
Anotherone: d g —i—f —e—d.

4/37

Yufei Tao Depth First Search

(Directed Acyclic/Cyclic Gra phs)

If a directed graph contains no cycles, we say that it is a directed
acyclic graph (DAG). Otherwise, G is cyclic.

sl D:

Cyclic

5/37

Yufei Tao Depth First Search

(The Cycle Detection Problem)

Let G = (V, E) be a directed graph. Determine whether it is a DAG.

6/37

Yufei Tao Depth First Search

Next, we will describe the depth first search (DFS) algorithm to
solve the problem in O(| V| + |E|) time, which is optimal (because
any algorithm must at least see every vertex and every edge once
in the worst case).

DFS outputs a tree, called the DFS-tree, which allows us to decide
whether the input graph is a DAG.

Yufei Tao Depth First Search

7/37

DFS

At the beginning, color all vertices in the graph white and create an
empty DFS tree T.

Create a stack S. Pick an arbitrary vertex v. Push v into S, and color it
gray (which means “in the stack”). Make v the root of T.

8/37

Yufei Tao Depth First Search

Suppose that we start from a.

“ h DFS tree

A -

g i
T

9/37

Yufei Tao Depth First Search

DFS

Repeat the following until S is empty.

© Let v be the vertex that currently tops the stack S (do not remove
v from S).
@ Does v still have a white out-neighbor?

2.1 If so, let it be wu.

@ Push v into S, and color u gray.
e Make u a child of v in the DFS-tree T.

2.2 Otherwise, pop v from S and color it black (meaning v is
done).

If there are still white vertices, repeat the above by restarting from an
arbitrary white vertex v/, creating a new DFS-tree rooted at v'.

10/37

Yufei Tao Depth First Search

(Running Example)

Top of stack: a, which has white out-neighbors b, d. Suppose we access
b first. Push b into S.

o h DFS tree

A,
=

S =(a,b).

Yufei Tao Depth First Search

11/37

(Running Example)

After pushing c into S:

“ h DFi tree
/ X !
bO / g 1 ‘
l/f fﬂ// c
/O
(:O4§Q
S=(a,b,c).
12/37
Yufei Tao

Depth First Search

(Running Example)

Now c tops the stack. It has white out-neighbors d and e. Suppose we
visit d first. Push d into S.

o h DFS tree

AN —7 .,
10l

S=(a,b,c,d).

13/37
Yufei Tao

Depth First Search

(Running Example)

After pushing g into S:

Yufei Tao

DFS tree
a

|
b

c

i

g

Depth First Search

14/37

(Running Example)

Suppose we visit the (white) out-neighbor f of g first. Push f into S

DFES tree
a
i b
o ‘(:
L CQ'/ “(]
f

5 = (a’ ba c, daga f)

15/37
Yufei Tao

Depth First Search

(Running Example)

After pushing e into S:

L DFS tree

s :

=

S=(ab,c,d,g,f,e).

16/37
Yufei Tao

Depth First Search

CRunning Example)

e has no white out-neighbors. So pop it from S and color it black.
Similarly, f has no white out-neighbors. Pop it from S and color it black.

. h DFS tree
a
/ b
bo Y / S e
. e ° / N(]
‘(

S= (aa ba ¢ d,g)

17/37
Yufei Tao

Depth First Search

(Running Example)

Now g tops the stack again. It still has a white out-neighbor i. So, push

iinto S.

o h DFi tree

/ b

bo Y (é L

¢ 8./ .‘(7
N
[

:

S=(ab,c,d,g,i.
18/37
Yufei Tao

Depth First Search

(Running Example)

After popping i,g,d, c, b, a:

a h DFE tree
/ \ |
b. dg q ‘ ‘(
l T [B
* |
c e./ g\
N
[
\
e
s=0.
19/37
Yufei Tao

Depth First Search

(Running Example)

Now there is still a white vertex h. So we perform another DFS starting
from h.

DF'S forest
e h a h
/ b
b. e g .7 ‘,
Tl
/ ‘
g g
‘ N
(i
e
S =(h).
20/37
Yufei Tao

Depth First Search

(Running Example)

Pop h. The end.

S

Note that we have created a DFS-forest, which consists of 2 DFS-trees.

Yufei Tao

DFS forest

Depth First Search

21/37

The fact below follows directly from the way DFS runs:

Lemma (the Ancestor-Descendent Lemma): Let v and v be
two distinct vertices in G. Then, u is an ancestor of v in the DFS-
forest if and only if the following holds: v is already in the stack
when v enters the stack.

22/37

Yufei Tao Depth First Search

Time Analysis

DFS can be implemented efficiently as follows.
@ Store G in the adjacency list format.

@ For every vertex v, remember which is the next out-neighbor to
explore.

@ O(|V|+ |E]|) stack operations.
@ Use an array to remember the colors of all vertices.

The total running time is O(| V| + |E]).

23/37

Yufei Tao Depth First Search

Next, we will see how to use the DFS forest to detect cycles.

24/37
Depth First Search

(Edge Classification)

Suppose that we have already built a DFS-forest T.
Let (u, v) be an edge in G (remember that the edge is directed from u to
v). It can be classified into

© forward edge if u is a proper ancestor of v in a DFS-tree of T;

@ back edge if v is a descendant of v in a DFS-tree of T;

© cross edge if neither of the above applies.

25/37

Yufei Tao Depth First Search

DF'S forest
“ h a h
/ \
b
‘e o () C
K
& e)
N
.‘f i

@ Forward edges:
(a,b), (a,d), (b, c),(c, d),(c,e),(d,g), (g, f), (g,1), ().
@ Back edge: (e, d).

o Cross edges: (i,f),(h,d), (h,g).

26/37
Yufei Tao

Depth First Search

Cycle Theorem

Theorem: Let T be an arbitrary DFS-forest. G contains a cycle
if and only if there is a back edge with respect to T.

The "“if-direction” is obvious. Proving the “only-if direction” is more
difficult and will be done later.

27/37

Yufei Tao Depth First Search

Issue: How to test the type of an edge?

We can do so in constant time. For this purpose, we need to slightly
augment the DFS-forest by remembering when each vertex enters
and leaves the stack.

28/37

Yufei Tao Depth First Search

(Augmenting DFS)

Maintain a counter c, which is initially 0. Every time we perform a push
or pop, increment ¢ by 1.
For every vertex v, define:

@ its discovery time d-tm(v) as the value of c right after v is pushed
into the stack;

@ its finish time f-tm(v) as the value of ¢ right after v is popped
from the stack.

Define the time interval of v as /(v) = [d-tm(v), f-tm(v)].

It is straightforward to obtain /(v) for all v € V by paying O(|V/|) extra
time on top of DFS’s running time. (Think: Why?)

29/37
Yufei Tao Depth First Search

. h DFS forest
a h
//).ﬁ} ,////////:;;;7.>‘ %
= |
&t b
| o
o I(a) =[1,16] !
o I(b) = [2,15]
o I(c) = [3,14]
o I(d) =[4,13]
o I(g) = [5.12]
o I(f)=16,9]
o I(e) = [7,8]
o /(i) =[10,11]
o I(h) =[17,18]

30/37

Depth First Search

The fact below follows directly from the stack’s first-in-last-out property:

Lemma (the No-Partial-Overlap Lemma): For any two vertices
uand v in G, their time intervals must satisfy one of the following:

@ /(u) contains /(v);
@ /(v) contains I(u);

@ they are disjoint.

31/37

Yufei Tao Depth First Search

Combining the ancestor-descendant lemma with the no-partial-overlap
lemma gives:

Theorem (the Parenthesis Theorem): Let u and v be two dis-
tinct vertices in G. Then:

@ /(u) contains /(v) if and only if u is an ancestor of v in the
DFS-forest.

@ /(v) contains /(u) if and only if v is an ancestor of u in the
DFS-forest.

@ /(u) and I(v) are disjoint if and only if neither u nor v is
an ancestor of the other.

Yufei Tao Depth First Search

32/37

Cycle Detection

We can now detect whether G has a cycle:

for every edge (u,v) in G do
if /(v) contains /(u) then
return “cycle exists”
return “no cycle”

Only O(|E|) extra time is needed.

We now conclude that the cycle detection problem can be solved in
O(|V| + |E|) time.

33/37

Yufei Tao Depth First Search

It remains to prove the cycle theorem. In fact, it is a corollary of
the white path theorem, another important theorem about DFS.

34/37

Yufei Tao Depth First Search

(White Path Theorem)

Theorem: Let u be a vertex in G. Consider the moment right
before u enters the stack in the DFS algorithm. Then, a vertex v
becomes a proper descendant of u in the DFS-forest if and only if
the following is true at this moment:

@ there is a path from v to v including only white vertices.

The proof will be left as a exercise and discussed in the tutorial.

35/37
Yufei Tao Depth First Search

Consider the moment in our previous example right before g just entered

the stack. S = (a, b, c,d).

gg/

O

We can see that g can reach f, e, and i via white paths. Therefore, f, e
and i are all proper descendants of g in the DFS-forest; and g has no

other descendants.

Yufei Tao

DFS tree

a—o— S — 8

Depth First Search

36/37

(Proving the Only-If Direction of the Cycle Theorem)

We will now prove that if G has a cycle, then there must be a back edge
in the DFS-forest.

Suppose that the cycle is vi = vo — ... = vy — vy,

Let v;, for some i € [1,£], be the vertex in the cycle that is the first to
enter the stack. Hence, at the moment right before v; enters the stack,
v; can reach all the other vertices in the cycle via white paths. By the
white path theorem, all the other vertices in the cycle must be proper
descendants of v; in the DFS-forest. Hence, the edge pointing to v; in
the cycle must be a back edge. O

37/37

Yufei Tao Depth First Search

