
1/7

Counting Sort

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Yufei Tao Counting Sort



2/7

We already know that sorting n integers can be done in O(n log n) time.

Today, we will see a special case of the sorting problem where the

integers come from a small domain.

Yufei Tao Counting Sort



3/7

Sorting in a Small Domain)

Problem Input:

A set S of n integers is given in an array of length n. Every integer is in
the range of [1,U] where U ≥ n.

Goal:

Produce an array that stores the integers of S in ascending order.

Yufei Tao Counting Sort



4/7

Counting Sort

Step 1: Let A be the array storing S . Create an array B of length U.
Initialize B by setting all its cells to 0.

Step 2: Carry out the following for every i ∈ [1, n]: set B[A[i ]] = 1.

Step 3: Generate the sorted order as follows:

for x = 1 to U

if B[x ] = 1 then append integer x to A.

Yufei Tao Counting Sort



5/7

Example

At the beginning

4 11213 128

Initialize array B (assuming U = 16)

4 11213 128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BA

Setting n cells of B to 1

4 11213 128 0 1 0 1 0 0 0 1 0 0 1 1 1 0 0 0

BA

Final sorted list

4 112 13128 0 1 0 1 0 0 0 1 0 0 1 1 1 0 0 0

BA

Yufei Tao Counting Sort



6/7

Analysis of Counting Sort

Steps 1 and 3 take O(U) time.
Step 2 takes O(n) time.

Therefore, the overall running time of counting sort is O(n+U) = O(U).

For small U = O(n) (e.g., 1000n), the counting sort runs in O(n) time.

Yufei Tao Counting Sort



7/7

It is important to note that counting sort does not improve merge sort in
general! There are two reasons for this.

O(n + U) is incomparable to O(n log n). When U = O(n),
counting sort is faster, but when U = Ω(n2), merge sort is faster.

Counting sort tackles only a special version of the problem solved by
merge sort. The former is designed to sort integers, whereas the
latter can be used to sort any items (e.g., strings) on which
comparisons are well defined.

Yufei Tao Counting Sort


