
1/18

Two Methods for Solving Recurrences

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Yufei Tao Two Methods for Solving Recurrences



2/18

We have seen how to analyze the running time of recursive algorithms by

recurrence. It is important to sharpen our skills in solving recurrences.

Today, we will learn two techniques for this purpose: the master theorem

and the substitution method.

Yufei Tao Two Methods for Solving Recurrences



3/18

Master Theorem

Yufei Tao Two Methods for Solving Recurrences



4/18

The Master Theorem

Let f (n) be a function that returns a positive value for every integer
n > 0. We know:

f (1) = O(1)

f (n) ≤ α · f (⌈n/β⌉) + O(nγ) (for n ≥ 2)

where α ≥ 1, β > 1, and γ ≥ 0 are constants. Then:

If logβ α < γ, then f (n) = O(nγ).

If logβ α = γ, then f (n) = O(nγ log n).

If logβ α > γ, then f (n) = O(nlogβ α).

The theorem can be proved by carefully applying the “expansion

method” we saw earlier. The details are tedious and omitted.

Yufei Tao Two Methods for Solving Recurrences



5/18

Example 1

Consider the recurrence of binary search:

f (1) ≤ c1

f (n) ≤ f (⌈n/2⌉) + c2 (for n ≥ 2)

Hence, α = 1, β = 2, and γ = 0. Since logβ α = γ, we know that

f (n) = O(n0 · log n) = O(log n).

Yufei Tao Two Methods for Solving Recurrences



6/18

Example 2

Consider the recurrence of merge sort:

f (1) ≤ c1

f (n) ≤ 2 · f (⌈n/2⌉) + c2n (for n ≥ 2)

Hence, α = 2, β = 2, and γ = 1. Since logβ α = γ, we know that
f (n) = O(nγ · log n) = O(n log n).

Yufei Tao Two Methods for Solving Recurrences



7/18

Example 3

Consider the recurrence:

f (1) ≤ c1

f (n) ≤ 2 · f (⌈n/4⌉) + c2
√
n (for n ≥ 2)

Hence, α = 2, β = 4, and γ = 1/2. Since logβ α = γ, we know that
f (n) = O(nγ · log n) = O(

√
n log n).

Yufei Tao Two Methods for Solving Recurrences



8/18

Example 4

Consider the recurrence:

f (1) ≤ c1

f (n) ≤ 2 · f (⌈n/2⌉) + c2
√
n (for n ≥ 2)

Hence, α = 2, β = 2, and γ = 1/2. Since logβ α > γ, we know that

f (n) = O(nlogβ α) = O(n).

Yufei Tao Two Methods for Solving Recurrences



9/18

Example 5

Consider the recurrence:

f (1) ≤ c1

f (n) ≤ 13 · f (⌈n/7⌉) + c2n
2 (for n ≥ 2)

Hence, α = 13, β = 7, and γ = 2. Since logβ α < γ, we know that

f (n) = O(nγ) = O(n2).

Yufei Tao Two Methods for Solving Recurrences



10/18

The Substitution Method
Solving a Recurrence by Mathematical Induction

Yufei Tao Two Methods for Solving Recurrences



11/18

Example 6

Consider the recurrence:

f (1) = 1

f (n) ≤ f (n − 1) + 11n (for n ≥ 2)

We will prove f (n) = O(n2) by induction.

Yufei Tao Two Methods for Solving Recurrences



12/18

We aim to find a constant c such that f (n) ≤ c · n2 for n ≥ 1. To that
end, we want to gather all the conditions that c should satisfy.

For the base case of n = 1, for f (1) ≤ c to hold, we require c ≥ 1.

Suppose that (n) ≤ cn2 for all n ≤ k − 1 where k ≥ 2. Then, we have:

f (k) ≤ f (k − 1) + 11k ≤ c · (k − 1)2 + 11k

= ck2 − 2ck + c + 11k

To make the above at most ck2, we need

c ≥ 11k/(2k − 1)

For k ≥ 2, the fraction 11k
2k−1 ≤ 22/3 (maximum taken at k = 2). The

requirement becomes c ≥ 22/3.

Any c ≥ 22/3 gives a working argument. We will set c = 8 to
simplify the calculation in the argument, given in the next slide.

Yufei Tao Two Methods for Solving Recurrences



13/18

Proof (for the claim f (n) = O(n2)): We will prove f (n) ≤ 8n2 for all
n ≥ 1.

For the base case of n = 1, we have f (1) = 1 ≤ 8.

Suppose that (n) ≤ 8n2 for all n ≤ k − 1 where k ≥ 2. Then, we have:

f (k) ≤ f (k − 1) + 11k ≤ 8 · (k − 1)2 + 11k

= 8k2 − 5k + 8

which is at most 8k2 because k ≥ 2.

This completes the proof.

Yufei Tao Two Methods for Solving Recurrences



14/18

Try to use the method to “prove” f (n) ≤ cn. You will never
succeed because f (n) = Ω(n2), but it is worth trying to see how
the argument will fail.

Yufei Tao Two Methods for Solving Recurrences



15/18

Example 7

Consider the recurrence:

f (1) = f (2) = f (3) = 1

f (n) ≤ f (⌈n/5⌉) + f

(⌈
7n

10

⌉)
+ n (for n ≥ 4)

This is really a non-trivial recurrence (the master theorem is not
applicable here). We will prove that f (n) = O(n) using the substitution
method.

Yufei Tao Two Methods for Solving Recurrences



16/18

Goal: To prove the existence of a constant α such that f (n) ≤ αn
for all n ≥ 1.

Base case (n ≤ β): We need

α · n ≥ f (n) for all n ∈ [1, β]. (1)

Induction: Assuming f (n) ≤ αn under n ≤ k − 1, we aim to show
f (k) ≤ αk , where k ≥ β + 1.

We have:

f (k) ≤ α(⌈k/5⌉) + α(⌈(7/10)k⌉) + k

≤ α(k/5 + 1) + α((7/10)k + 1) + k

= α(9/10)k + 2α+ k

Yufei Tao Two Methods for Solving Recurrences



17/18

We need:

α(9/10)k + 2α+ k ≤ αk

⇔ α(k/10− 2) ≥ k (2)

We will make sure k ≥ β + 1 > 20 so that k/10− 2 > 0. With this, we
derive:

(2) ⇔ α ≥ k

k/10− 2
(3)

For k ≥ β + 1, the value k
k/10−2 ≤ (β+1)

(β+1)/10−2 (maximum taken at

k = β + 1). Requirement (3) becomes

α ≥ (β + 1)

(β + 1)/10− 2
. (4)

Yufei Tao Two Methods for Solving Recurrences



18/18

All we need to do now is to find α and β to satisfy the red constraints,
namely, (1), β > 19, and (4). There are infinitely many such values, e.g.:

β = 39

α = max

{
f (39)

39
,
f (38)

38
...,

f (1)

1
, 20

}
.

You can now use this pair of values to construct a working inductive

argument.

Yufei Tao Two Methods for Solving Recurrences


