
CSCI2100: Regular Exercise Set 3

Prepared by Yufei Tao

Problem 1. Prove log2(n!) = Θ(n log n).

Problem 2. Let f(n) be a function of positive integer n. We know:

f(1) = 1

f(n) ≤ 2 + f(⌈n/10⌉).

Prove f(n) = O(log n). Recall that ⌈x⌉ is the ceiling operator that returns the smallest integer at
least x.

Problem 3. Let f(n) be a function of positive integer n. We know:

f(1) = 1

f(n) ≤ 2 + f(⌈3n/10⌉).

Prove f(n) = O(log n). Recall that ⌈x⌉ is the ceiling operator that returns the smallest integer at
least x.

Problem 4. Let f(n) be a function of positive integer n. We know:

f(1) = 1

f(n) ≤ 2n+ 4f(⌈n/4⌉).

Prove f(n) = O(n log n).

Problem 5 (Bubble Sort). Let us re-visit the sorting problem. Recall that, in this problem, we
are given an array A of n integers, and need to re-arrange them in ascending order. Consider the
following bubble sort algorithm:

1. If n = 1, nothing to sort; return.

2. Otherwise, do the following in ascending order of i ∈ [1, n− 1]: if A[i] > A[i+ 1], swap the
integers in A[i] and A[i+ 1].

3. Recurse in the part of the array from A[1] to A[n− 1].

Prove that the algorithm terminates in O(n2) time.

As an example, support that A contains the sequence of integers (10, 15, 8, 29, 13). After Step 2
has been executed once, array A becomes (10, 8, 15, 13, 29).

Problem 6* (Modified Merge Sort). Let us consider a variant of the merge sort algorithm for
sorting an array A of n elements (we will use the notation A[i..j] to represent the part of the array
from A[i] to A[j]):

• If n = 1 then return immediately.

• Otherwise set k = ⌈n/3⌉.

• Recursively sort A[1..k] and A[k + 1..n], respectively.

• Merge A[1..k] and A[k + 1..n] into one sorted array.

Prove that this algorithm runs in O(n log n) time.

1


