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Lecture 1: Introduction to Computational Geometry

What is Computational Geometry? “Computational geometry” is a term claimed by a num-
ber of different groups. The term was coined perhaps first by Marvin Minsky in his book
“Perceptrons”, which was about pattern recognition, and it has also been used often to de-
scribe algorithms for manipulating curves and surfaces in solid modeling. It’s most widely
recognized use, however, is to describe the subfield of algorithm theory that involves the
design and analysis of efficient algorithms for problems involving geometric input and output.

The field of computational geometry grew rapidly in the late 70’s and through the 80’s and
90’s, and it is still a very active field of research. Historically, computational geometry devel-
oped as a generalization of the study of algorithms for sorting and searching in 1-dimensional
space to problems involving multi-dimensional inputs. Because of its history, the field of com-
putational geometry has focused mostly on problems in 2-dimensional space and to a lesser
extent in 3-dimensional space. When problems are considered in multi-dimensional spaces,
it is often assumed that the dimension of the space is a small constant (say, 10 or lower).
Nonetheless, recent work in this area has considered a limited set of problems in very high
dimensional spaces, particularly with respect to approximation algorithms. In this course, our
focus will be largely on problems in 2-dimensional space, with occasional forays into spaces
of higher dimensions.

Because the field was developed by researchers whose training was in discrete algorithms
(as opposed to more continuous areas such as a numerical analysis or differential geometry)
the field has also focused principally on the discrete aspects of geometric problem solving.
The mixture of discrete and geometric elements gives rise to an abundance of interesting
questions. (For example, given a collection of n points in the plane, how many pairs of points
can there be that are exactly one unit distance apart from each other?) Another distinctive
feature is that computational geometry primarily deals with straight or flat objects (lines,
line segments, polygons, planes, and polyhedra) or simple curved objects such as circles. This
is in contrast, say, to fields such as solid modeling, which focus on issues involving curves and
surfaces and their representations.

Computational geometry finds applications in numerous areas of science and engineering.
These include computer graphics, computer vision and image processing, robotics, computer-
aided design and manufacturing, computational fluid-dynamics, and geographic information
systems, to name a few. One of the goals of computational geometry is to provide the
basic geometric tools needed from which application areas can then build algorithms and
theoretical analytic tools needed to analyze the performance of these algorithms. There has
been significant progress made towards this goal, but it is still far from being fully realized.

A Typical Problem in Computational Geometry: Here is an example of a typical problem,
called the shortest path problem. Given a set polygonal obstacles in the plane, find the shortest
obstacle-avoiding path from some given start point to a given goal point (see Fig. 1). Although
it is possible to reduce this to a shortest path problem on a graph (called the visibility graph,
which we will discuss later this semester), and then apply a nongeometric algorithm such as
Dijkstra’s algorithm, it seems that by solving the problem in its geometric domain it should
be possible to devise more efficient solutions. This is one of the main reasons for the growth
of interest in geometric algorithms.

The measure of the quality of an algorithm in computational geometry has traditionally been
its asymptotic worst-case running time. Thus, an algorithm running in O(n) time is better
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Fig. 1: Shortest path problem.

than one running in O(n log n) time which is better than one running in O(n2) time. (This
particular problem can be solved in O(n2 log n) time by a fairly simple algorithm, in O(n log n)
by a relatively complex algorithm, and it can be approximated quite well by an algorithm
whose running time is O(n log n).) In some cases average case running time is considered
instead. However, for many types of geometric inputs (this one for example) it is difficult to
define input distributions that are both easy to analyze and representative of typical inputs.

Features of Computational Geometry: As is the case with any field of science, computational
geometry owes its structure to the interests and expertise of its founders in combination with
the gradual evolution over time from the members of this research community. Here are a
number of features of the field.

Rigor: Prior to computational geometry, there were many ad hoc solutions to geometric
computational problems, some efficient, some inefficient, and some simply incorrect.
From its beginnings, computational geometry has focused on mathematical rigor in its
approach to problems. This field has made great strides in establishing correct, provably
efficient algorithmic solutions to many fundamental geometric problems.

Correctness/Robustness: Many classical geometric software systems have been troubled
by bugs arising from the confluence of the continuous nature of geometry and the discrete
nature of computation. (For example, given two line segments in the plane, do they
intersect? This problem is remarkably tricky to solve exactly due to floating point
rounding errors.) Software that is based on discrete decisions, each of which is subject
to some error, is inherently unreliable. Much effort has been devoted in computational
geometry to the robust and correct computing of geometric primitives, thus forming a
solid foundation for geometric computations.

Emphasis on Discrete Geometry: Many applications of geometric computing involve quan-
tities that are naturally continuous, such as the 3-dimensional scalar field representing
the air temperature in a room. Since computers and computation is inherently “finite”
in nature, solving such problems requires discretizing them. Fields like computational
fluid dynamics involve computing approximate solutions to such continuous problems.
In contrast, the field of computational geometry has focused on problems that are natu-
rally discrete in nature (e.g., involving a finite set of points) as opposed to discretizations
of continuous problems.

Discrete Combinatorial Geometry: The asymptotic analysis of algorithms in discrete
geometry has inspired a great deal of new work in the topic of combinatorial geometry.
For example, consider a polygon bounded by n sides in the plane. Such a polygon might
be thought of as the top-down view of the walls in an art gallery. As a function of n, how
many “guarding points” suffice so that every point within the polygon can be seen by at
least one of these guards. Such combinatorial questions can have profound implications
on the complexity of algorithms.

Lecture Notes 3 CMSC 754



Flatness: Fields such as solid modeling in industrial design deal naturally with curved ob-
jects, like the body of an automobile. In contrast, computational geometry typically
deals with flat (or “affine”) objects, such as points, lines, planes and hyperplanes, or
subsets of these (such as line segments, polygons, and polytopes). Exceptions are usu-
ally fairly simple, such as Euclidean balls and algebraic surfaces of constant degree, such
as ellipsoids.

Low Dimensionality: It is typically assumed in computational geometry that inputs are
drawn from spaces of constant dimension. Many algorithms work only in 2-dimensional
or 3-dimensional space. Many algorithms that work in spaces of higher dimension suffer
from the so-called “curse of dimensionality,” where there are factors that grow exponen-
tially with dimension. While there are notable examples, the majority of work in the
field has this limitation.

Overview of the Semester: Here are some of the topics that we will discuss this semester.

Convex Hulls: Convexity is a very important geometric property. A geometric set is convex
if for every two points in the set, the line segment joining them is also in the set. One of
the first problems identified in the field of computational geometry is that of computing
the smallest convex shape, called the convex hull, that encloses a set of points (see Fig. 2).

Convex hull Polygon triangulationIntersections

Fig. 2: Convex hulls, intersections, and polygon triangulation.

Intersections: One of the most basic geometric problems is that of determining when two
sets of objects intersect one another. Determining whether complex objects intersect
often reduces to determining which individual pairs of primitive entities (e.g., line seg-
ments) intersect (see Fig. 2). We will discuss efficient algorithms for computing the
intersections of a set of line segments.

Triangulation and Partitioning: Triangulation is a catchword for the more general prob-
lem of subdividing a complex domain into a disjoint collection of “simple” objects (see
Fig. 2). The simplest region into which one can decompose a planar object is a trian-
gle (a tetrahedron in 3-d and simplex in general). We will discuss how to subdivide a
polygon into triangles and later in the semester discuss more general subdivisions into
trapezoids.

Optimization and Linear Programming: Many optimization problems in computational
geometry can be stated in the form of linear programming, namely, finding the extreme
points (e.g. highest or lowest) that satisfies a collection of linear inequalities. Linear
programming is an important problem in the combinatorial optimization, and people
often need to solve such problems in hundred to perhaps thousand dimensional spaces.
However there are many interesting problems that can be posed as low dimensional lin-
ear programming problems or variants thereof. One example is computing the smallest
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circular disk that encloses a set of points (see Fig. 3). In low-dimensional spaces, very
simple efficient solutions exist.

Voronoi Diagrams and Delaunay Triangulations: Given a set S of points in space, one
of the most important problems is the nearest neighbor problem. Given a point that is
not in S which point of S is closest to it? One of the techniques used for solving this
problem is to subdivide space into regions, according to which point is closest. This
gives rise to a geometric partition of space called a Voronoi diagram (see Fig. 3). This
geometric structure arises in many applications of geometry. The dual structure, called
a Delaunay triangulation also has many interesting properties.

Smallest enclosing disk Voronoi diagram and Delaunay triangulation

Fig. 3: Voronoi diagram and Delaunay triangulation.

Line Arrangements and Duality: Perhaps one of the most important mathematical struc-
tures in computational geometry is that of an arrangement of lines (or generally the
arrangement of curves and surfaces). Given n lines in the plane, an arrangement is just
the graph formed by considering the intersection points as vertices and line segments
joining them as edges (see Fig. 4). We will show that such a structure can be constructed
in O(n2) time.

Fig. 4: An arrangement of lines in the plane.

The reason that this structure is so important is that many problems involving points
can be transformed into problems involving lines by a method of point-line duality. In
the plane, this is a transformation that maps lines to points and points to lines (or
generally, (d − 1)-dimensional hyperplanes in dimension d to points, and vice versa).
For example, suppose that you want to determine whether any three points of a planar
point set are collinear. This could be determined in O(n3) time by brute-force checking
of each triple. However, if the points are dualized into lines, then (as we will see later
this semester) this reduces to the question of whether there is a vertex of degree greater
than four in the arrangement.

Lecture Notes 5 CMSC 754



Search: Geometric search problems are of the following general form. Given a data set
(e.g. points, lines, polygons) which will not change, preprocess this data set into a
data structure so that some type of query can be answered as efficiently as possible.
For example, consider the following problem, called point location. Given a subdivision
of space (e.g., a Delaunay triangulation), determine the face of the subdivision that
contains a given query point. Another geometric search problem is the nearest neighbor
problem: given a set of points, determine the point of the set that is closest to a given
query point. Another example is range searching : given a set of points and a shape,
called a range, either count of report the subset of points lie within the given region.
The region may be a rectangle, disk, or polygonal shape, like a triangle.

q

Point location

q

p

Nearest-neighbor searching

Fig. 5: Geometric search problems. The point-location query determines the triangle containing q.
The nearest-neighbor query determines the point p that is closest to q.

Approximation: In many real-world applications geometric inputs are subject to measure-
ment error. In such cases it may not be necessary to compute results exactly, since the
input data itself is not exact. Often the ability to produce an approximately correct
solution leads to much simpler and faster algorithmic solutions. Consider for example
the problem of computing the diameter (that is, the maximum pairwise distance) among
a set of n points in space. In the plane efficient solutions are known for this problem.
In higher dimensions it is quite hard to solve this problem exactly in much less than the
brute-force time of O(n2). It is easy to construct input instances in which many pairs of
points are very close to the diametrical distance. Suppose however that you are willing
to settle for an approximation, say a pair of points at distance at least (1− ε)∆, where
∆ is the diameter and ε > 0 is an approximation parameter set by the user. There exist
algorithms whose running time is nearly linear in n, assuming that ε is a fixed constant.
As ε approaches zero, the running time increases.

...and more: The above examples are just a small number of numerous types of problems
that are considered in computational geometry. Throughout the semester we will be
exploring these and many others.

Computational Model: (Optional) We should say a few words about the model of com-
putation that we will be using throughout in this course. It is called the real RAM. The
“real” refers to real numbers (not the realism of the model!) and RAM is an acronym
for “random-access machine”, which distinguishes it from other computational models,
like Turing machines, which assume memory is stored on tape. The real RAM is a math-
ematical model of computation in which it is possible to perform arithmetic (addition,
subtraction, multiplication, and division, and comparisons) exactly with real numbers
in constant time.
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Why should we care? As an example, consider a geometric version of a famous optimiza-
tion problem, known as the Traveling Salesperson Problem (TSP). We are given a set of
n points in the plane, and we wish to compute the circuit of minimum total Euclidean
distance that visits all these points. Ignoring the difficulty of this combinatorial problem
(which is NP-Hard), consider the (apparently) much simpler question of whether one
tour is shorter than another. (Consider, for example, the blue and red tours shown in
Fig. 6.) Clearly, if we are going to solve the general problem, we must be able to at least
compare the relative lengths of two tours.

Fig. 6: Comparing the length of two TSP tours on the same point set.

While this problem can be solved approximately using floating point computations, it
is quite difficult to solve the problem exactly. To see why, observe that the Euclidean
distance between two points involves computing square roots. Two square roots can
be compared by squaring both sides to eliminate the square root, thus reducing the
computation to one involving simple arithmetic operations. Unfortunately, when you
attempt this with a sequence of n numbers, each of which is a square root, many squarings
upon squarings must be performed. The sizes of the numbers (in terms of the number of
bits required) grows exponentially. In practice, these computations would be impossible.
But in the Real RAM model, each such computation can be computed in constant time
each.

In spite of the unusual power of this model, it is possible to simulate this model of
computation for many common geometric computations. This is done through the use
of so-called floating-point filters, which dynamically determine the degree of accuracy
required in order to resolve comparisons exactly. The CGAL libarary supports exact
geometric computations through this mechanism.

Lecture 2: Convex Hulls in the Plane

Convex Hulls: In this lecture we will consider a fundamental structure in computational geom-
etry, called the convex hull. We will give a more formal definition later, but, given a set
P of points in the plane, the convex hull of P , denoted conv(P ), can be defined intuitively
by surrounding a collection of points with a rubber band and then letting the rubber band
“snap” tightly around the points (see Fig. 7).

The (planar) convex hull problem is, given a discrete set of n points P in the plane, output a
representation of P ’s convex hull. The convex hull is a closed convex polygon, the simplest
representation is a counterclockwise enumeration of the vertices of the convex hull. In higher
dimensions, the convex hull will be a convex polytope. We will discuss the representation of
polytopes in future lectures, but in 3-dimensional space, the representation would consist of
a vertices, edges, and faces that constitute the boundary of the polytope.
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P conv(P )

Fig. 7: A point set and its convex hull.

There are a number of reasons that the convex hull of a point set is an important geometric
structure. One is that it is one of the simplest shape approximations for a set of points.
(Other examples include minimum area enclosing rectangles, circles, and ellipses.) It can also
be used for approximating more complex shapes. For example, the convex hull of a polygon
in the plane or polyhedron in 3-space is the convex hull of its vertices.

Also many algorithms compute the convex hull as an initial stage in their execution or to
filter out irrelevant points. For example, the diameter of a point set is the maximum distance
between any two points of the set. It can be shown that the pair of points determining the
diameter are both vertices of the convex hull. Also observe that minimum enclosing convex
shapes (such as the minimum area rectangle, circle, and ellipse) depend only on the points of
the convex hull.

Basic Definitions: Before getting to the discussion of the various convex-hull algorithms, let’s
begin with a few standard definitions, which will be useful throughout the semester. For any
d ≥ 1, let Rd denote real d-dimensional space, that is, the set of d-dimensional vectors over
the real numbers. We refer to elements of Rd either as “points” or “vectors”, depending on
what we intend them to represent (a location in space or a displacement, respectively). We
refer to real numbers as scalars.

A point/vector p ∈ Rd is expressed as a d-vector (p1, . . . , pd), where pi ∈ R. Following
standard terminology from linear algebra, given two vectors u, v ∈ Rd and a scalar α ∈ R,
let “u+ v” be the vector-valued sum, αv be scalar-vector product, and let “u · v” denote the
standard scalar-valued dot-product.

Affine and convex combinations: Given two points p = (px, py) and q = (qx, qy) in Rd,
we can express any point on the (infinite) line ←→pq as a linear combination of their
coordinates, where the coefficient sum to 1:

(1− α)p+ αq = ((1− α)px + αqx, (1− α)py + αqy).

This is called an affine combination of p and q (see Fig. 8(a)).

By adding the additional constraint that 0 ≤ α ≤ 1, the set of points generated lie on
the line segment pq (see Fig. 8(b)). This is called a convex combination. Notice that this
can be viewed as taking a weighted average of p and q. As α approaches 1, the point
lies closer to p and when α approaches zero, the point lies closer to q.

It is easy to extend both types of combinations to more than two points. For example,
given k points {p1, . . . , pk} an affine combination of these points is the linear combination

k∑
i=1

αipi, such that α1 + · · ·+ αk = 1.
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Fig. 8: Affine and convex combinations.

When 0 ≤ αi ≤ 1 for all i, the result is called a convex combination.

The set of all affine combinations of three (non-collinear) points generates a plane, and
generally, the resulting set is called the affine span or affine closure of the points.

Hyperplanes/Halfspaces: Given a nonzero vector v ∈ Rd and a scalar α ∈ R, the set
of points {p | p · v = α} is a (d − 1)-dimensional affine subspace, more often called a
hyperplane. In the special cases R2 and R3, this defines a line and plane, respectively. If
v is a unit vector and α ≥ 0, this hyperplane is orthogonal to v and lies at distance α from
the origin (see Fig. 9(a)). If we change the equality to an inequality, we obtain a halfspace
consisting of points lying on one side of the hyperplane, for example {p | p · v ≤ α}.

(b)

convex nonconvex

p

q q
p

(c)(a) (d)

support hyperplane

p

O

v
α

hyperplane ext(K)

int(K)

∂K
h

Fig. 9: Basic concepts.

Concepts from Topology: There are a number of useful concepts that arise from topology:
open and closed sets, interior, exterior, and boundary, connectivity, etc. We will use
these without definitions, since for the simple objects that we will be working with,
these concepts are easily understood at an intuitive level.2 We will use int(K), ext(K),
and ∂K to denote the interior, exterior, and boundary of a set K, respectively (see
Fig. 9(b))).

Convexity: A set K ⊆ Rd is convex if given any points p, q ∈ K, the line segment pq is
entirely contained within K (see Fig. 9(c)). Otherwise, it is called nonconvex. This is
equivalent to saying that K is “closed” under convex combinations. Examples of convex
sets in the plane include circular disks (the set of points contained within a circle), the
set of points lying within any regular n-sided polygon, lines (infinite), line segments
(finite), rays, and halfspaces.

Support line/hyperplane: An important property of any convex set K in Rd is that at
every point p on the boundary of K, there exists a (not necessarily unique) hyperplane
h that passes through p such that K lies entirely in one of the closed halfspaces defined

2See, for example https://en.wikipedia.org/wiki/Boundary (topology) for definitions.
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by h (see Fig. 9(d)). This is called a support hyperplane for K. (Again, in R2 and R3

we would call this a support line or support plane.) Observe that there may generally be
multiple support hyperplanes passing through a given boundary point of K (e.g., when
the point is a vertex of the convex hull).

Convex Hulls: Formally, the convex hull of a point set P is defined to be smallest convex
set containing P . It can be characterized in two provably equivalent ways (one additive
and one subtractive). First, it is equal to the set of all convex combinations of points in
P and second, it is equal to the intersection of all halfspaces that contain P .

When computing convex hulls, we will usually take P to be a finite set of points. In such a
case, conv(P ) will be a convex polygon. Generally P could be an infinite set of points. For
example, we could talk about the convex hull of a collection of circles. The boundary of such
a shape would consist of a combination of circular arcs and straight line segments.

General Position: As in many of our algorithms, it will simplify the presentation to avoid lots of
special cases by assuming that the points are in general position. This effectively means that
“degenerate” geometric configurations (e.g., two points sharing the same x or y coordinate,
three points being collinear, four points being cocircular, etc.) do not arise in the input.

To motivate this concept, suppose you design an algorithm that sorts the input points ac-
cording to their x-coordinates, and then it visits them in sorted order. In the rare occasion
where two points share the same x-coordinate, which point is visited first? While we could
take the effort to spell this out, it will be simpler to just add an assumption that this never
happens, that is, there are no duplicate x-coordinates in the input set. This assumption is
not unreasonable, since any random (infinitesimal) perturbation of the input coordinates will
satisfy this condition with extremely high probability. This is an example of a general-position
assumption.

General position assumptions can be tricky to define formally, since the definition of “degen-
eracy” depends on the algorithm itself. In our previous example, if our algorithm had instead
sorted points in angular order about the origin, we might wish to rule our duplicate angles.

In summary the assumption of general position is your license to ignore special configurations,
which could be easily eliminated by a random perturbation of the data set.

Graham’s Scan: We will begin with a presentation of a simple O(n log n) algorithm for the convex
hull problem. It is a simple variation of a famous algorithm for convex hulls, called Graham’s
Scan, which dates back to the early 1970’s (and named for its inventor Ronald Graham). The
algorithm is loosely based on a common approach for building geometric structures called
incremental construction. In such a algorithm object (points here) are added one at a time,
and the structure (convex hull here) is updated with each new insertion.

Let us assume that the input consists of a set P of n points {p1, . . . , pn}, where pi = (xi, yi).
While we will not do so, it is easy to prove that the convex hull of a finite set of points is a
convex polygon, whose vertices are a subset of P . A natural representation of such a polygon
is a cyclic (for example, counterclockwise) listing of the vertices of this polygon.

An important issue with incremental algorithms is the order of insertion. If we were to add
points in some arbitrary order, we would need some method of testing whether the newly
added point is inside the existing hull. Instead, we will insert points in increasing order of
x-coordinates. This guarantees that each newly added point is outside the current hull. (Note
that Graham’s original algorithm sorted points in a different way. It found the lowest point
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in the data set and then sorted points cyclically around this point. Sorting by x-coordinate
seems to be a bit easier to implement, however.)

Since we are working from left to right, it would be convenient if the convex hull vertices were
themselves ordered from left to right. To do this, we can break the boundary of the convex
hull into two chains, an upper chain consisting of the vertices along the upper part of the hull
and a lower chain consisting of the vertices along the lower part of the hull. Both chains will
start with the leftmost point of P and will end with the rightmost point of P . We will make
the general-position assumption that no two vertices have the same x-coordinates, so these
two points are unique (see Fig. 10(a)).

pnp1

upper hull

lower hull

(b)(a)

pij

pij−1

pij−2

Fig. 10: (a) Upper and lower hulls and (b) the left-hand turn property of points on the upper hull.

It suffices to show how to compute the upper hull, since the lower hull is symmetrical. (Just flip
the picture upside down.) Once the two hulls have been computed, we can simply concatenate
them with the reversal of the other to form the final hull.

Observe that a point p ∈ P lies on the upper hull if and only if there is a support line passing
through p such that all the points of P lie on or below this line. Our algorithm will be based
on the following lemma, which characterizes the upper hull of P . This is a simple consequence
of the convexity. The first part says that the line passing through each edge of the hull is a
support line, and the second part says that as we walk from right to left along the upper hull,
we make successive left-hand turns (see Fig. 10(b)).

Lemma 1: Let 〈pi1 , . . . , pim〉 denote the vertices of the upper hull of P , sorted from left to
right. Then for 1 ≤ j ≤ m, (1) all the points of P lie on or below the line pijpij−1 joining
consecutive vertices and (2) each consecutive triple 〈pijpij−1pij−2〉 forms a left-hand turn.

Let 〈p1, . . . , pn〉 denote the sequence of points sorted by increasing order of x-coordinates.
For i ranging from 1 to n, let Pi = 〈p1, . . . , pi〉. We will store the vertices of the upper hull of
Pi on a stack S, where the top-to-bottom order of the stack corresponds to the right-to-left
order of the vertices on the upper hull. Let S[t] denote the stack’s top. Observe that as we
read the stack elements from top to bottom (that is, from right to left) consecutive triples of
points of the upper hull form a (strict) left-hand turn (see Fig. 10(b)). As we push new points
on the stack, we will enforce this property by popping points off of the stack that violate it.

Turning and orientations: Before proceeding with the presentation of the algorithm, we should
first make a short digression to discuss the question of how to determine whether three points
form a “left-hand turn.” This can be done by a powerful primitive operation, called an
orientation test, which is fundamental to many algorithms in computational geometry.
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Given an ordered triple of points 〈p, q, r〉 in the plane, we say that they have positive orienta-
tion if they define a counterclockwise oriented triangle (see Fig. 11(a)), negative orientation
if they define a clockwise oriented triangle (see Fig. 11(b)), and zero orientation if they are
collinear, which includes as well the case where two or more of the points are identical (see
Fig. 11(c)). Note that orientation depends on the order in which the points are given.

(a) (b) (c)

p

q

r

p

q
r

p

q

r p = r

q

orient(p, q, r) > 0 orient(p, q, r) < 0 orient(p, q, r) = 0

Fig. 11: Orientations of the ordered triple (p, q, r).

Orientation is formally defined as the sign of the determinant of the points given in homoge-
neous coordinates, that is, by prepending a 1 to each coordinate. For example, in the plane,
we define

orient(p, q, r) = sign

det

 1 px py
1 qx qy
1 rx ry

 .

Observe that in the 1-dimensional case, orient(p, q) is just q− p. Hence it is positive if p < q,
zero if p = q, and negative if p > q. Thus orientation generalizes the familiar 1-dimensional
binary relations <,=, >.

Also, observe that the sign of the orientation of an ordered triple is unchanged if the points
are translated, rotated, or scaled (by a positive scale factor). A reflection transformation
(e.g., f(x, y) = (−x, y)) reverses the sign of the orientation. In general, applying any affine
transformation to the point alters the sign of the orientation according to the sign of the
determinant of the matrix used in the transformation. (By the way, the notion of orientation
can be generalized to d + 1 points in d-dimensional space, and is related to the notion of
chirality in Chemistry and Physics. For example, in 3-space the orientation is positive if the
point sequence defines a right-handed screw.)

Given a sequence of three points p, q, r, we say that the sequence 〈p, q, r〉 makes a (strict)
left-hand turn if orient(p, q, r) > 0.

Graham’s Scan Details: We can now present the full algorithm. Let us consider just the case
of the upper hull, and let’s see what happens when we process the insertion of the ith point,
pi (see Fig. 12(a)). First observe that pi is on the upper hull of Pi (since it is the rightmost
point seen so far). Let pj be its predecessor on the upper hull of Pi. We know from Lemma 1
that all the points of Pi lie on or below the line pipj . Let pj−1 be the point immediately
preceding pj on the upper hull. We also know from this lemma that 〈pipjpj−1〉 forms a left-
hand turn. Clearly then, if any triple 〈pi, S[t], S[t− 1]〉 does not form a left-hand turn (that
is, orient(pi, S[t], S[t−1]) ≤ 0), we may infer that S[t] is not on the upper hull, and hence it is
safe to delete it by popping it off the stack. We repeat this until we find a left-turning triple
(see Fig. 12(b)) or hitting the bottom of the stack. Once this happens, we push pi on top of
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the stack, making it the rightmost vertex on the upper hull (see Fig. 12(c)). The algorithm
is presented in the code block below.

Graham’s Scan

(1) Sort the points according to increasing order of their x-coordinates, denoted 〈p1, p2, . . . , pn〉.
(2) push p1 and then p2 onto S.

(3) for i← 3, . . . , n do:

(a) while (|S| ≥ 2 and orient(pi, S[t], S[t− 1]) ≤ 0) pop S.

(b) push pi onto S.

(b)

pipj

(c)

pop

pipj

(a)

processing pi after adding pi
pipj

pop

before adding pi

Fig. 12: Graham’s scan.

Correctness: We will not give a formal proof of the correctness of Graham’s Scan, but here is the
gist of it. The correctness follows from the following invariant. Let U(i) denote the sequence
of vertices forming the upper hull of {p1, . . . , pi}.

Lemma: Following step i, the stack contains (from bottom to top order) U(i).

The proof of this lemma naturally involves induction. The basis of induction is trivial, since
clearly U(2) just consists of p1 and p2. We assume inductively that U(i − 1) was correctly
computed after stage i− 1. As we argued before, pi must be the final vertex of U(i) (since it
has the largest x-coordinate). Let pj denote the vertex that immediately precedes pi on U(i).
We need to argue (1) pj is on U(i−1) (and hence it is in the stack at the start of stage i), (2)
all the vertices following pj on U(i − 1) will be popped from the stack, and (3) the popping
process will end when it reaches pj . We will leave the details as an exercise.

Running-time analysis: We will show that Graham’s algorithm runs in O(n log n) time. Clearly,
it takes this much time for the initial sorting of the points. After this, we will show that O(n)
time suffices for the rest of the computation.

Let di denote the number of points that are popped (deleted) on processing pi. Because each
orientation test takes O(1) time, the amount of time spent processing pi is O(di + 1). (The
extra +1 is for the last point tested, which is not deleted.) Thus, the total running time is
proportional to

n∑
i=1

(di + 1) = n+

n∑
i=1

di.

To bound
∑

i di, observe that each of the n points is pushed onto the stack once. Once a
point is deleted it can never be deleted again. Since each of n points can be deleted at most
once,

∑
i di ≤ n. Thus after sorting, the total running time is O(n). Since this is true for the

lower hull as well, the total time is O(2n) = O(n).
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Convex Hull by Divide-and-Conquer: As with sorting, there are many different approaches
to solving the convex hull problem for a planar point set P . Next, we will consider another
O(n log n) algorithm, which is based on divide-and-conquer. It can be viewed as a generaliza-
tion of the well-known MergeSort sorting algorithm (see any standard algorithms text). Here
is an outline of the algorithm. As with Graham’s scan, we will focus just on computing the
upper hull, and the lower hull will be computed symmetrically.

The algorithm begins by sorting the points by their x-coordinate, in O(n log n) time. In splits
the point set in half at its median x-coordinate, computes the upper hulls of the left and right
sets recursively, and then merges the two upper hulls into a single upper hull. This latter
process involves computing a line, called the upper tangent, that is a line of support for both
hulls. The remainder of the algorithm is shown in the code section below.

Divide-and-Conquer (Upper) Convex Hull

(1) If |P | ≤ 3, then compute the upper hull by brute force in O(1) time and return.

(2) Otherwise, partition the point set P into two sets P ′ and P ′′ of roughly equal sizes by a vertical line.

(3) Recursively compute upper convex hulls of P ′ and P ′′, denoted H ′ and H ′′, respectively (see Fig. 13(a)).

(4) Compute the upper tangent ` = p′p′′ (see Fig. 13(b)).

(5) Merge the two hulls into a single upper hull by discarding all the vertices of H ′ to the right of p′ and
the vertices of H ′′ to the left of p′′ (see Fig. 13(c)).

(a) (b) (c)

upper tangent

H ′
H ′′p′

p′′

H ′
H ′′

Fig. 13: Divide and conquer (upper) convex hull algorithm.

Computing the upper tangent: The only nontrival step is that of computing the common tan-
gent line between the two upper hulls. Our algorithm will exploit the fact that the two hulls
are separated by a vertical line. The algorithm operates by a simple “walking procedure.”
We initialize p′ to be the rightmost point of H ′ and p′′ to be the leftmost point of H ′′ (see
Fig. 14(a)). We will walk p′ backwards along H ′ and walk p′′ forwards along H ′′ until we
hit the vertices that define the tangent line. As in Graham’s scan, it is possible to deter-
mine just how far to walk simply by applying orientation tests. In particular, let q′ be the
point immediately preceding p′ on H ′, and let q′′ be the point immediately following p′′ on
H ′′. Observe that if orient(p′, p′′, q′′) ≥ 0, then we can advance p′′ to the next point along
H ′′ (see Fig. 14(a)). Symmetrically, if orient(p′′, p′, q′) ≤ 0, then we can advance p′ to its
predecessor along H ′ (see Fig. 14(b)). When neither of these conditions applies, that is,
orient(p′, p′′, q′′) < 0 and orient(p′′, p′, q′) > 0, we have arrived at the desired points of mutual
tangency (see Fig. 14(c)).

There is one rather messy detail in implementing this algorithm. This arises if either q′ or q′′

does not exist because we have arrived at the leftmost vertex of H ′ or the rightmost vertex
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(a) (b) (c)

p′ p′′

q′′

p′
p′′

q′ p′
q′

p′′
q′′

Orient(p′, p′′, q′′) ≥ 0 Orient(p′′, p′, q′) ≤ 0 Orient(p′′, p′, q′) > 0

Orient(p′, p′′, q′′) < 0 and

Fig. 14: Computing the upper tangent.

of H ′′. We can avoid having to check for these conditions by creating two sentinel points.
We create a new leftmost vertex for H ′ that lies infinitely below its original leftmost vertex,
and we create a new rightmost vertex for H ′′ that lies infinitely below its original rightmost
vertex. The tangency computation will never arrive at these points, and so we do not need
to add a special test for the case when q′ and q′′ do not exist. The algorithm is presented in
the following code block.

Computing the Upper Tangent

UpperTangent(H ′, H ′′) :

(1) Let p′ be the rightmost point of H ′, and let q′ be its predecessor.

(2) Let p′′ be the leftmost point of H ′′, and let q′′ be its successor.

(3) Repeat the following until orient(p′, p′′, q′′) < 0 and orient(p′′, p′, q′) > 0:

(a) while (orient(p′, p′′, q′′) ≥ 0) advance p′′ and q′′ to their successors on H ′′.

(b) while (orient(p′′, p′, q′) ≤ 0) advance p′ and q′ to their predecessors on H ′.

(4) return (p′, p′′).

Running-time analysis: The asymptotic running time of the algorithm can be expressed by a
recurrence. Given an input of size n, consider the time needed to perform all the parts of
the procedure, ignoring the recursive calls. This includes the time to partition the point set,
compute the upper tangent line, and return the final result. Clearly, each of these can be
performed in O(n) time, assuming any standard list representation of the hull vertices. Thus,
ignoring constant factors, we can describe the running time by the following recurrence:

T (n) =

{
1 if n ≤ 3
n+ 2T (n/2) otherwise.

This is the same recurrence that arises in Mergesort. It is easy to show that it solves to
T (n) ∈ O(n log n) (see any standard algorithms text).

Lecture 3: Convex Hulls: Lower Bounds and Output Sensitivity

Lower Bound and Output Sensitivity: Last time we presented two planar convex hull algo-
rithms, Graham’s scan and the divide-and-conquer algorithm, both of which run in O(n log n)
time. A natural question to consider is whether we can do better.
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Recall that the output of the convex hull problem a convex polygon, that is, a cyclic enumer-
ation of the vertices along its boundary. Thus, it would seem that in order to compute the
convex hull, we would “need” to sort the vertices of the hull. It is well known that it is not
generally possible to sort a set of n numbers faster than Ω(n log n) time, assuming a model
of computation based on binary comparisons. (There are faster algorithms for sorting small
integers, but these are not generally applicable for geometric inputs.)

Can we turn this intuition into a formal lower bound? We will show that in O(n) time it
is possible to reduce the sorting problem to the convex hull problem. This implies that any
O(f(n))-time algorithm for the convex hull problem implies an O(n + f(n))-time algorithm
for sorting. Clearly, f(n) cannot be smaller than Ω(n log n) for otherwise we would obtain an
immediate contradiction to the lower bound on sorting.

The reduction works by projecting the points onto a convex curve. In particular, let X =
{x1, . . . , xn} be the n values that we wish to sort. We will map this into a 2-dimensional point
set by projecting the points onto the boundary of a convex shape, so that the sorted order
is preserved. For example, suppose that we project each point vertically onto the parabola
y = x2, by mapping xi to the point pi = (xi, x

2
i ) (see Fig. 15(a)). Let P denote the resulting

set of points. It is easy to see that all the points of P lie on its convex hull, and the sorted
order of points along the lower hull is the same as the sorted order X (see Fig. 15(b)). Once
we obtain the convex hull as a cycle sequence of vertices, in O(n) additional time we can
extract its lower hull from left to right, thus obtaining X in sorted order (see Fig. 15(c)).

p2

p4
p3 p5

p1

x2 x4 x3 x5 x1

y = x2

p2

p4
p3 p5

p1

Lift Compute hull

p2

p4
p3 p5

p1

Get sorted sequence

x2 x4 x3 x5 x1

(a) (b) (c)

Fig. 15: Reduction from sorting to convex hull.

Theorem: Assuming computations based on comparisons (e.g., orientation tests) any algo-
rithm for the convex hull problem requires Ω(n log n) time in the worst case.

Is this the end of the story? Well, maybe not . . .

� What if we don’t require that the points be enumerated in cyclic order? For example,
suppose we just wanted to count number of points on the convex hull. Can we do better?

� Suppose that we are not interested in worst-case behavior. For example, in many in-
stances of convex hull, relatively few points lie on the boundary of the hull.

We will present three other results later in this lecture:

� We will present a convex hull algorithm, called Jarvis’s March, that runs O(nh) time,
where h is the number of vertices on the hull. (This is beats Graham’s algorithm when-
ever h is asymptotically smaller than O(log n).)
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� We will present Chan’s algorithm, which computes the convex hull in O(n log h) time.

� We will present a lower bound argument that shows that, assuming a comparison-based
algorithm, even answering the question “does the convex hull have h distinct vertices?”
requires Ω(n log h) time.

The last result implies that Chan’s algorithm is essentially the best possible as a function
of h and n. An algorithm whose running time depends on the output size is called output
sensitive. Both Jarvis’s March and Chan’s algorithm are output sensitive.

Jarvis’s March: Our next convex hull algorithm, called Jarvis’s march, computes the convex hull
in O(nh) time by a process called “gift-wrapping.” In the worst case, h = n, so this is inferior
to Graham’s algorithm for large h, it is superior if h is asymptotically smaller than log n, that
is, h = o(log n).

Jarvis’s algorithm begins by identifying any one point of P that is guaranteed to be on the
hull, say, the point with the smallest y-coordinate. (As usual, we assume general position,
so this point is unique.) Call this v1. It then repeatedly finds the next vertex on the hull in
counterclockwise order.

Given a triple of distinct points 〈p, q, r〉, define the turning angle of r with respect to p and q
to be the (CCW) angle between the directed line pq and the directed line qr (see Fig. 16(a)).

v0
v1

(d)(c)

v1

vi−2

vi−1

vi

v2

v3

(b)

(−∞, 0)
p

(a)

q

r

Turning angle

v2

v3

v4

v5

v6

Fig. 16: Jarvis’s march.

Jarvis’s march works by repeatedly computing the next hull vertex vi as the point of P that
minimizes the turning angle with respect to the prior two, vi−2 and vi−1 (see Fig. 16(c)). Since
we need two points, to get the ball rolling, it is convenient to define an imaginary “sentinel
point” v0 = (−∞, 0), which has the effect that the initial line v0v1 is directed horizontally to
the right (see Fig. 16(d)).

Jarvis’s March

(1) Given P , let v0 = (−∞, 0) and let v1 be the point of P with the smallest y-coordinate

(2) For i← 2, 3, . . .

(a) vi ← the point of P \ {vi−1, vi−2} that minimizes the turning angle with respect to vi−2 and vi−1

(b) If vi == v1, return 〈v1, . . . , vi−1〉

The algorithm’s correctness follows from the fact that (by induction) vi−2vi−1 is a CCW-
directed edge of the hull, and hence the next vertex of the hull is the one that minimizes the
turning angle.
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By basic trigonometry, turning angles can be computed in constant time. But it is interesting
to note that it is possible to compare turning angles just using orientation tests. (Try this
yourself.) This implies that if the input coordinates are integers, the vertices of the hull can
be computed exactly (assuming double-precision integer computations).

To obtain the running time, observe that v1 can be computed in O(n) time, and each iteration
can be implemented in O(n) time. After h iterations, the algorithm terminates, so the total
running time is O(n+ nh) = O(nh).

Chan’s Algorithm: Depending on the value of h, Graham’s scan may be faster or slower than
Jarvis’ march. This raises the intriguing question of whether there is an algorithm that always
does as well or better than these algorithms. Next, we present a planar convex hull algorithm
by Timothy Chan whose running time is O(n log h).

While this algorithm is too small an improvement over Graham’s algorithm to be of significant
practical value, it is quite interesting nonetheless from the perspective of the techniques that
it uses:

� It combines two slower algorithms, Graham’s and Jarvis’s, to form a faster algorithm.

� It employs a clever guessing strategy to determine the value of a key unknown parameter,
the number h of vertices on the hull.

To gain some intuition behind Chan’s algorithm, let us first observe that in order to replace
the O(log n) factor in Graham’s algorithm with O(log h), we cannot afford to sort any set
whose size is (significantly) larger than h. This would seem impossible at first glance, since
we don’t know the value of h until the algorithm terminates! We will get around this by
playing a “guessing game” for the value of h. We’ll start low, and work up to successively
guesses for what h is. Throughout, let h denote the true number of vertices on the hull. The
algorithm will maintain a variable h∗, which is our current “guess” on the value of h. As we
shall see, if we guess wrong, we will discover our error, and we will need to increase our guess.
For now, let us assume that a magical little bird has told us the value of h∗ that works.

We will need to make use of a utility function, whose implementation we will leave as an
exercise. Recall that a support line for a convex body is a line that contacts the boundary
of the body and the body lies entirely on one side of the line. Given a convex body Q and
any point p external to Q, there are exactly two support lines of Q that pass through p. The
next lemma shows that we can compute them logarithmic time.

Lemma: Given a convex polygon Q = 〈q1, . . . , qm〉, where the vertices are stored in an m-
element array sorted in CCW order around Q’s boundary, and given any point p that
is external to Q, in O(logm) time we can compute the two vertices q− and q+ of Q so
that pq− and pq+ are support lines of Q.

p

q−

q+

Q

q1

q2

q3

Fig. 17: Utility function - Computing tangent points.
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We can now describe Chan’s algorithm, conditioned on the fact that we have a guess h∗ on
the size of the hull.

Step 1: (Mini-hulls) Partition P (arbitrarily) into k = dn/h∗e groups, each of size at most
h∗. Call these P1, . . . , Pk (see Fig. 18(b)). By Graham’s algorithm, compute the convex
hull of each subset. Let H1, . . . ,Hk denote the resulting mini-hulls (see Fig. 18(c)).

How long does this take? We can compute each mini-hull in time O(h∗ log h∗). Applying
this to each of the k groups, we have an overall time of O(k(h∗ log h∗)) = O(n log h∗).
Note that if we guess the value of h correctly (that is, h∗ = h) then this runs in time
O(n log h), as desired.

Original point set

(a) (b)

Partition (h∗ = 8)

(c)

Compute mini-hulls

P1

P2

P3

P4

H1

H2
H3

H4

Fig. 18: Step 1: Partitioning and mini-hulls (for k = 4).

Step 2: (Merging) The high-level idea is to run Jarvis’s march on the mini-hulls (see
Fig. 19(a)). We will treat each mini-hull as if it is a “fat point”. In particular, we
take the most recent vertex vi−1 and for each mini-hull Hj employ the utility function
of the above lemma to compute the vertices q−j and q+

j for the support lines for this
mini-hull (see Fig. 19(b)). As in Jarvis’s algorithm, among all of these support points,
we take vi to be the one that minimizes the turn angle with respect to vi−2 and vi−1 (see
Fig. 19(c)). (By the nature of Jarvis’s algorithm, we only need to compute the support
line with the smaller turning angle, but computing both will not affect the asymptotic
running time. Also note that we do this for the mini-hull containing vi−1 itself, but this
is trivial.)

How long does this take? For each mini-hull, we can compute the two support lines
in time O(log h∗) by the lemma. The number of support lines is twice the number of
mini-hulls, so for each step of Jarvis’s algorithm, we can compute all the relevant turning
angles in time O(k log h∗). Each iteration of Jarvis yields one more vertex of the final
convex hull (of which there are h), so the overall running time is O(h(k log h∗)). Observe
that if we managed to guess the right value of h (that is, if h∗ = h), then this takes time
O(h∗(k log h∗)) = O(n log h∗) = O(n log h), as desired.

In summary, we have argued above that, if we were lucky enough to guess the correct hull
size (h∗ = h), then the method outlined above will yield the convex hull in time O(n log h).

The Conditional Algorithm: We can now present a conditional algorithm for computing the
convex hull. The algorithm is given a point set P and an estimate h∗ of the number of
vertices on P ’s convex hull. Letting h denote the actual number of vertices on the hull. We
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(a) (b)

Merge mini-hulls

H1

H2
H3

H4

vi−2

vi−1

Hj q−j

(c)

Minimum turning angle

H1

H2
H3

H4

vi

vi−1

q+j

Turning angles
for one mini-hull

Fig. 19: Step 2: Merging the mini-hulls.

will see below that if the h∗ is significantly larger or smaller than h, the algorithm will not
be efficient. In the merge phase, if we ever see more than h∗ hull vertices, we know that our
estimate is too low, and we terminate the algorithm (returning “failure”) before the damage
is too great.

Chan’s Algorithm for the Conditional Hull Problem

ConditionalHull(P, h∗) :

(1) Let k ← dn/h∗e. Partition P (arbitrarily) into disjoint subsets P1, . . . , Pk, each of size at most h∗

(3) For j ← 1 to k, compute Hj = conv(Pj) using Graham’s scan, storing each in an ordered array

(4) Let v0 ← (−∞, 0), and let v1 be the bottommost point of P

(5) For i← 1, 2, . . . , h∗:

(a) For j ← 1 to k, using the utility lemma, compute the tangents points q−j and q+j for Hj with
respect to vi−1.

(b) Set vi to be the tangent point that minimizes the turning angle with respect to vi−2 and vi−1

(c) If vi = v1 then return the pair (success, V = 〈v1, . . . , vi−1〉)
(6) If we get here, we know that h∗ < h, and we return (failure, ∅)

Guessing the Hull’s Size: The conditional algorithm assumes that we have a good estimate in
h∗ for h. What are the consequences of guessing wrong?

Too large? If we guess a value of h∗ > h, then the Graham scans, which together run in
O(n log h∗) time may be too slow. Notice, however, that we pay only a constant factor
even if h∗ is polynomially larger than h. For example, if h < h∗ ≤ h2, then the running
time of Graham’s scan is O(n log(h2)) = O(2n log h) = O(n log h), which is okay for us.

Too small? If we guess a value of h∗ < h, then the merge phase will be too slow. It is easy
to verify that (even if we didn’t stop it because of the failure condition) it would run
in time O(n(h/h∗) log h∗). If our estimate h∗ is not within a constant factor of h, then
we will not achieve our desired running time. This is why we chose to use the “failure”
option. Since we never do more than h∗ iterations, the running time of each failure phase
is just O(n log h∗).

Here is what we’ll do. We’ll start with a low estimate for h∗ (e.g., h∗ = 3). If the algorithm
returns “failure”, we increase h∗ until we succeed. The question is how quickly we should
step up the value of h∗?
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It is easy to show that increasing h∗ in an arithmetic progression (e.g., h∗ = 3, 4, 5, . . .) will be
way to slow. A smarter approach is to grow h∗ through doubling (e.g. h∗ = 4, 8, 16, . . . , 2i).
We will leave it as an exercise to show that this is also too slow. (It will lead to a running
time of O(n log2 h).)

Recall that we are allowed to overshoot the actual value of h by any polynomial. Let’s try
repeatedly squaring the previous guess. In other words, let’s try h∗ = 2, 4, 16, 256, . . . , 22i .
Clearly, as soon as we reach a value for which the restricted algorithm succeeds, we have
h < h∗ ≤ h2. Therefore, the running time for this last stage will be O(n log h), as desired.
But what about the total time for all the previous stages?

To analyze the total time, consider the ith guess, h∗i = 22i . The ith trial takes time

O(n log h∗i ) = O
(
n log 22i

)
= O(n2i). We know that we will succeed as soon as h∗i ≥ h,

that is if i = dlg lg he. (Throughout the semester, we will use “lg” to denote logarithm base
2 and “log” when the base does not matter.3) Thus, the algorithm’s total running time (up
to constant factors) is

T (n, h) =

lg lg h∑
i=1

n2i = n

lg lg h∑
i=1

2i.

The summation is a geometric series. It is well known that a geometric series is asymptotically
dominated by its largest term. Thus, we obtain a total running time of

T (n, h) < n · 2dlg lg he < n · 21+lg lg h = n · 2 · 2lg lg h = 2n lg h = O(n log h),

which is just what we want. In other words, by the “miracle” of the geometric series, the
total time to try all the previous failed guesses is asymptotically the same as the time for the
final successful guess. The final algorithm is presented in the code block below.

Chan’s Complete Convex Hull Algorithm

Hull(P ) :

(1) h∗ ← 2; status← failure

(2) while (status 6= failure):

(a) Let h∗ ← min((h∗)2, n)

(b) (status, V )← ConditionalHull(P, h∗)

(3) return V

Lower Bound (Optional): We show that Chan’s result is asymptotically optimal in the sense
that any algorithm for computing the convex hull of n points with h points on the hull requires
Ω(n log h) time. The proof is a generalization of the proof that sorting a set of n numbers
requires Ω(n log n) comparisons.

If you recall the proof that sorting takes at least Ω(n log n) comparisons, it is based on the
idea that any sorting algorithm can be described in terms of a decision tree. Each comparison
has at most three outcomes (<, =, or >). Each such comparison corresponds to an internal
node in the tree. The execution of an algorithm can be viewed as a traversal along a path
in the resulting ternary (3-way splitting) tree. The height of the tree is a lower bound on
the worst-case running time of the algorithm. There are at least n! different possible inputs,

3When logn appears as a factor within asymptotic big-O notation, the base of the logarithm does not matter
provided it is a constant. This is because loga n = logb n/ logb a. Thus, changing the base only alters the constant
factor.
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each of which must be reordered differently, and so you have a ternary tree with at least n!
leaves. Any such tree must have Ω(log3(n!)) height. Using Stirling’s approximation for n!,
this solves to Ω(n log n) height. (For further details, see the algorithms book by Cormen,
Leiserson, Rivest, and Stein.)

We will give an Ω(n log h) lower bound for the convex hull problem. In fact, we will give an
Ω(n log h) lower bound on the following simpler decision problem, whose output is either yes
or no.

Convex Hull Size Verification Problem (CHSV): Given a point set P and integer h,
does the convex hull of P have h distinct vertices?

Clearly if this takes Ω(n log h) time, then computing the hull must take at least as long.
As with sorting, we will assume that the computation is described in the form of a decision
tree. The sorts of decisions that a typical convex hull algorithm will make will likely involve
orientation primitives. Let’s be even more general, by assuming that the algorithm is allowed
to compute any algebraic function of the input coordinates. (This will certainly be powerful
enough to include all the convex hull algorithms we have discussed.) The result is called an
algebraic decision tree.

The input to the CHSV problem is a sequence of 2n = N real numbers. We can think of these
numbers as forming a vector in real N -dimensional space, that is, (z1, z2, . . . , zN ) = ~z ∈ RN ,
which we will call a configuration. Each node branches based on the sign of some function of
the input coordinates. For example, we could implement the conditional zi < zj by checking
whether the function (zj − zi) is positive. More relevant to convex hull computations, we can
express an orientation test as the sign of the determinant of a matrix whose entries are the
six coordinates of the three points involved. The determinant of a matrix can be expressed
as a polynomial function of the matrices entries. Such a function is called algebraic. We
assume that each node of the decision tree branch three ways, depending on the sign of a
given multivariate algebraic formula of degree at most d, where d is any fixed constant. For
example, we could express the orientation test involving points p1 = (z1, z2), p2 = (z3, z4),
and p3 = (z5, z6) as an algebraic function of degree two as follows:

det

 1 z1 z2

1 z3 z4

1 z5 z6

 = (z3z6 − z5z4)− (z1z6 − z5z2) + (z1z4 − z3z2).

For each input vector ~z to the CHSV problem, the answer is either “yes” or “no”. The set
of all “yes” points is just a subset of points Y ⊂ RN , that is a region in this space. Given an
arbitrary input ~z the purpose of the decision tree is to tell us whether this point is in Y or
not. This is done by walking down the tree, evaluating the functions on ~z and following the
appropriate branches until arriving at a leaf, which is either labeled “yes” (meaning ~z ∈ Y )
or “no”. An abstract example (not for the convex hull problem) of a region of configuration
space and a possible algebraic decision tree (of degree 1) is shown in the following figure. (We
have simplified it by making it a binary tree.) In this case the input is just a pair of real
numbers.

We say that two points ~u,~v ∈ Y are in the same connected component of Y if there is a
path in RN from ~u to ~v such that all the points along the path are in the set Y . (There
are two connected components in the figure.) We will make use of the following fundamental
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Fig. 20: The geometric interpretation of an algebraic decision tree.

result on algebraic decision trees, due to Ben-Or. Intuitively, it states that if your set has M
connected components, then there must be at least M leaves in any decision tree for the set,
and the tree must have height at least the logarithm of the number of leaves.

Theorem: Let Y ∈ RN be any set and let T be any d-th order algebraic decision tree that
determines membership in W . If W has M disjoint connected components, then T must
have height at least Ω((logM)−N).

We will begin our proof with a simpler problem.

Multiset Size Verification Problem (MSV): Given a multiset of n real numbers and an
integer k, confirm that the multiset has exactly k distinct elements.

Lemma: The MSV problem requires Ω(n log k) steps in the worst case in the d-th order
algebraic decision tree

Proof: In terms of points in Rn, the set of points for which the answer is “yes” is

Y = {(z1, z2, . . . , zn) ∈ Rn : |{z1, z2, . . . , zn}| = k}.

It suffices to show that there are at least k!kn−k different connected components in this
set, because by Ben-Or’s result it would follow that the time to test membership in Y
would be

Ω(log(k!kn−k)− n) = Ω(k log k + (n− k) log k − n) = Ω(n log k).

Consider the all the tuples (z1, . . . , zn) with z1, . . . zk set to the distinct integers from 1
to k, and zk+1 . . . zn each set to an arbitrary integer in the same range. Clearly there are
k! ways to select the first k elements and kn−k ways to select the remaining elements.
Each such tuple has exactly k distinct items, but it is not hard to see that if we attempt
to continuously modify one of these tuples to equal another one, we must change the
number of distinct elements, implying that each of these tuples is in a different connected
component of Y .

To finish the lower bound proof, we argue that any instance of MSV can be reduced to the
convex hull size verification problem (CHSV). Thus any lower bound for MSV problem applies
to CHSV as well.

Theorem: The CHSV problem requires Ω(n log h) time to solve.

Lecture Notes 23 CMSC 754



Proof: Let Z = (z1, . . . , zn) and k be an instance of the MSV problem. We create a point
set {p1, . . . , pn} in the plane where pi = (zi, z

2
i ), and set h = k. (Observe that the points

lie on a parabola, so that all the points are on the convex hull.) Now, if the multiset
Z has exactly k distinct elements, then there are exactly h = k points in the point set
(since the others are all duplicates of these) and so there are exactly h points on the
hull. Conversely, if there are h points on the convex hull, then there were exactly h = k
distinct numbers in the multiset to begin with in Z.

Thus, we cannot solve CHSV any faster than Ω(n log h) time, for otherwise we could
solve MSV in the same time.

The proof is rather unsatisfying, because it relies on the fact that there are many duplicate
points. You might wonder, does the lower bound still hold if there are no duplicates? Kirk-
patric and Seidel actually prove a stronger (but harder) result that the Ω(n log h) lower bound
holds even you assume that the points are distinct.

Lecture 4: Line Segment Intersection

Geometric intersections: One of the most basic problems in computational geometry is that of
computing intersections. It has numerous applications.

� In solid modeling complex shapes are constructed by applying various boolean operations
(intersection, union, and difference) to simple primitive shapes. The process is called
constructive solid geometry (CSG). Computing intersections of model surfaces is an
essential part of the process.

� In robotics and motion planning it is important to know when two objects intersect for
collision detection and collision avoidance.

� In geographic information systems it is often useful to overlay two subdivisions (e.g. a
road network and county boundaries to determine where road maintenance responsibili-
ties lie). Since these networks are formed from collections of line segments, this generates
a problem of determining intersections of line segments.

� In computer graphics, ray shooting is a classical method for rendering scenes. The
computationally most intensive part of ray shooting is determining the intersection of
the ray with other objects.

In this lecture, we will focus the basic primitive of computing line segment intersections in
the plane.

Line-Segment intersection: We are given a set S = {s1, . . . , sn} of n line segments in the plane.
Let’s assume that each is represented by its two endpoints si = piqi. We will consider the
problem of reporting pairs of line segments that intersect (see Fig. 21(a)).

To simplify the presentation, we will make the usual general-position assumptions. In partic-
ular, we will rule out the following (see Fig. 21(b)):

� No duplicate x-coordinates among endpoints or intersection points (which implies no
vertical line segments or multiple intersections)

� No segment endpoint lies on another segment

Lecture Notes 24 CMSC 754



(a) (b)

no vertical segments

no duplicate x-coordinates

no endpoint lies on another segment

General-position assumptions

no 3-way intersections

Fig. 21: Line segment intersection.

All these special cases are relatively easy to cope with, but the algorithms are more complex
because they need to deal with various special cases. One common exception to the above is
to allow multiple segments to share a common endpoint, since this occurs when dealing with
polygons and spatial subdivision.

Output Sensitivity: Observe that n line segments can intersect in as few as zero and as many
as
(
n
2

)
= O(n2) different intersection points. We could settle for an O(n2) time algorithm,

claiming that it is worst-case asymptotically optimal, but it would not be very useful in prac-
tice, since in many instances of intersection problems intersections may be rare. Therefore,
we will focus on output sensitive algorithms, meaning that the running time depends not only
on the number of segments, but also the number of intersecting pairs.

Given a set S of n line segments, let m = m(S) denote the number of intersections. We will
express the running time of our algorithm in terms of both n and m. As usual, we will assume
that the line segments are in general position.

Utility Data Structures: Our algorithm will make use of two standard dynamic data structures
(see CLRS for details).

Ordered Dictionary: Stores a set of objects each associated with a key from an totally
ordered domain. Supports the operations insert, delete, find, get predecessor, get suc-
cessor, and swap two adjacent entries all in O(log n) time and O(n) space, where n is
the current number of objects. (This is typically implemented using a balanced binary
tree, such as a red-black or AVL tree.)

Priority Queue: Stores a set of objects, where each object is associated with a priority
value. Supports the operations insert and extract-min (which accesses and removes the
object with the smallest priority value). We also assume that the insert operation returns
a special reference to the inserted object, which allows us to efficiently delete this item.
These operations are supported in O(log n) time and O(n) space, where n is the current
number of objects. (This is typically implemented as a binary heap.)

Plane Sweep: Let us now consider a natural approach for reporting the segment intersections.
The method, called plane sweep, is a fundamental technique in planar computational geome-
try. We solve a 2-dimensional problem by simulating the process of sweeping a 1-dimensional
line across the plane. The intersections of the sweep line with the segments defines a collection
of points along the sweep line.
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Although we might visualize the sweeping process as a continuous one, there is a discrete set
of event points where important things happen. As the line sweeps from left to right, points
are inserted, deleted, and may swap order along the sweep line. Thus, we reduce a static
2-dimensional problem to a dynamic 1-dimensional problem.

In any algorithm based on plane sweep there are three basic elements that need to be main-
tained (see Fig. 22). Let ` denote the current sweep line.

(1) the partial solution that has already been constructed to the left of ` (in our case, the
discovered intersection points lying to the left of the sweep line),

(2) the sweep-line status, that is, the set of objects intersecting ` (in our case, the sorted
segments intersecting the sweep line), and

(3) a subset of the future events lying to right of ` that are scheduled to be processed (in
our case, a subset of the intersection points to the right of the sweep line).

future intersection point event

future endpoint event

`

sweep line

discovered intersection point

(only some will be stored)

Fig. 22: Plane sweep.

The key to designing an efficient plane-sweep algorithm is determining how to efficiently store
and update these three elements as each new event is process. Let’s consider each of these
elements in greater detail in the context of line-segment intersection.

Sweep line status and above-below comparisons: We will simulate the sweeping of a vertical
line ` from left to right. The sweep-line status consists of the line segments that intersect the
sweep line sorted, say, from top to bottom. In order to maintain this set dynamically, we will
store them in an ordered dictionary.

But hey! How can we possibly do this efficiently? Every time we move the sweep line even
a tiny distance, all the y-coordinates of the intersection points change as well! Clearly, we
cannot store the y-coordinates explicitly, for otherwise we would be doomed to O(n) time per
event, which would lead to an overall running time that is at least quadratic.

The key is that we do not need store the actual y-coordinates in the dictionary. Instead,
we implement a function that compares two line segments at a given the x-coordinate. This
function determines which segment intersects the sweep line above the other. Let’s call this
a dynamic comparator. (A more detailed description is provided at the end of the lecture
notes.)

Observe that between consecutive event points (intersection points or segment endpoints) the
relative vertical order of segments is constant (see Fig. 23(a)). For each segment, we can
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compute the associated line equation, and evaluate this function at x0 to determine which
segment lies on top. The ordered dictionary does not need actual numbers. It just needs a
way of comparing objects (see Fig. 23(b)).

sj

si

`

sj

si yi(x0) = aix0 + bi

yj(x0) = ajx0 + bj

x = x0

(a) (b)

Consistency of vertical order

Fig. 23: The dictionary does not need to store absolute y-coordinates, just the ability to make
above-below comparisons for any location of the sweep line.

Events and Detecting Intersections: It suffices to process events only when there is a change
in the sweep-line status. As mentioned above, these x-coordinates are called event points.
For our application, we have three types of event points, corresponding to when the sweep
line encounters: (1) the left endpoint of a segment, (2) the right endpoint of a segment, and
(3) an intersection point between two segments.

Note that endpoint events ((1) and (2)) can be presorted before the sweep runs. In contrast,
intersection events (3) will be discovered dynamically as the sweep executes. It is important
that each event be detected before the actual event occurs. Since each pair of segments along
the sweep line might intersect, there are O(n2) potential intersection events to consider, which
again would doom us to at least quadratic running time. How can we limit the number of
potential intersection points to a manageable number?

Our strategy will be as follows. Whenever two line segments become adjacent along the
sweep line (one immediately above the other), we will check whether they have an intersection
occurring to the right of the sweep line. If so, we will add this new event to a priority queue
of future events. This priority queue will be sorted in left-to-right order by x-coordinates.
We call this the adjacent-segment rule.

A natural question is whether this strategy of scheduling intersections between adjacent pairs
is correct. In particular, might it be that two line segments intersect, but just prior to this
intersection, they were not adjacent in the sweep-line status? If so, we would miss this event.
Happily, this is not the case, but it requires a proof. (If you think it is trivial, note that
it would fail to hold if the objects being intersected were general algebraic curves, not line
segments.)

Lemma: Consider a set S of line segments in general position, and consider two segments
si, sj ∈ S that intersect in some point p. Then si and sj are adjacent along the sweep
line just after the event that immediately precedes p in the sweep.

Proof: By our general position assumptions, no three lines intersect in a common point.
Therefore if we consider a placement of the sweep line that is infinitesimally to the left
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of the intersection point, the line segments si and sj will be adjacent along this sweep
line. Consider the event point q with the largest x-coordinate that is strictly less than
px. Since there are no events between qx and px, there can be no segment intersections
within the vertical slab bounded by q on the left and p on the right (the shaded region
of Fig. 23), and therefore the order of lines along the sweep line after processing q will
be identical the order of the lines along the sweep line just prior p. Therefore, si and sj
are adjacent immediately after processing event q and remain so just prior to processing
p.

`

adjacent

si

sj

q

p

Fig. 24: Correctness of the adjacent-segment rule.

When two formerly adjacent segments cease to be adjacent (e.g., because a new segment is
discovered between them), we will delete the event from the queue. While this is not formally
necessary, it keeps us from inserting the same event point repeatedly and it guarantees that
the total number of events can never exceed O(n).

Data Structures: As mentioned above the segments that intersect the sweep line will be main-
tained in an ordered dictionary, sorted vertically from top to bottom. The future event
points (segment endpoints and impending intersection points) will be stored in a priority
queue, which will be ordered from left to right by x-coordinates.

Here are the operations assumed to be supported by the ordered dictionary, which stores the
sweep-line status:

� r ← insert(s): Insert s (represented symbolically) and return a reference r to its location
in the data structure.

� delete(r): Delete the entry associated with reference r.

� r′ ← predecessor(r): Return a reference r′ to the segment lying immediately above r (or
null if r is the topmost segment).

� r′ ← successor(r): Return a reference r′ to the segment lying immediately below r (or
null if r is the bottommost segment).

� r′ ← swap(r): Swap r and its immediate successor, returning a reference to r’s new
location.

Next, here are the operations assumed to be supported by the priority queue, which stores
the future events sorted by the x-coordinates:

� r ← insert(e, x): Insert event e with “priority” x and return a reference r to its location
in the data structure.

� delete(r): Delete the entry associated with reference r.
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� (e, x) ← extract-min(): Extract and return the event from the queue with the smallest
priority x.

As mentioned earlier, all of these operations can be performed in O(log n′) and O(n′) space,
where n′ is the current number of entries in the data structure.

The Final Algorithm: All that remains is explaining how to process the events. This is presented
in the code block below, and the various cases are illustrated in Fig. 24. (Further details can
be found in the 4M’s.)

Line Segment Intersection Reporting

(1) Insert all of the endpoints of the line segments of S into the event queue. The initial sweep-line status
is empty.

(2) While the event queue is nonempty, extract the next event in the queue. There are three cases,
depending on the type of event:

Left endpoint: (see Fig. 25(a))

(a) Insert this line segment s into the sweep-line status, based on the y-coordinate of its left
endpoint.

(b) Let s+ and s− be the segments immediately above and below s on the sweep line. If there is
an event associated with this pair, remove it from the event queue.

(c) Test for an intersection between s and s+, and if so, add it to the event queue. Do the same
for s and s−.

Right endpoint: (see Fig. 25(b))

(a) Let s+ and s− be the segments immediately above and below s on the sweep line.

(b) Delete segment s from the sweep-line status.

(c) Test for an intersection between s+ and s− to the right of the sweep line, and if so, add the
corresponding event to the event queue.

Intersection: (see Fig. 25(c))

(a) Let s+ and s− be the two segments involved (with s+ above just prior to the intersection).
Report this intersection.

(b) Let s++ and s−− be the segments immediately above and below the intersection. Remove
any event involving the pair (s+, s++) and the pair (s−, s−−).

(c) Swap s+ and s− in the sweep-line status (they must be adjacent to each other).

(d) Test for an intersection between s− and s++ to the right of the sweep line, and if so, add it
to the event queue. Do the same for s+ and s−−.

Correctness: The correctness of the algorithm essentially follows from our extensive derivation to
the algorithm itself. Formally, the correctness proof is based on an induction proof showing
that immediately after processing each event: (a) the sweep-line status contains the line
segments intersecting the sweep line in sorted order and (b) the event queue contains exactly
all the events demanded by the adjacent-segment rule.

Analysis: Altogether, there are 2n+m events processed (two endpoints per segment and m inter-
sections). Each event involves a constant amount of work and a constant number of accesses
to our data structures. As mentioned above, each access to either of the data structures takes
O(log n) time. Therefore, the total running time is O((2n+m) log n) = O(n log n+m log n).
Note that if we output each intersection point without storing it, the total storage require-
ments never exceed O(n). In summary, we have:
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swap s3, s4


s5
s3
s4
s2
s0



s3

add event

(a) (b) (c)

Fig. 25: Plane-sweep algorithm event processing.

Theorem: Given a set of n line segments S in the plane (subject to our general-position
assumptions), the above algorithm correctly reports all the m intersections between
these segments in time O((n+m) log n) time and O(n) space.

Lower Bound: Is this the best possible? No. There is a faster algorithm (which we may discuss
later in the semester) that runs in time O(n log n + m). This latter algorithm is actually
optimal. Clearly Ω(m) time is needed to output the intersections. The lower bound of
Ω(n log n) results from a reduction from a problem called element uniqueness. In this problem,
we are give a list of n numbers X = 〈x1, . . . , xn〉 and we are asked whether there are any
duplicates (or all are distinct). Element uniqueness is known to have a lower bound of
Ω(n log n) in the algebraic decision-tree model of computation. (It can be solved in O(n)
time using hashing, but the algebraic decision-tree model does not allow integer division,
which is needed by hashing.)

The reduction involves converting each xi into a line segment si that passes through the
point (xi, 0), but otherwise there are no other intersections. (A little cleverness is needed to
guarantee that the general-position assumptions are satisfied.) Clearly, two segments si and
sj intersect if and only if two elements xi and xj of the list are identical. So, determining
whether there is even a single intersection requires at least Ω(n log n) time.

Dynamic Comparator: (Optional) Let’s consider how to design a function that compares two
line segments relative to the current sweep line. We are given the sweep line x = x0 and two
segments si and sj . Assuming each segment is nonvertical and has endpoints pi = (pi,x, pi,y)
and qi = (qi,x, qi,y), we can compute the associated line equations `i : y = aix + bi and
`j : y = ajx+ bj , by solving the simultaneous equations

pi,y = aipi,x + bi qi,y = aiqi,x + bi,

which yields

ai =
pi,y − qi,y
pi,x − qi,x

bi =
pi,xqi,y − pi,yqi,x

pi,x − qi,x
.
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By our general-position assumption, the segment is nonvertical, and the denominator is
nonzero.

Given that the sweep line is at x = x0, we can define our dynamic comparator to be:

compare(si, sj ;x0) = sign((ajx0 + bj)− (aix0 + bi)),

which returns +1 if sj is above si, 0 if they coincide, and −1 if sj is below si.

This is the sign of a rationally-valued function, but we can multiply out the denominator to
obtain an algebraic function of degree-3 in the segment coordinates. Thus, if the coordinates
are expressed as integers, we can determine the sign using at most triple-precision arithmetic.

Computing Intersection Points: (Optional) We have assumed that the primitive of computing
the intersection point of two line segments can be performed exactly in O(1) time. Let us
see how we might do this. Let ab and cd be two line segments in the plane, given by their
endpoints, for example a = (ax, ay). First observe that it is possible to determine whether
these line segments intersect, simply by applying an appropriate combination of orientation
tests. (We will leave this as an exercise.) However, this alone is not sufficient for the plane-
sweep algorithm.

One way to determine the point at which the segments intersect is to use a parametric
representation of the segments. Any point on the line segment ab can be written as a convex
combination involving a real parameter s:

p(s) = (1− s)a+ sb, for 0 ≤ s ≤ 1,

and similarly for cd we may introduce a parameter t:

q(t) = (1− t)c+ td, for 0 ≤ t ≤ 1

(see Fig. 26).

b

d

c

a

q(t)

p(s)

p(s) = q(t)

Fig. 26: Plane-sweep algorithm event processing.

An intersection occurs if and only if we can find s and t in the desired ranges such that
p(s) = q(t). Thus we obtain the two equations:

(1− s)ax + sbx = (1− t)cx + tdx and (1− s)ay + sby = (1− t)cy + tdy.

The coordinates of the points are all known, so it is just a simple exercise in linear algebra to
solve for s and t as functions of the coordinates of a, b, c, and d. (A solution may generally
not exist, but this means that the segments are parallel. By our assumption that no segments
are collinear, this implies that the segments do not intersect.) Once s and t are known, it
remains to just check with 0 ≤ s, t ≤ 1, to confirm that the intersection point occurs within
the line segment (and not in the extended infinite line).

As in our earlier example of determining the order of segments along the sweep line, if all
the coordinates are integers, this yields formulas for s and t as rational numbers, and hence
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the coordinates of the intersection point are themselves rational numbers. If it is needed to
perform exact computations on these coordinates, rather than converting them to floating
point, it is possible to save the numerator and denominator of each coordinate as a pair of
(multiple precision) integers.

Lecture 5: Polygon Triangulation

The Polygon Triangulation Problem: Triangulation is the general problem of subdividing a
spatial domain into simplices, which in the plane means triangles. We will focus in this lecture
on triangulating a simple polygon (see Fig. 27). Formal definitions will be given later. (We
will assume that the polygon has no holes, but the algorithm that we will present can be
generalized to handle such polygons.) Such a subdivision is not necessarily unique, and there
may be other criteria to be optimized in computing the triangulation.

Simple polygon A triangulation Dual graph

Fig. 27: Polygon triangulation.

Applications: Triangulating simple polygons is important for many reasons. This operation use-
ful, for example, whenever it is needed to decompose a complex shapes a set of disjoint simpler
shapes. Note that in some applications it is desirable to produce “fat” (nearly equilateral)
triangles, but we will not worry about this issue in this lecture.

A triangulation provides a simple graphical representation of the polygon’s interior, which
is useful for algorithms that operate on polygons. In particular, consider a graph whose
vertices are the triangles of the triangulation and two vertices of this graph are adjacent if
the associated triangles are adjacent (see Fig. 27(c)). This is called the dual graph of the
triangulation. It is easy to show that such a graph is a free tree, that is, it is an acylic,
connected graph. (If the polygon has holes, then the dual graph will generally have cycles.)

Preliminaries: This simple problem has been the focus of a remarkably large number of papers
in computational geometry spanning a number of years. There is a simple naive polynomial-
time algorithm for the planar case (as opposed to possibly nonconvex polyhedra in higher
dimensions). The idea is based on repeatedly adding “diagonals.” We say that two points on
the boundary of the polygon are visible if the interior of the line segment joining them lies
entirely within the interior of the polygon. Define a diagonal of the polygon to be the line
segment joining any pair of visible vertices.

Observe that the addition of a diagonal splits the polygon into two polygons of smaller size.
In particular, if the original polygon has n vertices, the diagonal splits the polygon into two
polygons with n1 and n2 vertices, respectively, where n1, n2 < n, and n1 + n2 = n + 2. Any
simple polygon with at least four vertices has at least one diagonal. (This seemingly obvious
fact is not that easy to prove. You might try it.) A simple induction argument shows that
the final number of diagonals is n− 3 and the final number of triangles is n− 2.
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The naive algorithm operates by repeatedly adding diagonals. Unfortunately, this algorithm
is not very efficient (unless the polygon has special properties, for example, convexity) because
of the complexity of the visibility test.

There are very simple O(n log n) algorithms for this problem that have been known for many
years. A longstanding open problem was whether there exists an O(n) time algorithm. (Ob-
serve that the input polygon is presented as a cyclic list of vertices, and hence the data is in
some sense “pre-sorted”, which precludes an Ω(n log n) lower bound.) The problem of a linear
time polygon triangulation was solved by Bernard Chazelle in 1991, but the algorithm (while
being a technical tour de force) is so complicated that it is not practical for implementation.
Unless other properties of the triangulation are desired, the O(n log n) algorithm that we will
present in this lecture is quite practical and probably preferable in practice to any of the
“theoretically” faster algorithms.

A Triangulation in Two Movements: Our approach is based on a two-step process (although
with a little cleverness, both steps could be combined into one algorithm).

� First, the simple polygon is decomposed into a collection of simpler polygons, called
monotone polygons. This step takes O(n log n) time.

� Second, each of the monotone polygons is triangulated separately, and the result are
combined. This step takes O(n) time.

The triangulation results in a planar subdivision. Such a subdivision could be stored as a
planar graph or simply as a set of triangles, but there are representations that are more suited
to representing planar subdivisions. One of these is called double-connect edge list (or DCEL).
This is a linked structure whose individual entities consist of the vertices (0-dimensional
elements), edges (1-dimensional elements), triangular faces (2-dimensional elements). Each
entity is joined through links to its neighboring elements. For example, each edge stores the
two vertices that form its endpoints and the two faces that lie on either side of it.

We refer the reader to Chapter 2 of our text for a more detailed description of the DCEL
structure. Henceforth, we will assume that planar subdivisions are stored in a manner than
allows local traversals of the structure to be performed O(1) time.

Monotone Polygons: Let’s begin with a few definitions. A polygonal curve is a collection of
line segments, joined end-to-end (see Fig. 28(a)). If the last endpoint is equal to the first
endpoint, the polygonal curve is said to be closed. The line segments are called edges. The
endpoints of the edges are called the vertices of the polygonal curve. Each edge is incident to
two vertices (its endpoints), and each vertex is incident (to up) two edges. A polygonal curve
is said to be simple if no two nonincident elements intersect each other (see Fig. 28(c)). A
closed simple polygonal curve decomposes the plane into two parts, its interior and exterior.
Such a polygonal curve is called a simple polygon (see Fig. 28(c)). When we say “polygon”
we mean simple polygon.

A polygonal curve C is monotone with respect to ` if each line that is orthogonal to ` intersects
C in a single connected component. (It may intersect, not at all, at a single point, or along
a single line segment.) A polygonal curve C is said to be strictly monotone with respect to
a given line `, if any line that is orthogonal to ` intersects C in at most one point. A simple
polygon P is said to be monotone with respect to a line ` if its boundary, (sometimes denoted
bnd(P ) or ∂P ), can be split into two curves, each of which is monotone with respect to ` (see
Fig. 29(a)).
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Fig. 28: Polygonal curves and simple polygons.

Splitting diagonals

(b)

Monotone decomposition

(c)

x-monotone polygon

(a) (b)

`

Fig. 29: Monotonicity.

Henceforth, let us consider monotonicity with respect to the x-axis. We will call these poly-
gons horizontally monotone. It is easy to test whether a polygon is horizontally monotone.
How?

(a) Find the leftmost and rightmost vertices (min and max x-coordinate) in O(n) time.

(b) These vertices split the polygon’s boundary into two curves, an upper chain and a lower
chain. Walk from left to right along each chain, verifying that the x-coordinates are
nondecreasing. This takes O(n) time.

(As an exercise, consider the problem of determining whether a polygon is monotone in any
direction. This can be done in O(n) time.)

Triangulation of Monotone Polygons: We begin by showing how to triangulate a monotone
polygon by a simple variation of the plane-sweep method. We will return to the question of
how to decompose a polygon into monotone components later.

We begin with the assumption that the vertices of the polygon have been sorted in increasing
order of their x-coordinates. (For simplicity we assume no duplicate x-coordinates. Otherwise,
break ties between the upper and lower chains arbitrarily, and within a chain break ties so
that the chain order is preserved.) Observe that this does not require sorting. We can
simply extract the upper and lower chain, and merge them (as done in MergeSort) in O(n)
time. Let’s make the usual general position assumptions, that no two vertices have the same
x-coordinates and no three consecutive vertices are collinear.

We define a reflex vertex to be a vertex of the polygon whose interior angle is at least π, and
otherwise the vertex is nonreflex. We define a reflex chain to be a sequence of one or more
consecutive reflex vertices along the polygon’s boundary.

The idea behind the triangulation algorithm is quite simple: Try to triangulate everything you
can to the left of the current vertex by adding diagonals, and then remove the triangulated
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region from further consideration. The trickiest aspect of implementing this idea is finding a
clean invariant that characterizes the untriangulated region that lies to the left of the sweep
line.
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Fig. 30: Triangulating a monotone polygon.

To acquire some intuition, let’s consider the example shown in Fig. 30. There is obviously
nothing to do until we have at least three vertices. With vertex 3, it is possible to add the
diagonal to vertex 2, and so we do this. In adding vertex 4, we can add the diagonal to vertex
2. However, vertices 5 and 6 are not visible to any other nonadjacent vertices so no new
diagonals can be added. When we get to vertex 7, it can be connected to 4, 5, and 6. The
process continues until reaching the final vertex.

Have we seen enough to conjecture what the untriangulated region to the left of the sweep
line looks like? Ideally, this structure will be simple enough to allow us to determine in
constant time whether it is possible to add another diagonal. And in general we can add each
additional diagonal in constant time. Since any triangulation consists of n− 3 diagonals, the
process runs in O(n) total time. This structure is described in the lemma below.

Lemma: (Main Invariant) For i ≥ 2, let vi be the vertex just processed by the triangulation
algorithm. The untriangulated region lying to the left of vi consists of two x-monotone
chains, a lower chain and an upper chain each containing at least one edge. If the chain
from vi to u has two or more edges, then these edges form a reflex chain. The other
chain consists of a single edge whose left endpoint is u and whose right endpoint lies to
the right of vi (see Fig. 31(a)).

We will prove the invariant by induction, and in the process we will describe the triangulation
algorithm. As the basis case, consider the case of v2. Here u = v1, and one chain consists of
the single edge v2v1 and the other chain consists of the other edge adjacent to v1. To complete
the proof, we will give a case analysis of how to handle the next event, involving vi, assuming
that the invariant holds at vi−1, and see that the invariant is satisfied after each event has
been processed. There are the following cases that the algorithm needs to deal with.

Case 1: vi lies on the opposite chain from vi−1: In this case we add diagonals joining vi to all
the vertices on the reflex chain, from vi−1 back to (but not including) u (see Fig. 31(b)).
Note that all of these vertices are visible from vi. Certainly u is visible to vi. Because
the chain is reflex, x-monotone, and lies to the left of vi it follows that the chain itself
cannot block the visibility from vi to some other vertex on the chain. Finally, the fact
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that the polygon is x-monotone implies that the unprocessed portion of the polygon
(lying to the right of vi) cannot “sneak back” and block visibility to the chain.

After doing this, we set u = vi−1. The invariant holds, and the reflex chain is trivial,
consisting of the single edge vivi−1.

u
vi−1

Main invariant

(a)

u
vi−1

Case 1

(b)

vi

u
vi−1

Case 2(a)

(c)

vi
u

vi−1

Case 2(b)

(d)

vi

Fig. 31: Triangulation cases.

Case 2: v is on the same chain as vi−1. There are two subcases to be considered:

Case 2(a): The vertex vi−1 is a nonreflex vertex: We walk back along the reflex chain
adding diagonals joining vi to prior vertices until we find the last vertex vj of the
chain that is visible to vi. As can be seen in Fig. 31(c), this will involve connecting
vi to one or more vertices of the chain. Remove these vertices from vi−1 back to,
but not including vj from the reflex chain. Add vi to the end of reflex chain. (You
might observe a similarity between this step and the inner loop of Graham’s scan.)

Case 2(b): The vertex vi−1 is a reflex vertex. In this case vi cannot see any other
vertices of the chain. In this case, we simply add vi to the end of the existing reflex
chain (see Fig. 31(d)).

In either case, when we are done the remaining chain from vi to u is a reflex chain.

How is this implemented? The vertices on the reflex chain can be stored in a stack. We keep
a flag indicating whether the stack is on the upper chain or lower chain, and assume that
with each new vertex we know which chain of the polygon it is on. Note that decisions about
visibility can be based simply on orientation tests involving vi and the top two entries on the
stack. When we connect vi by a diagonal, we just pop the stack.

Analysis: We claim that this algorithm runs in O(n) time. As we mentioned earlier, the sorted
list of vertices can be constructed in O(n) time through merging. The reflex chain is stored on
a stack. In O(1) time per diagonal, we can perform an orientation test to determine whether
to add the diagonal and the diagonal can be added in constant time. Since the number of
diagonals is n− 3, the total time is O(n).

Monotone Subdivision: In order to run the above triangulation algorithm, we first need to
subdivide an arbitrary simple polygon P into monotone polygons. This is also done by a
plane-sweep approach. We will add a set of nonintersecting diagonals that partition the
polygon into monotone pieces (recall Fig. 29).

Observe that the absence of x-monotonicity occurs only at vertices in which the interior angle
is greater than 180◦ and both edges lie either to the left of the vertex or both to the right.
We call such a vertex a scan reflex vertex. Following our book’s notation, we call the first
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Merge

Split

Fig. 32: Merge and split reflex vertices.

type a merge vertex (since as the sweep passes over this vertex the edges seem to be merging)
and the latter type a split vertex.

Our approach will be to apply a left-to-right plane sweep (see Fig. 33(a)), which will add
diagonals to all the split and merge vertices. We add a diagonal to each split vertex as soon
as we reach it. We add a diagonal to each merge vertex when we encounter the next visible
vertex to its right.

The key is storing enough information in the sweep-line status to allow us to determine where
this diagonal will go. When a split vertex v is encountered in the sweep, there will be an edge
ea of the polygon lying above and an edge eb lying below. We might consider attaching the
split vertex to left endpoint of one of these two edges, but it might be that neither endpoint
is visible to the split vertex. Instead, we need to maintain a vertex that is visible to any split
vertex that may arise between ea and eb. To do this, imagine a sweeping a vertical segment
between ea and eb to the left until it hits a vertex. Called this helper(ea) (see Fig. 33(b)).

ea

v

eb

sweep line

e1

e2

e4
e5

e3

e6

helper(e1)

helper(e3)

helper(e5)

(a) (c)

ea

v

eb

sweep line

(b)

helper(ea)

Fig. 33: Split vertices, merge vertices, and helpers.

helper(ea) : Let eb be the edge of the polygon lying just below ea on the sweep line. The
helper is the rightmost vertically visible vertex on or below ea on the polygonal chain
between ea and eb. This vertex may either be on ea, eb, or it may lie between them.

Another way to visualize the helper is to imagine sweeping out a trapezoid to the left from
the sweep line. The top side of the trapezoid lies on ea, the bottom side lies on eb, the right
side lies on the sweep line, and the left side is sweeps as far as it can until hitting a vertex
(see the shaded regions of Figs. 33(b) and (c)).

Observe that helper(ea) is defined with respect to the current location of the sweep line. As
the sweep line moves, its value changes. The helper is defined only for those edges intersected
by the sweep line. Our approach will be to join each split vertex to helper(ea), where ea is
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the edge of P immediately above the split vertex. (Note that it is possible that the helper is
the left endpoint of ea.) When we hit a merge vertex, we cannot add a diagonal right away.
Instead, our approach is to take note of any time a helper is a merge vertex. The diagonal
will be added when the very next visible vertex is processed.

Events: The endpoints of the edges of the polygon. These are sorted by increasing order of
x-coordinates. Since no new events are generated, the events may be stored in a simple
sorted list (i.e., no priority queue is needed).

Sweep status: The sweep line status consists of the list of edges that intersect the sweep
line, sorted from top to bottom. (Our book notes that we actually only need to store
edges such that the interior of the polygon lies just below this edge, since these are the
only edges that we evaluate helper from.)

These edges are stored in a dictionary (e.g., a balanced binary tree), so that the opera-
tions of insert, delete, find, predecessor and successor can be evaluated in O(log n) time
each.

Event processing: There are six event types based on a case analysis of the local structure
of edges around each vertex. Let v be the current vertex encountered by the sweep (see
Fig. 34). Recall that, whenever we see a split vertex, we add a diagonal to the helper
of the edge immediately above it. We defer adding diagonals to merge vertices until the
next opportunity arises. To help with this, we define a common action called “fix-up.”
It is given a vertex v and an edge e (either above v or incident to its left). The fix-up
function adds a diagonal to helper(e), if helper(e) is a merge vertex.

fix-up(v, e): If helper(e) is a merge vertex, add a diagonal from v to this merge vertex.

Split vertex(v): Search the sweep line status to find the edge e lying immediately above
v. Add a diagonal connecting v to helper(e). Add the two edges incident to v into
the sweep line status. Let e′ be the lower of these two edges. Make v the helper of
both e and e′.

Merge vertex(v): Find the two edges incident to this vertex in the sweep line status
(they must be adjacent). Let e′ be the lower of the two. Delete them both. Let e
be the edge lying immediately above v. fix-up(v, e) and fix-up(v, e′). Set the helper
of e to v.

Start vertex(v): (Both edges lie to the right of v, but the interior angle is smaller than
π.) Insert this vertex’s edges into the sweep line status. Set the helper of the upper
edge to v.

End vertex(v): (Both edges lie to the left of v, but the interior angle is larger than π.)
Let e be the upper of the two edges. fix-up(v, e). Delete both edges from the sweep
line status.

Upper-chain vertex(v): (One edge is to the left, and one to the right, and the polygon
interior is below.) Let e be the edge just to the left of v. fix-up(v, e). Replace the
edge to v’s left with the edge to its right in the sweep line status. Make v the helper
of the new edge.

Lower-chain vertex(v): (One edge is to the left, and one to the right, and the polygon
interior is above.) Let e be the edge immediately above v. fix-up(v, e). Replace the
edge to v’s left with the edge to its right in the sweep line status. Make v the helper
of the new edge.
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Fig. 34: Plane sweep cases, where v is the vertex being swept. The label e denotes the edge such
that helper(e)← v.

Correctness: Given the number of cases, establishing correctness is a bit of a pain. We will refer
you to the 4M’s book for a careful proof, but here are main points that need to be established
in the proof.

Helpers are correctly updated: Immediately after processing each event, the helpers of
all relevant edges have been properly updated.

Merge vertices are correctly resolved: Whenever we encounter a merge vertex, we add
a diagonal to resolve this non-monotonicity.

Split vertices are correctly resolved: When a split vertex is visited, it becomes a helper
of the edge e immediately above. We will resolve this non-monotonicity when e’s helper
changes by the invocation of fix-up.

Added diagonals do not intersect each other: Added diagonals lie within a single “helper
trapezoid” which has no vertices except on its left and right vertical sides. If both of
these vertices are scan reflex vertices (merger on the left and split on the right) we will
add a single diagonal to resolve both (see the Split case of Fig. 34).

Analysis: Given a simple polygon with n vertices, there are n events, one for each vertex. Each
event involves a constant amount of processing and a constant number of accesses to the
sweep-line dictionary. Thus, the time per event is O(log n), and hence the overall time is
O(n log n). We have the following:

Theorem: Given an n-vertex simple polygon, in O(n log n) time, the above sweep-line algo-
rithm correctly add diagonals to decompose it into monotone pieces.

By combining this with the O(n) time algorithm for triangulating a monotone polygon, we
obtain the following result.

Theorem: Given a simple polygon with n vertices, it is possible to triangulate it in O(n log n)
time.

Lecture 6: Halfplane Intersection and Point-Line Duality

Halfplane Intersection: Today we begin studying another fundamental topic in geometric com-
puting and convexity. Recall that any line in the plane splits the plane into two regions, one
lying on either side of the line. Each such region is called a halfplane. We say that a halfplane
is either closed or open depending, respectively, on whether or not it contains the line. Unless
otherwise stated, we will assume that halfplanes are closed.
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In the halfplane intersection problem, we are given a collection of n halfplanesH = {h1, . . . , hn},
and the objective is to compute their intersection. It is easy to see that the intersection of
halfspaces is a convex polygon (see Fig. 35(a)), but this polygon may be unbounded (see
Fig. 35(b)) or even empty (see Fig. 35(c)).

unbounded empty

(a) (b) (c)

Fig. 35: Halfplane intersection.

Clearly, the number of sides of the resulting polygon is at most n, but may be smaller since
some halfspaces may not contribute to the final shape.

Halfspace Intersection: In d-dimensional space the corresponding notion is a halfspace, which
is the set of points lying to one side of a (d− 1)-dimensional hyperplane. The intersection of
halfspaces is a convex polytope. The resulting polytope will have at most n facets (at most
one per halfspace), but (surprisingly) the overall complexity can be much higher.

A famous result, called McMullen’s Upper-Bound Theorem states that a polytope with n
facets in dimension d can have up to O(nbd/2c) vertices. (In dimensions 2 and 3, this is linear
in the number of halfspaces, but even in dimension 4 the number of vertices can jump to
O(n2).) Obtaining such a high number of vertices takes some care, but the bound is tight.
There is a famous class of polytopes, called the cyclic polytopes, that achieve this bound.
Symmetrically, the convex hull of n points in dimension d defines a convex polytope that can
have O(nbd/2c) facets, and this bound is also tight.

Representing Lines and Hyperplanes: (Digression) While we will usually treat geometric ob-
jects rather abstractly, it may be useful to explore a bit regarding how lines, halfspaces, and
their higher dimensional counterparts are represented. These topics would be covered in a
more complete course on projective geometry or convexity.

Explicit Representation: If we think of a line as a linear function of the variable x, we
can express any (nonvertical) line by the equation y = ax+ b, where a is the slope and
b is the y-intercept.

In dimension d, we can think of the dth coordinate as being special, and we will make
the convention of referring to the d-th coordinate axis as pointing vertically upwards.
We can express any “nonvertical” (d − 1)-dimensional hyperplane by the set of points
(x1, . . . , xd), where xd =

∑d−1
i=1 aixi + b, thus xd is expressed “explicitly” as a linear

function of the first d− 1 coordinates.

The associated halfspaces arise replacing “=” with an inequality, e.g., the upper halfplane
is the set (x, y) such that y ≥ ax+ b, and the lower halfplane is defined analogously.

Implicit Representation: The above representation has the shortcoming that it cannot
represent vertical objects. A more general approach (which works for both hyperplanes
and curved surfaces) is to express the object implicitly as the zero-set of some function
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of the coordinates. In the case of a line in the plane, we can represent the line as the set
of points (x, y) that satisfy the linear function f(x, y) = 0, where f(x, y) = ax+ by + c,
for scalars a, b, and c. The corresponding halfplanes are just the sets of points such that
f(x, y) ≥ 0 and f(x, y) ≤ 0.

This has the advantage that it can represent any line in the Euclidean plane, but the
representation is not unique. For example, the line described by 5x− 3y = 2 is the same
as the line described by 10x − 6y = 4, or any scalar multiple thereof. We could apply
some normalization to overcome this, for example, by requiring that a2 + b2 = 1. If this
normalization is performed, then the line has the convenient geometric interpretation
that it is orthogonal to the unit vector (a, b) and is at distance c from the origin.

Parametric Representation: We can generalize the above to arbitrary dimensions. For
example, in Rd, the equation

∑d
i=1 aixi = b describes a (d− 1)-dimensional hyperplane.

What if you want to represent a line, or more generally, a flat object any lower dimension?

For 1 ≤ k ≤ d− 1, we can represent any k-dimensional “flat” object (called a k-flat or a
k-dimensional affine subspace) as the affine span of a set of (k+ 1) points. For example,
we can represent any line in 3-dimensional space by taking any two distinct points p and
q on the line, and then considering all the affine combinations (1− α)p+ αq, for α ∈ R.
More generally, given any k+ 1 points {p1, . . . , pk}, we can represent any point on their
span as

∑k+1
i=1 αipi, where

∑k+1
i=1 αi = 1.

This is called the parametric representation, since each point on the object is identified
through the value of the parameter α (or generally the parameters α1, . . . , αk+1).

Divide-and-Conquer Algorithm: Returning to the halfplane intersection problem, recall that
we are given a set H = {h1, . . . , hn} of halplanes and wish to compute their intersection. Here
is a simple divide-and-conquer algorithm.

(1) If n = 1, then just return this halfplane as the answer.

(2) Otherwise, partition H into subsets H1 and H2, each of size roughly n/2.

(3) Compute the intersections K1 =
⋂
h∈H1

h and K2 =
⋂
h∈H2

h recursively.

(4) If either either K1 or K2 is empty, return the empty set. Otherwise, compute the
intersection of the convex polygons K1 and K2 (by the procedure described below).

If we let I(n) denote the time needed to intersect two convex polygons, each with at most n
vertices, we obtain the following recurrence for the overall running time:

T (n) =

{
1 if n = 1,
2T (n/2) + I(n) if n > 1,

We will show below that I(n) ≤ cn, for some constant c. It follows by standard results
(consult the Master Theorem in CLRS) that T (n) is O(n log n).

Intersecting Two Convex Polygons: The only remaining task is the process of intersecting two
convex polygons, K1 and K2 (see Fig. 36(a)). Note that these are somewhat special convex
polygons because they may be empty or unbounded.

We can compute the intersection by a left-to-right plane sweep in O(n) time (see Fig. 36(b)).
We begin by breaking the boundaries of the convex polygons into their upper and lower chains.
(This can be done in O(n) time.) By convexity, the sweep line intersects the boundary of
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each convex polygon Ki in at most two points, one for the upper chain and one for the lower
chain. Hence, the sweep-line status contains at most four points. This implies that updates to
the sweep-line status can be performed in O(1) time. Also, we need keep track of a constant
number of events at any time, namely the right endpoints of the current segments in the
sweep-line status, and the intersections between consecutive pairs of segments. Thus, each
step of the plane-sweep process can be performed in O(1) time.

K2

K1

K = K1 ∩K2

K2

K1

K = K1 ∩K2

`

(a) (b)

Fig. 36: Intersecting two convex polygons by plane sweep.

The total number of events is equal to the total number vertices, which is n, and the total
number of intersection points. It is an easy exercise (which we leave to you) to prove that two
convex polygons with a total of n sides can intersect at most O(n) times. Thus, the overall
running time is O(n).

Upper and Lower Envelopes of Lines: Let’s next consider a variant of the halfplane intersec-
tion problem. Given any set of nonvertical lines L = {`1, `2, . . . , `n} in the plane. Each line
defines two natural halfplanes, and upper and lower halfplane. The intersection of all the lower
halfplanes is called the lower envelope of L and the upper envelope is defined analogously (see
Fig. 37). Let’s assume that each line `i is given explicitly as y = aix− bi.

upper envelope

lower envelope

Fig. 37: Lower and upper envelopes.

The lower envelope problem is a restriction of the halfplane intersection problem, but it an
interesting restriction. Notice that any halfplane intersection problem that does not involve
any vertical lines can be rephrased as the intersection of two envelopes, a lower envelope
defined by the lower halfplanes and an upper envelope defined by the upward halfplanes.

We will see that solving the lower envelope problem is very similar (in fact, essentially the
same as) solving the upper convex hull problem. Indeed, they are so similar that exactly the
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same algorithm will solve both problems, without changing even a single character of code!
All that changes is the way in which you interpret the inputs and the outputs.

Motivating Duality: Consider any line ` : y = cx − d in the plane. Just as with point, it takes
two real numbers (c and d) to define any line in R2. Thus, we can identify the lines in R2 with
the set of points (c, d) in an alternative or “dual” space. For example, the line ` : y = 2x+ 1
corresponds to the point (2,−1) in dual space, which we denote by `∗. Conversely, each point
p = (a, b) is associated with a dual line, p∗ : y = ax− b, which we denote by p∗.

This insight would not be of much use unless we could say something about how geometric
relationships in one space relate to the other. The connection between the two involves
incidences between points and line.

Primal Relation Dual Relation

Two (nonparallel) lines meet in a point Two points join to form a line
A point lies on a line A line passes through a point
A point lies above/below a line A line passes above/below a point
Three points may be collinear Three lines may pass through the same point

We’ll show that these relationships are preserved by duality. For example, consider the two
lines `1 : y = 2x + 1 and the line `2 : y = −x

2 + 6 (see Fig. 38(a)). These two lines intersect
at the point p = (2, 5). The duals of these two lines are `∗1 = (2,−1) and `∗2 =

(
−1

2 ,−6
)
. The

line in the (a, b) dual plane passing through these two points is easily verified to be b = 2a−5.
Observe that this is exactly the dual of the point p (see Fig. 38(b)). (As an exercise, prove
this for two general lines.)

`1 : y = 2x + 1

`2 : y = −x
2 + 6

p = (2, 5)

x

y

`∗2 =
(
−1
2,−6

)
x

y

`∗1 = (2,−1)

p∗ : y = 2x− 5

(a) (b)

Primal Dual

Fig. 38: The primal and dual planes.

Dual Transformation: Let us explore this dual transformation more formally. Duality (or more
specifically point-line duality) is a transformation that maps points in the plane to lines and
lines to point. Given point p = (a, b) and line ` : y = cx− d, we define4

p∗ : y = ax− b and `∗ = (c, d).

4Duality can be generalized to higher dimensions as well. In Rd, let us identify the y axis with the d-th coordinate
vector, so that an arbitrary point can be written as p = (x1, . . . , xd−1, y) and a (d−1)-dimensional hyperplane can be
written as h : y =

∑d−1
i=1 aixi − b. The dual of this hyperplane is h∗ = (a1, . . . , ad−1, b) and the dual of the point p is

p∗ : b =
∑d−1

i=1 xiai−y. All the properties defined for point-line relationships generalize naturally to point-hyperplane
relationships, where notions of above and below are based on the assumption that the y (or b) axis is “vertical.”
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Properties of Point-Line Duality: Duality has a number of interesting properties, each of which
is easy to verify by substituting the definition and a little algebra.

Self Inverse: p∗∗ = p, `∗∗ = ` (This is trivial.)

Incidence Preserving: Point p is on line ` if and only if point `∗ is on line p∗. (Proof: The
first assertion is equivalent to b = ac − d and the second is equivalent to d = ca − b.
Clearly, one is satisfied if and only if the other is.)

`1 : y = 2x + 1

`2 : y = −x
2 + 6

x

y

x

y

(a) (b)

p = (1, 4)

`∗2 =
(
−1
2,−6

)`∗1 = (2,−1)

p∗ : b = a− 4
p is above `1 and below `2

p∗ is below `∗1 and above `∗2

Fig. 39: Order reversal.

Order Reversal: Point p is above/below line ` if and only if line p∗ is below/above point
`∗, respectively (see Fig. 39). (Proof: The first assertion is equivalent to b > ac− d and
the second to d > ca− b. Clearly, one is satisfied if and only if the other is.)

Intersection Preserving: Lines `1 and `2 intersect at point p if and only if the dual line p∗

passes through points `∗1 and `∗2. (Follows directly from incidence preservation.)

Collinearity/Coincidence: Three points are collinear in the primal plane if and only if their
dual lines intersect in a common point. (Follows directly from incidence preservation.)

Convex Hulls and Envelopes: Let us return now to the question of the relationship between
convex hulls and the lower/upper envelopes of a collection of lines in the plane. The following
lemma demonstrates the, under the duality transformation, the convex hull problem is dually
equivalent to the problem of computing lower and upper envelopes.

upper envelope

lower envelope

p∗4p1

p2
p6

p7
p4

p3
p5

upper hull

lower hull

(a) (b)

p∗6 p∗2

p∗7 p∗1

p∗1

p∗3 p∗5

p∗7

Fig. 40: Equivalence of hulls and envelopes.
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Lemma: Let P be a set of points in the plane. The counterclockwise order of the points along
the upper (lower) convex hull of P (see Fig. 40(a)), is equal to the left-to-right order of
the sequence of lines on the lower (upper) envelope of the dual P ∗ (see Fig. 40(b)).

Proof: We will prove the result just for the upper hull and lower envelope, since the other
case is symmetrical. For simplicity, let us assume that no three points are collinear.

Consider a pair of points pi and pj that are consecutive vertices on the upper convex
hull. This is equivalent to saying that all the other points of P lie beneath the line `ij
that passes through both of these points.

Consider the dual lines p∗i and p∗j . By the incidence preserving property, the dual point
`∗ij is the intersection point of these two lines. (By general position, we may assume that
the two points have different x-coordinates, and hence the lines have different slopes.
Therefore, they are not parallel, and the intersection point exists.)

By the order reversing property, all the dual lines of P ∗ pass above point `∗ij . This is
equivalent to saying the `∗ij lies on the lower envelope of P ∗.

To see how the order of points along the hulls are represented along the lower envelope,
observe that as we move counterclockwise along the upper hull (from right to left), the
slopes of the edges increase monotonically. Since the slope of a line in the primal plane
is the a-coordinate of the dual point, it follows that as we move counterclockwise along
the upper hull, we visit the lower envelope from left to right.

One rather cryptic feature of this proof is that, although the upper and lower hulls appear
to be connected, the upper and lower envelopes of a set of lines appears to consist of two
disconnected sets. To make sense of this, we should interpret the primal and dual planes from
the perspective of projective geometry, and think of the rightmost line of the lower envelope
as “wrapping around” to the leftmost line of the upper envelope, and vice versa. The places
where the two envelopes wraps around correspond to the vertical lines (having infinite slope)
passing through the left and right endpoints of the hull. (As an exercise, can you see which
is which?)

Primal/Dual Equivalencies: There are a number of computational problems that are defined
in terms of affine properties of point and line sets. These can be expressed either in primal
or in dual form. In many instances, it is easier to visualize the solution in the dual form. We
will discuss many of these later in the semester. For each of the following, can you determine
what the dual equivalent is?

� Given a set of points P , find the narrowest slab (that is, a pair of parallel lines) that
contains P . Define the width of the slab to be the vertical distance between its bounding
lines.

� Given a convex polygon K, find the longest vertical line segment with one endpoint on
K’s upper hull and one on its lower hull.

� Given a set of points P , find the triangle of smallest area determined by any three points
of P .

Lecture 7: Linear Programming

Linear Programming: One of the most important computational problems in science and engi-
neering is linear programming, or LP for short. LP is perhaps the simplest and best known
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example of multi-dimensional constrained optimization problems. In constrained optimiza-
tion, the objective is to find a point in d-dimensional space that minimizes (or maximizes)
a given objective function, subject to satisfying a set of constraints on the set of allowable
solutions.

Linear programming is perhaps the simplest example of a constrained optimization problem,
since both the constraints and objective function are linear functions. In spite of this apparent
limitation, linear programming is a very powerful way of modeling optimization problems.
Typically, linear programming is performed in spaces of very high dimension (hundreds to
thousands or more). There are, however, a number of useful (and even surprising) applications
of linear programming in low-dimensional spaces.

A Bit of History: The problem of solving a system of linear inequalities dates back to at least
the 1800’s, where it was studied by Joseph Fourier (of “Fourier Transform” fame). Serious
study of linear programming started in the 1940’s where it was developed (independently) by
Soviet mathematician and economist Leonid Kantorovich and George Dantzig and John von
Neumann. Dantzig developed the simplex algorithm, which provided a practical method for
solving large5 instances of LP.

While simplex is fast in practice, it is known that it can take exponential time. In his original
list of NP-hard problems, Richard Karp listed LP as one of the major open problems that are
not known to be solvable in polynomial time or NP-hard. In 1979, Leonid Khachiyan had a
major breakthrough by showing that LP could be solved in (weakly) polynomial time through
a method called the ellipsoid algorithm. The term “weakly” means that the running time is
polynomial not only in the input size, but also in the number of bits in the numbers involved.
The ellipsoid algorithm was primarily of theoretical interest, but in 1984 Narendra Karmarkar
developed a class of (also weakly polynomial) algorithms called interior-point methods. These
are quite practical, and are widely used today.

The question of whether there is a (strongly) polynomial time algorithm for LP is among
the most important open problems in computer science (right up there with P = NP ). In
this lecture, we will discuss a linear time algorithm for LP, but with the constraint that the
dimension is a fixed constant.

Problem Definition: Formally, in linear programming we are given a set of linear inequalities,
called constraints, in real d-dimensional space Rd. Given a point (x1, . . . , xd) ∈ Rd, we can
express such a constraint as a1x1 + . . . + adxd ≤ b, by specifying the coefficient ai and b.
(Note that there is no loss of generality in assuming that the inequality relation is ≤, since
we can convert a ≥ relation to this form by simply negating the coefficients on both sides.)
Geometrically, each constraint defines a closed halfspace in Rd. The intersection of these
halfspaces intersection defines a (possibly empty or possibly unbounded) polyhedron in Rd,
called the feasible polytope6 (see Fig. 41(a)).

We are also given a linear objective function, which is to be minimized or maximized subject
to the given constraints. We can express such as function as c1x1 + · · · + cdxd, by speci-
fying the coefficients ci. (Again, there is no essential difference between minimization and
maximization, since we can simply negate the coefficients to simulate the other.) We will

5Well, back in the 1940’s, solving 100 inequalities was considered “large”! But today, this algorithm solves instances
involving hundreds of thousands constraints.

6To some geometric purists this an abuse of terminology, since a polytope is often defined to be a closed, bounded
convex polyhedron, and feasible polyhedra need not be bounded.
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Fig. 41: 2-dimensional linear programming.

assume that the objective is to maximize the objective function. If we think of (c1, . . . , cd) as
a vector in Rd, the value of the objective function is just the projected length of the vector
(x1, . . . , xd) onto the direction defined by the vector c. It is not hard to see that (assuming
general position), if a solution exists, it will be achieved by a vertex of the feasible polytope,
called the optimal vertex (see Fig. 41(b)).

In general, a d-dimensional linear programming problem can be expressed as:

Maximize: c1x1 + c2x2 + · · ·+ cdxd
Subject to: a1,1x1 + · · ·+ a1,dxd ≤ b1

a2,1x1 + · · ·+ a2,dxd ≤ b2
...
an,1x1 + · · ·+ an,dxd ≤ bn,

where ai,j , ci, and bi are given real numbers. This can be also be expressed in matrix notation:

Maximize: cTx,
Subject to: Ax ≤ b.

where c and x are d-vectors, b is an n-vector and A is an n× d matrix. Note that c should be
a nonzero vector, and n should be at least as large as d and may generally be much larger.

There are three possible outcomes of a given LP problem:

Feasible: The optimal point exists (and assuming general position) is a unique vertex of the
feasible polytope (see Fig. 42(a)).

Infeasible: The feasible polytope is empty, and there is no solution (see Fig. 42(b)).

Unbounded: The feasible polytope is unbounded in the direction of the objective function,
and so no finite optimal solution exists (see Fig. 42(c)).

In our figures (in case we don’t provide arrows), we will assume the feasible polytope is the
intersection of upper halfspaces. Also, we will usually take the objective vector c to be a
vertical vector pointing downwards. (There is no loss of generality here, because we can
always rotate space so that c is parallel any direction we like.) In this setting, the problem is
just that of finding the lowest vertex (minimum y-coordinate) of the feasible polytope.
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Fig. 42: Possible outcomes of linear programming.

Solving LP in Spaces of Constant Dimension: There are a number of interesting optimiza-
tion problems that can be posed as a low-dimensional linear programming problem. This
means that the number of variables (the xi’s) is constant, but the number of constraints n
may be arbitrarily large.

The algorithms that we will discuss for linear programming are based on a simple method
called incremental construction. Incremental construction is among the most common design
techniques in computational geometry, and this is another important reason for studying the
linear programming problem.

(Deterministic) Incremental Algorithm: Recall our geometric formulation of the LP problem.
We are given n halfspaces H = {h1, . . . , hn} in Rd and an objective vector c, and we wish
to compute the vertex of the feasible polytope that is most extreme in direction c. Our
incremental approach will be based on starting with an initial solution to the LP problem for
a small set of constraints, and then we will successively add one new constraint and update
the solution.

In order to get the process started, we need to assume (1) that the LP is bounded and (2) we
can find a set of d halfspaces that provide us with an initial feasible point. Getting to this
starting point is actually not trivial.7 For the sake of focusing on the main elements of the
algorithm, we will skip this part and just assume that the first d halfspaces define a bounded
feasible polytope (actually it will be a polyhedral cone). The the unique point where all d
bounding hyperplanes, h1, . . . , hd, intersect will be our initial feasible solution. We denote
this vertex as vd (see Fig. 43(a)). We will then add halfspaces one by one, hd+1, hd+2, . . . , hn,
and with each addition we update the current optimum vertex, if necessary. For d ≤ i ≤ n,
let Hi = {h1, . . . , hi} denote the first i constraints, and let vi denote the associated optimum
vertex. Clearly, vi is the final solution to the LP. (In our figures, c points downwards, so
successive vi’s will move upwards as more constraints are considered.)

Let’s do this by induction. Assume that we have correctly computed vn−1, based on the first
n− 1 constraints Hn−1, and all that remains is to add the final constraint hn. There are two
cases that can arise:

vn−1 is feasible for hn: (vn−1 ∈ hn. See Fig. 43(b)): The optimum vertex does not change.
Set vn ← vn−1.

7Our textbook explains how to overcome these assumptions in O(n) additional time.
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Fig. 43: (a) Starting the incremental construction and (b) the proof that the new optimum lies on
`n.

vn−1 violates hn: (vn−1 /∈ hn. See Fig. 43(c)): We need to update vn. This is described
below.

The key observation for updating the optimum is presented in the following claim, which
states that the new optimum vertex lies on the boundary of the new constraint.

Lemma: If after the addition of constraint hn the LP is still feasible but the optimum vertex
changes, then the new optimum vertex lies on the hyperplane bounding hn.

Proof: Let `n denote the bounding hyperplane for hn. Let vn−1 denote the old optimum
vertex. Suppose towards contradiction that the new optimum vertex vn does not lie on
`n (see Fig. 43(c)). Since vn−1 /∈ hn and vn ∈ hn, the line segment vn−1vn crosses `n.
Let p = vn−1vn∩`n. By convexity p is feasible. By linearity the objective function grows
progressively worse as we walk from vn−1 to vn. Therefore p is a better solution that vn,
a contradiction.

Recursively Updating the Optimum Vertex: Using this observation, we can reduce the prob-
lem of finding the new optimum vertex to an LP problem in one lower dimension. Let us
consider an instance where the old optimum vertex vn−1 does not lie within hn (see Fig. 44(a)).
Let `n denote the bounding hyperplane for the halfspace hn. We first project the objective
vector c onto `n, letting c′ be the resulting vector (see Fig. 44(b)). Next, intersect each of the
halfspaces {h1, . . . , hn−1} with `n. Each intersection is a (d − 1)-dimensional halfspace that
lies on `n. Since `n is a (d − 1)-dimensional hyperplane, we can project `n onto Rd−1 space
(see Fig. 44(b)).

vn−1

c
hn

vn

vn

(a) (b)

`n `n c′intersect with `n

c′

project onto Rd−1

Fig. 44: Incremental construction.

Lecture Notes 49 CMSC 754



How do we carry this out? We will not discuss this here except to say that this basically
involves Gauss elimination, which you probably learned in your course on linear algebra. (See
the end of this lecture for details.) All we need to know for now is that this can be done
in time O(dn), and results in an LP involving n − 1 constraints in d − 1 dimensional space.
Once we solve this LP, we can invert the projection process to project the optimum vertex
back into Rd, which becomes the new optimum vn.

The recursion “bottoms out” when we reach 1-dimensional space (see the bottom of Fig. 44(b)).
Each constraint is a simple inequality (either v ≤ ai or v ≥ ai), and the objective function
degenerates to simply “find the largest” or “find the smallest” feasible point. This is trivially
solvable in O(n) time. Since the original LP was bounded, the resulting 1-dimensional LP
will also be bounded, but it might be infeasible.

Worst-Case Analysis: What is the running time of this algorithm? It turns out that the running
time is sensitive to the order in which the halfspaces are inserted. (The complete algorithm is
described below.) Let’s consider what happens assuming the worst possible insertion order.

Since the algorithm is recursive, it is natural to express the running time as a recurrence. Let
Wd(n) denote the worst-case running time of our LP algorithm for n halfspaces in Rd. Recall
that we needed to begin by assuming that we have a bounded solution involving d halfspaces.
This fact will simply complicate the analysis, and so for the sake of setting the basis cases,
let’s assume that Wd(1) = 1 and W1(n) = n.

For general n and d, we begin by recursively computing the optimum LP solution for the
first n − 1 halfspaces, which takes Wd(n − 1) time. Next, we check whether the optimum
vertex vn−1 is feasible for the final halfspace hn. This can be tested in just O(d) time. If
it is feasible, we are done. Otherwise, we need to apply the projection process and invoke a
(d− 1)-dimensional LP on n− 1 halfspaces. As mentioned above, it takes O(dn) to perform
the projection and it takes Wd−1(n − 1) time to compute the lower-dimensional LP. Up to
constant factors, this yields the following recurrence:

Wd(n) =


1 if n = 1,
n if d = 1,
Wd(n− 1) + d+ dn+Wd−1(n− 1) otherwise.

It is easy to show by induction that Wd(n) = O(nd). Since we don’t intend to use this
algorithm, here is a quick-and-dirty analysis, which will hopefully convince you that this is
believable. Suppose we were to ignore the “d + dn” term and replace the Wd−1(n − 1) with
Wd−1(n). Then, we would have the recurrence Wd(n) = Wd(n−1)+Wd−1(n). Does this look
familiar? It is essentially the same as Pascal’s famous recurrence for the binomial coefficients,(
n
d

)
=
(
n−1
d

)
+
(
n
d−1

)
. It is well known that

(
n
d

)
= O(nd), and so it is not surprising that we

essentially get the same asymptotic bound for our recurrence.

Considering that n may be very large, a running time of O(nd) is unacceptably slow even
in R2. This worst-case analysis is based on the very pessimistic assumption that the vertex
generated by the LP on the first n− 1 constraints is always infeasible. It can be shown that
there exist insertion order for which this happens, these are exceedingly rare. Next, we’ll
consider a randomized strategy.

Randomized Algorithm: Suppose that we apply the above algorithm, but we insert the halfs-
paces in random order. (As mentioned above, we need to start with d halfspaces to obtain
our initial solution, but in our analysis, we will ignore this messy detail.) This is an example
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of a general class of algorithms called randomized incremental algorithms. A description is
given in the code block below.

Randomized Incremental d-Dimensional Linear Programming
Input: A set H = {h1, . . . , hn} of halfspaces in Rd, such that the first d define an initial feasible vertex vd,
and the objective vector c.
Output: The optimum vertex v or an error status indicating that the LP is infeasible.

(1) If d = 1, solve the LP by brute force in O(n) time

(2) Find an initial subset of d halfspaces {h1, . . . , hd} that provide a bounded solution vd. (If no such set
exists, report that the LP is unbounded.)

(3) Randomly select a halfspace from the remaining set {hd+1, . . . , hn}. Call this hn. Recursively solve
the LP on the remaining n− 1 halfspaces, letting vn−1 denote the result. (If the LP is infeasible, then
return this.)

(4) If (vn−1 ∈ hn) return vn−1 as the final answer

(5) Otherwise, intersect {h1, . . . , hn−1} with the (d − 1)-dimensional hyperplane `n that bounds hn and
project onto Rd−1. Let c′ be the projection of c onto `n and then onto Rd−1. Recursively solve the
resulting (d − 1)-dimensional LP with n − 1 halfspaces. (If the LP is infeasible, then return this.)
Project the optimal vertex back onto `n, and return this point.

What is the expected case running time of this randomized incremental algorithm? Note that
the expectation is over the random permutation of the insertion order. In particular, make
no assumptions about the distribution of the input. (This is an important characteristic of
randomized algorithms. The performance might be affected by the random number generator,
but not the input the user gives us.)

The number of random permutations is (n − d)!, but it will simplify things to pretend that
we permute all the halfspaces, and so there are n! permutations. Each permutation has an
equal probability of 1/n! of occurring, and an associated running time. However, presenting
the analysis as sum of n! terms does not lead to something that we can easily simplify. We
will apply a technique called backwards analysis, which is quite useful.

Computing the Minimum (Optional): To motivate how backwards analysis works, let us con-
sider a much simpler example, namely the problem of computing the minimum of a list of
numbers. Suppose that we are given a sequence S of n distinct numbers. We permute the
sequence and inspect them one-by-one. We maintain a variable that holds the smallest value
seen so far. If we see a value that is smaller than the current minimum, then we update the
current smallest. Of course, this takes O(n) time, but the question we will consider is, in
expectation how many times does the current smallest value change?

Below are three sequences that illustrate that the minimum may updated once (if the numbers
are given in increasing order), n times (if given in decreasing order). Observe that in the third
sequence, which is random, the minimum does not change very often at all.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

5 9 4 11 2 6 8 14 0 3 13 12 1 7 10

Let pi denote the probability that the minimum value changes on inspecting the ith number
of the random permutation. Thus, with probability pi the minimum changes (and we add 1
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to the counter for the number of changes) and with probability 1 − pi it does not (and we
add 0 to the counter for the number of changes). The total expected number of changes is

C(n) =
n∑
i=1

(pi · 1 + (1− pi) · 0) =
n∑
i=1

pi.

It suffices to compute pi. We might be tempted to reason as follows. Let us consider a random
subset of the first i−1 values, and then consider all the possible choices for the ith value from
the remaining n− i+1 elements of S. However, this leads to a complicated analysis involving
conditional probabilities. (For example, if the minimum is among the first i − 1 elements,
pi = 0, but if not then it is surely positive.) Let us instead consider an alternative approach,
in which we work backwards. In particular, let us fix the first i values, and then consider the
probability the last value added to this set resulted in a change in the minimum.

To make this more formal, let Si be an arbitrary subset of i numbers from our initial set of
n. (In theory, the probability is conditional on the fact that the elements of Si represent the
first i elements to be chosen, but since the analysis will not depend on the particular choice
of Si, it follows that the probability that we compute will hold unconditionally.) Among
all the n! permutations that could have resulted in Si, each of the i! permutations of these
first i elements are equally likely to occur. For how many of these permutations does the
minimum change in the transition from Si−1 to Si? Clearly, the minimum changes only
for those sequences in which the smallest element of Si is the ith element itself. Since the
minimum item appears with equal probability in each of the i positions of a random sequence,
the probability that it appears last is exactly 1/i. Thus, pi = 1/i. From this we have

C(n) =

n∑
i=1

pi =

n∑
i=1

1

i
= lnn+O(1).

This summation
∑

i
1
i is the Harmonic series, and it is a well-known fact that it is nearly

equal to lnn. (See, e.g., the Wikipedia entry for Harmonic Series.)

Note that by fixing Si, and considering the possible (random) transitions that lead from
Si−1 to Si, we avoided the need to consider any conditional probabilities. This is called a
backwards analysis because the analysis works by considering the possible random transitions
that brought us to Si from Si−1, as opposed to working forward from Si−1 to Si. Of course,
the probabilities are no different whether we consider the random sequence backwards rather
than forwards, so this is a perfectly accurate analysis. It’s arguably simpler and easier to
understand.

Backwards Analysis for Randomized LP: Let us apply this same “backwards” approach to
the analysis of the running time of the randomized incremental linear programming algorithm.
We will do the analysis in d-dimensional space. Let Td(n) denote the expected running time
of the algorithm on a set of n halfspaces in dimension d. We will prove by induction that
Td(n) = O(n), where the constant factor grows exponentially with the dimension. More
precisely, we will show that Td(n) ≤ γd!n, where γ is some constant that does not depend on
dimension. It will make the proof simpler if we start by proving that Td(n) ≤ γdd! n, where
γd does depend on dimension, and later we will eliminate this dependence.

Recall that our algorithm was complicated by the need to start with a solution involving d
halfspaces. It will simplify the analysis to ignore this technical detail. As we did in our worst-
case analysis, we will start with the basis cases Td(1) = 1 and T1(n) = n. Our randomized
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analysis will depend on the random event of whether we execute the inexpensive step (4) or
the expensive step (5). Given n ≥ 1, let pn denote the probability that the insertion of the
nth hyperplane in the random order results in a change in the optimum vertex. Before we
derive the value of pn, let’s see how it affects our execution time.

Case 1: With probability (1− pn) there is no change in the optimum. It takes us O(d) time
to determine that this is the case (but we pay this cost irrespective of whether vn−1 ∈ hn)

Case 2: With probability pn, there is a change to the optimum. This means that we need
to apply the projection process (which we saw earlier can be done in time O(dn)) and
then invoke a (d−1)-dimensional LP involving n−1 halfspaces (which takes Td−1(n−1)
time).

In either case, we start by solving an LP involving n− 1 halfspaces, which requires Td(n− 1)
expected time. This suggests the following recurrence for the expected execution time:

Td(n) =


1 if n = 1,
n if d = 1,
Td(n− 1) + d+ pn(dn+ Td−1(n− 1)) otherwise.

The last case is the interesting one for us, since we’ll be deriving an upper bound, we can
simplify the last recursive term by replacing n− 1 with n, yielding Td(n) ≤ Td(n− 1) + d+
pn(dn+ Td−1(n)).

It remains is to determine what pn is. Assuming general position, the final optimal vertex vn
is determined by the intersection of d halfspaces. This vertex is feasible with respect to all
the other n− d halfspaces. Since the final halfspace hn was chosen randomly, the probability
that it is among the d halfspaces that determine the final optimum is d/n. Therefore,

� With probability pn = d/n, inserting hn causes the optimum to change (see Fig. 45(b))

� With probability 1− pn, inserting hn leaves the optimum unchanged (see Fig. 45(c))

c

(a)

vn

c

(b)

vn vn−1

c

(c)

vn = vn−1

hn

hn

Fig. 45: Backwards analysis for the randomized LP algorithm.

Returning to our analysis, setting pn = d/n and applying our induction hypothesis (that
Td(n) ≤ γd!n) we have

Td(n) ≤ Td(n− 1) + d+ pn
(
dn+ Td−1(n)

)
≤ γdd!(n− 1) + d+

d

n

(
dn+ (γd−1 (d− 1)!n)

)
= γdd!(n− 1) + (d+ d2 + γd−1d!)

= γdd!n+
[
d+ d2 + γd−1d!− γdd!

]
.
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To complete the induction proof, it suffices to show that the final term in brackets is less than
zero. That is, we want to select γd such that

d+ d2 + γd−1d!− γdd! ≤ 0 or equivalently γdd! ≥ d+ d2 + γd−1d!

To satisfy this we can set γ1 = 1 and then for d = 2, 3, . . . we define

γd ←
d+ d2

d!
+ γd−1,

Recalling that d is a constant, it follows that γd is a constant, and therefore the final running
time is O(n), where the constant factor is dominated by d!.

Eliminating the Dependence on Dimension: As mentioned above, we don’t like the fact that
the “constant” γd changes with the dimension. To remedy this, note that because d! grows
so rapidly compared to either d or d2, it is easy to show that (d + d2)/d! ≤ 1/2d for almost
all sufficiently large values of d. Because the geometric series

∑∞
d=1 1/2d, converges, it follows

that there is a constant γ (independent of dimension) such that γd ≤ γ for all d. Thus, we
have that Td(n) ≤ O(d! n), where the constant factor hidden in the big-Oh does not depend
on dimension.

Why Randomization is Okay: You might be disturbed by the fact that the algorithm is not
deterministic, and that we have only bounded the expected case running time. Might it not
be the case that the algorithm takes ridiculously long, degenerating to the O(nd) running
time, on very rare occasions? Can’t we find an equally fast deterministic algorithm?

The answer to both questions is “yes”. Unfortunately, the simplest deterministic algorithm
is much more complex than the randomized algorithm. Also, in his original paper, Seidel
proves that the probability that the algorithm exceeds its running time by a factor b is
O((1/c)bd!), for any fixed constant c. For example, he shows that in 2-dimensional space,
the probability that the algorithm takes more than 10 times longer than its expected time
is at most 0.0000000000065. You would have a much higher probability be being struck by
lightning twice in your lifetime!

Summary: We have presented a simple and elegant randomized incremental algorithm for solving
linear programming in spaces of constant dimension. The algorithm runs in O(n) time in
expectation. (Remember that expectation does not depend on the input, only on the random
choices.) Unfortunately, our assumption that the dimension d is a constant is crucial. The
factor d! grows so rapidly (and it seems to be an unavoidable part of the analysis) that this
algorithm is limited to fairly low dimensional spaces. In future lectures, we will see that
there are numerous geometric problems that can be efficiently solved by reduction to LP (or
something that is similar to LP).

Projecting Constraints: (Optional) Earlier in the lecture, we omitted discussion of the technical
details on how to intersect constraint the various halfspaces hj with the final hyperplane
`n, and project the result down to Rd−1 (recall Fig. 44). We mentioned there that this is
essentially performing one step of Gauss elimination. Here are the technical details.

Let `n denote the hyperplane that bounds the final halfspace. We may assume it is given by
the equation:

`n : an,1x1 + an,2x2 + · · ·+ an,dxd = bn.
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We can express this more succinctly in matrix notation. Let An denote the 1 × d vector
consisting of the i-th row of the A matrix, An = (an,1, an,2, . . . , an,d). The inequality may be
written An~x = bn, where ~x is a d× 1 vector and bn is a scalar.

We want to intersect the other halfspaces with this hyperplane. Furthermore, we would like
to represent the result as a LP in d−1 dimensional problem. (Observe that after intersection
the hyperplane still resides in d space.)

The idea is to apply one step of Gauss elimination using the equation of `n to eliminate a
variable from all the other inequalities. By general position, we may assume that an,1 6= 0.
Consider an arbitrary constraint hj that we wish to intersect with `n:

hj : Ajx ≤ bj .

To eliminate the first dimension from hj we multiply An by (aj,1/an,1) and subtract from Aj ,
do the same for bn and bj :

A′j = Aj −
(
aj,1
an,1

)
An

b′j = bj −
(
aj,1
an,1

)
bn.

To see that this works, consider an arbitrary point x on the hyperplane `n, which is equivalent
to saying that Anx = bn. Suppose as well that that x satisfies constraint hj , that is, Ajx ≤ bj .
Then we have

A′jx =

(
Aj −

aj,1
an,1

An

)
x = Ajx−

aj,1
an,1

Anx

≤ bj −
aj,1
an,1

bn = b′j .

Thus, every point that satisfies the original constraint also satisfies the modified constraint.
The converse holds by a symmetrical argument. A similar elimination can be performed to
the objective vector ~c. Since the first term of each equation vanishes (is now zero), we are
left with a d − 1 dimensional problem. Reversing the process allows us to project the d − 1
dimensional solution back into d-space.

Lecture 8: Trapezoidal Maps

Trapezoidal Map: Many techniques in computational geometry are based on generating decom-
posing a complex arrangement of objects into a collection of simple objects. We have seen
triangulations as one example, where the interior of an n-vertex simple polygon is subdivided
into a collection of n − 2 triangles. Today, we will consider a considerably more general
technique for subdividing space in the midst of a collection of disjoint line segments.

Let S = {s1, . . . , sn} be a set of line segments in the plane such that the segments do not
intersect one another, except perhaps that two segments can intersect at their endpoints. (We
allow segments to share common endpoints so that our results can be generalized to planar
graphs and planar subdivisions.) Let us make the general-position assumptions that no two
endpoints have the same x-coordinate, and (hence) there are no vertical segments.
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We wish to produce a subdivision of space that “respects” these line segments. To do so, we
start by enclosing all the segments within a large bounding rectangle (see Fig. 46(a)). This
is mostly a convenience, so we don’t have to worry about unbounded regions. Next, imagine
shooting a bullet path vertically upwards and downwards from the endpoints of each segment
of S until it first hits another segment of S or the top or bottom of the bounding rectangle.
The combination of the original segments and these vertical bullet paths defines a subdivision
of the bounding rectangle called the trapezoidal map of S (see Fig. 46(b)), denoted T (S).

∆

Line segments Trapezoidal map

(a) (b)

Fig. 46: A set of segments and the associated trapezoidal map.

The faces of the resulting subdivision are generally trapezoids with vertical sides, but they
may degenerate to triangles in some cases. The vertical sides are called walls. Also observe
that it is possible that the nonvertical side of a trapezoid may have multiple vertices along
the interior of its top or bottom side. This was not the case for the triangulations that we
discussed earlier, where adjacent triangles met only along complete edges. (In the terminology
of topology, a trapezoidal map is not a cell complex, while a triangulation is.) Trapezoidal
maps are useful data structures, because the provide a way to convert a possibly disconnected
collection of segments into a structure that covers the plane.

We begin by showing that the process of converting an arbitrary polygonal subdivision into
a trapezoidal decomposition increases its size by at most a constant factor. We derive the
exact expansion factor in the next claim.

Lemma: Given set S of n line segments in the plane, the resulting trapezoidal map T (S)
has at most 6n+ 4 vertices and 3n+ 1 trapezoids.

Proof: Each segment generates six vertices in the map, two for the segment’s endpoints, two
from the upward vertical rays, and two from the downward vertical rays (see Fig. 47(a)).
In addition, there are four vertices for the bounding rectangle, resulting in a total of
6n+ 4 vertices.

Let us charge each trapezoid to the vertex along its left edge. Each segment is charged
by three trapezoids, since the left endpoint of each segment is charged twice, one from
the trapezoid above-right and one from the trapezoid below-right, and the right endpoint
is charged once by the trapezoid to its right (see Fig. 47(b)). This yields a total of 3n
trapezoids. There is one more trapezoid, namely the leftmost one, for a total of 3n+ 1.

An important fact to observe about each trapezoid is that its existence is determined by
exactly four entities from the original subdivision: a segment on top, a segment on the
bottom, a bounding vertex on the left, and a bounding vertex on the right. The bounding
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(a) (b)

Fig. 47: (a) The six vertices associated with each segment and (b) the three left-bounding trapezoids
associated with each segment.

vertices may be endpoints of the upper or lower segments, or they may below to completely
different segments. This simple observation will play an important role later in the analysis.

Construction: We could construct the trapezoidal map by a straightforward application of plane
sweep. (By now, this should be an easy exercise for you. You might think about how you
would do it.) Instead, we will build the trapezoidal map by a different approach, namely a
randomized incremental algorithm.8

The incremental algorithm starts with the initial bounding rectangle (that is, one trapezoid)
and then we add the segments of the polygonal subdivision one by one in random order. As
each segment is added, we update the trapezoidal map. Let Si denote the subset consisting
of the first i (randomly permuted) segments, and let Ti denote the resulting trapezoidal map.

To perform this update, we need to know which trapezoid of the current map contains the left
endpoint of the newly added segment. We will address this question later when we discuss
point location. We then trace the line segment from left to right, by “walking” it through the
existing trapezoidal map (see Fig. 48). Along the way, we discover which existing trapezoids
it intersects. We go back to these trapezoids and “fix them up”. There are two things that
are involved in fixing process.

� The left and right endpoints of the new segment need to have bullets fired from them.

� One of the earlier created walls might hit the new line segment. When this happens the
wall is trimmed back. (We store which vertex shot the bullet path for this wall, so we
know which side of the wall to trim.)

The process is illustrated in Fig. 48, where we insert a new segment (red) into the trapezoidal
map from Fig. 46.

Observe that the structure of the trapezoidal decomposition does not depend on the order in
which the segments are added. (This fact will be exploited later in the running time analysis,
and it is one of the reasons that trimming back the walls is so important.) The following is
also important to the analysis.

Lemma: Ignoring the time spent to locate the left endpoint of an segment, the time that
it takes to insert the ith segment and update the trapezoidal map is O(ki), where ki
denotes the number of newly created trapezoids.

8Historically, the randomized incremental algorithm that we will discuss arose as a method for solving a more
general problem, namely computing the intersection of a collection of line segments. Given n line segments that have
I intersections, this algorithm runs in O(I+n logn) time, which is superior to the plane sweep algorithm we discussed
earlier. The original algorithm is due to Ketan Mulmuley.
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(a) (b) (c)

Fig. 48: Inserting a segment into the trapezoidal map: (a) Locate the left endpoint and trace the
segment through trapezoids, (b) shoot bullet paths from endpoints and trim walls that have been
crossed, (c) four original trapezoids have been replaced by seven new trapezoids (shaded).

Proof: Consider the insertion of the ith segment, and let wi denote the number of existing
walls that this segment intersects. We need to shoot four bullets (two from each end-
point) and then trim each of the wi walls, for a total of wi + 4 operations that need to
be performed. If the new segment did not cross any of the walls, then we would get
exactly four new trapezoids. For each of the wi walls we cross, we add one more to the
number of newly created trapezoids, for a total of wi + 4. Thus, letting ki = wi + 4 be
the number of trapezoids created, the number of update operations is exactly ki. Each
of these operations can be performed in O(1) time given any reasonable representation
of the trapezoidal map as a planar subdivision, for example, a doubly connected edge
list (DCEL).

Analysis: We will analyze the expected time to build the trapezoidal map, assuming that seg-
ments are inserted in random order. (Note that we make no assumptions about the spatial
distribution of the segments, other than the fact they do not intersect.) Clearly, the running
time depends on how many walls are trimmed with each intersection. In the worst case, each
newly added segment could result in Ω(n) walls being trimmed, and this would imply an
Ω(n2) running time. We will show, however, that the expected running time is much smaller,
in fact, we will show the rather remarkable fact that, each time we insert a new segment, the
expected number of wall trimmings is just O(1). (This is quite surprising at first. If many of
the segments are long, it might seem that every insertion would cut through O(n) trapezoids.
What saves us is that, although a long segment might cut through many trapezoids, it shields
later segments from cutting through many trapezoids.) As was the case in our earlier lecture
on linear programming, we will make use of a backwards analysis to establish this result.

There are two things that we need to do when each segment is inserted. First, we need to
determine which cell of the current trapezoidal map contains its left endpoint. We will not
discuss this issue today, but in our next lecture, we will show that the expected time needed
for this operation is O(n log n). Second, we need to trim the walls that are intersected by the
new segment. The remainder of this lecture will focus on this aspect of the running time.

From the previous claim, we know that it suffices to count the number of new trapezoids
created with each insertion. The main result that drives the analysis is presented in the next
lemma.

Lemma: Consider the randomized incremental construction of a trapezoidal map, and let
ki denote the number of new trapezoids created when the ith segment is added. Then
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E[ki] = O(1), where the expectation is taken over all possible permutations of the
segments as the insertion orders.

Proof: The analysis will be based on a backwards analysis. Recall that such an analysis
involves analyzing the expected value assuming that the last insertion was random.

Let Ti denote the trapezoidal map resulting after the insertion of the ith segment. Be-
cause we are averaging over all permutations, among the i segments that are present in
Ti, each one has an equal probability 1/i of being the last one to have been added. For
each of the segments s we want to count the number of trapezoids that would have been
created, had s been the last segment to be added.

We say that a trapezoid ∆ of the existing map depends on an segment s, if s would have
caused ∆ to be created had s been the last segment to be inserted. (For example, in
Fig. 49(a), the shaded trapezoids depend on s, and none of the others do.) We want
to count the number of trapezoids that depend on each segment, and then compute
the average over all segments. If we let δ(∆, s) = 1 if segment ∆ depends on s, and 0
otherwise, then the expected value is

E[ki] =
∑
s∈Si

(prob. that s is last)(num. of trapezoids that depend on s)

=
∑
s∈Si

1

i

∑
∆∈Ti

δ(∆, s)

 =
1

i

∑
s∈Si

∑
∆∈Ti

δ(∆, s).

(a) (b)

s

Trapezoids that depend on s

∆

Segments that ∆ depends on

Fig. 49: Trapezoid-segment dependencies.

Some segments might have resulted in the creation of lots of trapezoids and others would
have resulted in very few. How can we analyze such an unruly quantity? The trick is,
rather than counting the number of trapezoids that depend on each segment, we swap
the order of the two summations and instead count the number segments upon which
each trapezoid depends. In other words we can express the above quantity as:

E[ki] =
1

i

∑
∆∈Ti

∑
s∈Si

δ(∆, s).

This quantity is much easier to analyze. In particular, each trapezoid is bounded by at
most four sides. (The reason it is “at most” is that degenerate trapezoids are possible
which may have fewer sides.) The top and bottom sides are each determined by a
segment of Si, and clearly if either of these was the last to be added, then this trapezoid
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would have come into existence as a result. The left and right sides are each determined
by a endpoint of a segment in Si, and clearly if either of these was the last to be added,
then this trapezoid would have come into existence.9

In summary, each of the decomposition trapezoid is dependent on at most four segments,
which implies that

∑
s∈Si

δ(∆, s) ≤ 4. Since Ti consists of at most 3i+ 1 trapezoids we
have

E[ki] ≤
1

i

∑
∆∈Ti

4 =
4

i
|Ti| ≤

4

i
(3i+ 1) = O(1).

We know that the total number of trapezoids in the end is at most 3n+ 1 = O(n). Since the
expected number of new trapezoids created with each insertion is O(1), it follows that the
total number of trapezoids that are created (and perhaps destroyed) throughout the entire
process is O(n). This fact is important in bounding the total time needed for the randomized
incremental algorithm.

The only question that we have not considered in the construction is how to locate the
trapezoid that contains left endpoint of each newly added segment. We will consider this
question, and the more general question of how to do point location in our next lecture.

Lecture 9: Planar Point Location (using Trapezoidal Maps)

Point Location: In planar point location we are given a polygonal subdivision of the plane, and
the objective is to preprocess this subdivision into a data structure so that given a query
point q, it is possible to efficiently determine which face of the subdivision contains q (see
Fig. 50(a)). For example, the subdivision might represent government subdivisions, such as
countries, states, or counties, and we wish to identify the country, state, or county of a point
given its GPS coordinates.

(a) (b)

q

q

si

Fig. 50: (a) point location and (b) vertical ray-shooting queries.

It will be useful to generalize the above problem. Rather than assuming that the input is
a subdivision of space into cells (what is commonly referred to as a cell complex ), we will
assume that the input is merely a set of n line segments S = {s1, . . . , sn}. The objective is to
answer vertical ray-shooting queries, which means, given a query point q, what line segment
si (if any) lies immediately below the query point (see Fig. 50(b)). Observe that the ability
to answer vertical ray-shooting queries implies that point-location queries can be answered.

9There is a bit of a subtlety here. What if multiple segments share the endpoint? Note that the trapezoid is
only dependent on the first such segment to be added, since this is the segment that caused the vertex to come into
existence. Also note that the same segment that forms the top or bottom side might also provide the left or right
endpoint. These considerations only decrease the number of segments on which a trapezoid depends.
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We simply label each segment with the identity of the subdivision cell that lies immediately
above it.

We will make the usual general-position assumptions. In particular, except when two segments
share a common endpoint, no two segment endpoints share the same x-coordinate. Also, we
will assume no vertical segments. Let us also assume that the query point does not have the
same x-coordinate of any segment endpoint.

Our objective is to obtain a data structure with O(n) space and O(log n) query time, which
we can build in O(n log n) time. This is asymptotically optimal (assuming a data structure
based on comparisons).

History: When the problem was first considered, a number of solutions had been proposed, but
they were all suboptimal by a log factor either in the query time or the space. The first optimal
solution was proposed by David Kirkpatrick in the early 1980’s. The algorithm involved a very
clever incremental approach based on iteratively decimating a triangulation. The approach
described here is both simpler and more efficient, but many of the ideas were inspired by
Kirkpatrick’s data structure. The method we will described is based on the randomized
construction of trapezoidal maps, and so the construction time holds in the expected case.
(In contrast, Kirkpatrick’s solution was deterministic.)

Recap of Trapezoidal Maps: Our point-location data structure will be based on the randomized
trapezoidal map construction from the previous lecture. In that lecture we showed that a
trapezoidal map of O(n) space could be constructed in (randomized) O(n log n) expected
time. In this lecture we show how to modify the construction so that, as a by product, we
obtain a data structure for answering vertical ray-shooting queries. The preprocessing time
for the data structure will also be O(n log n) in the expected case, the space required for the
data structure will be O(n), and the query time will be O(log n). The latter two bounds will
hold unconditionally.

Let us recap some of the concepts from the previous lecture. Recall that the input as a set of
segments in the plane S = {s1, . . . , sn}, which are assumed to have been randomly permuted,
and which are enclosed in an axis-aligned bounding rectangle. Recall that the trapezoidal
map, denoted T (S), is a subdivision generated by shooting bullet paths both upwards and
downwards from each segment endpoint until first striking another segment (or hitting the
bounding box of the input). Let Si = {s1, . . . , si} , and let Ti = T (Si) denote the trapezoidal
map of Si, and T = Tn.

Recall from the previous lecture that each time we add a new line segment, it may result in
the creation of the collection of new trapezoids, which are said to depend on this line segment.
We showed that (under the assumption of the random insertion order) the expected number
of new trapezoids that are created with each stage is O(1). This fact will be used later in this
lecture.

Point Location Data Structure: Typical search structures (red-black trees, AVL trees, etc.)
are rooted binary trees. Our point location data structure will be a rooted binary tree with
shared subtrees, or equivalently, a rooted directed acyclic graph (DAG). Each node will have
either zero or two outgoing edges. Nodes with zero outgoing edges are called leaves. The
leaves will be in 1–1 correspondence with the trapezoids of the map. The other nodes are
called internal nodes, and they are used to guide the search to the leaves. (Note that subtree
sharing is important for our space efficiency.)

There are two types of internal nodes, x-nodes and y-nodes:
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x-Nodes: Each x-node contains a reference to an endpoint of some segment. Ists two children
correspond to the points lying to the left and to the right of the vertical line passing
through p (see Fig. 51(a)).

y-Nodes: Each y-node contains a reference to a line segment of the subdivision, and the
left and right children correspond to whether the query point is above or below the line
containing this segment, respectively (see Fig. 51(b)). (Don’t be fooled by the name—
y-node comparisons depend on both the x and y values of the query point.)

Note that the search will reach a y-node only if we have already verified that the x-coordinate
of the query point lies within the vertical slab that contains this segment.

sp

A B

(a) (b)

A B

p A

B

s

(b)

A B

x-node y-node

Fig. 51: (a) x-node and (b) y-node.

Our construction of the point location data structure mirrors the incremental construction
of the trapezoidal map, as given in the previous lecture. In particular, if we freeze the
construction just after the insertion of any segment, the current structure will be a point
location structure for the current trapezoidal map.

In Fig. 52 below we show a simple example of what the data structure looks like for two line
segments. For example, if the query point is in trapezoid D, we would first detect that it is
to the right of endpoint p1 (right child), then left of t1 (left child), then below s1 (right child),
then right of p2 (right child), then above s2 (left child).

p1

t1

p2 t2

s1

s2

A

B

C F

D
E

G

s2

p2

A

B

C

D F

s1

E

s2 G

t1

p1

t2
B

(a) (b)

Fig. 52: Trapezoidal map point location data structure.

Incremental Construction: The question is how do we build this data structure incrementally?
First observe that when a new line segment is added, we only need to adjust the portion of
the tree that involves the trapezoids that have been deleted as a result of this new addition.
Each trapezoid that is deleted will be replaced with a search structure that determines the
newly created trapezoid that contains it.

Suppose that we add a line segment s. This results in the replacement of an existing set
of trapezoids with a set of new trapezoids. As a consequence, we will replace the leaves
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associated with each such deleted trapezoid with a local search structure, which locates the
new trapezoid that contains the query point. There are three cases that arise, depending on
how many endpoints of the segment lie within the current trapezoid.

Single (left or right) endpoint: A single trapezoid A is replaced by three trapezoids, de-
noted B, C, and D. Letting p denote the endpoint, we create an x-node for p, and
one child is a leaf node for the trapezoid B that lies outside vertical projection of the
segment. For the other child, we create a y-node whose children are the trapezoids C
and D lying above and below the segment, respectively (see Fig. 53(a)).

Two segment endpoints: This happens when the segment lies entirely inside an existing
trapezoid A, which is replaced by four trapezoids, E, B, C, and D. Letting p and t
denote the left and right endpoints of the segment, we create two x-nodes, one for p and
the other for t. We create a y-node for the line segment, and join everything together
(see Fig. 53(b)).

No segment endpoints: This happens when the segment cuts completely through a trape-
zoid A. This trapezoid is replaced by two trapezoids, one above and one below the
segment, denoted C and D. We replace the leaf node for the original trapezoid with a
y-node whose children are leaf nodes associated with C and D (see Fig. 53(c)).

A
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p

(a)

sA

p
sB

p

C

D
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C D
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p
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B

t
D

C
E

B

A s

(c)

A

B C

B

C
s

Fig. 53: Line segment insertion and updates to the point location structure. The single-endpoint
case (left) and the two-endpoint case (right). The no-endpoint case is not shown.

It is important to notice that (through sharing) each trapezoid appears exactly once as a
leaf in the resulting structure. How does this sharing occur? Whenever we add a segment,
the wall trimming that results can result in two distinct trapezoids being merged into one
(see trapezoid C in Fig. 54(a) and B and C in Fig. 54(b)). When this happens, the various
paths leading into merged trapezoid are joined to a common node. An example showing
the complete transformation to the data structure after adding a single segment is shown in
Fig. 54 below.

Analysis: We claim that the size of the point location data structure is O(n) and the query time
is O(log n), both in the expected case. As usual, the expectation depends only on the order
of insertion, not on the line segments or the location of the query point.

To prove the space bound of O(n), observe that the number of new nodes added to the
structure with each new segment is proportional to the number of newly created trapezoids.
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Fig. 54: Line segment insertion.

Last time we showed that with each new insertion, the expected number of trapezoids that
were created was O(1). Therefore, we add O(1) new nodes with each insertion in the expected
case, implying that the total size of the data structure is O(n).

Analyzing the query time is a little subtler. In a normal probabilistic analysis of data struc-
tures we think of the data structure as being fixed, and then compute expectations over
random queries. Here the approach will be to imagine that we have exactly one query point
to handle. The query point can be chosen arbitrarily (imagine an adversary that tries to se-
lect the worst-possible query point) but this choice is made without knowledge of the random
choices the algorithm makes. We will show that, given a fixed query point q, the expected
search path length for q is O(log n), where the expectation is over all segment insertion orders.
(Note that this does not imply that the expected maximum depth of the tree is O(log n). We
will discuss this issue later.)

Let q denote the query point. Rather than consider the search path for q in the final search
structure, we will consider how q moves incrementally through the structure with the addition
of each new line segment. Let ∆i denote the trapezoid of the map that q lies in after the
insertion of the first i segments. Observe that if ∆i−1 = ∆i, then insertion of the ith segment
did not affect the trapezoid that q was in, and therefore q will stay where it is relative to the
current search structure. (For example, if q was in trapezoid B prior to adding s3 in Fig. 54
above, then the addition of s3 does not incur any additional cost to locating q.)

However, if ∆i−1 6= ∆i, then the insertion of the ith segment caused q’s trapezoid to be
replaced by a different one. As a result, q must now perform some additional comparisons to
locate itself with respect to the newly created trapezoids that overlap ∆i−1. Since there are a
constant number of such trapezoids (at most four), there will be O(1) work needed to locate
q with respect to these. In particular, q may descend at most three levels in the search tree
after the insertion. The worst case occurs in the two-endpoint case, where the query point
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falls into one of the trapezoids lying above or below the segment (see Fig. 53(b)).

Since a point can descend at most three levels with each change of its containing trapezoid,
the expected length of the search path to q is at most three times the number of times that q
changes its trapezoid as a result of each insertion. For 1 ≤ i ≤ n, let Xi(q) = 1 if q changes its
trapezoid after the ith insertion 0 otherwise. Let E(Xi(q)) denote its expected value, which
is equivalent to Prob(∆i(q) 6= ∆i−1(q)). Letting D(q) denote the average depth of q in the
final search tree, we have

D(q) ≤ 3
n∑
i=1

E(Xi(q)) = 3
n∑
i=1

Prob(∆i(q) 6= ∆i−1(q)).

What saves us is the observation that, as i becomes larger, the more trapezoids we have,
and the smaller the probability that any random segment will affect a given trapezoid. In
particular, we will show that Prob(Xi(q)) ≤ 4/i. We do this through a backwards analysis.
Consider the trapezoid ∆i that contained q after the ith insertion. Recall from the previous
lecture that each trapezoid is dependent on at most four segments, which define the top and
bottom edges, and the left and right sides of the trapezoid. Clearly, ∆i would have changed
as a result of insertion i if any of these four segments had been inserted last. Since, by the
random insertion order, each segment is equally likely to be the last segment to have been
added, the probability that one of ∆i’s dependent segments was the last to be inserted is at
most 4/i. Therefore, Prob(Xi(q)) ≤ 4/i.

From this, it follows that the expected path length for the query point q is at most

D(q) ≤ 3
n∑
i=1

4

i
= 12

n∑
i=1

1

i
.

Recall that
∑n

i=1
1
i is the Harmonic series, and for large n, its value is very nearly lnn. Thus

we have
D(q) ≈ 12 · lnn = O(log n).

Guarantees on Search Time: (Optional) One shortcoming with this analysis is that even
though the search time is provably small in the expected case for a given query point, it
might still be the case that once the data structure has been constructed there is a single very
long path in the search structure, and the user repeatedly performs queries along this path.
Hence, the analysis provides no guarantees on the running time of all queries.

It is far from trivial, but it can be shown that by repeated application of the randomized
incremental construction, it is possible to achieve worst-case search time of O(log n), worst-
case size of O(n), and expected-case construction time is O(n log n).10 The idea is to engineer
the constants so that the probability of failure along any search path is extremely small (say
1/nc, for some constant c ≥ 1). It follows that all the possible search paths will have the
desired O(log n) depth with at least a constant probability. While we might be unlucky on
any given execution of the algorithm, after a constant number of attempts, we expect one of
them to succeed.

10M. Hemmer, M. Kleinbort, and D. Halperin. Optimal randomized incremental construction for guaranteed
logarithmic planar point location. Comput. Geom., 58:110–123, 2016.
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Line Segment Intersection Revisited: (Optional) Earlier this semester we presented a plane-
sweep algorithm for computing line segment intersection. The algorithm had a running time
of O((n + I) log n), where I is the number of intersection points. It is interesting to note
that the randomized approach we discussed today can be adapted to deal with intersecting
segments as well. In particular, whenever a segment is added, observe that in addition to it
stabbing vertical segments, it may generally cross over one of the existing segments. When
this occurs, the algorithm must determine the trapezoid that is hit on the other side of the
segment, and then continue the process of walking the segment. Note that the total size of
the final decomposition is O(n + I), which would suggest that the running time might be
the same as the plane-sweep algorithm. It is remarkable, therefore, that the running time is
actually better. Intuitively, the reason is that the O(log n) factor in the randomized algorithm
comes from the point location queries, which are applied only to the left endpoint of each of
the n segments. With a bit of additional work, it can be shown that the adaptation of the
randomized algorithm to general (intersecting) segments runs in O(I + n log n) time, thus
removing the log factor from the I term.

Lecture 10: Voronoi Diagrams and Fortune’s Algorithm

Metric Spaces: In this lecture, we will make a significant transition in the subject of computa-
tional geometry by introducing the notion of distances. Distances in geometry are modeled
formally by through the concept of a metric. This is a function f on pairs of points that
satisfies the following properties for any points p, q, and r:

Symmetry: f(p, q) = f(q, p)

Positivity: f(p, q) ≥ 0, and further f(p, q) = 0 if and only if p = q

Triangle inequality: f(p, q) ≤ f(p, r) + f(r, q).

There are many natural metrics over Rd, but the most common by far is Euclidean distance,
which for any p, q ∈ Rd is defined as

‖p− q‖ =

(
d∑
i=1

(pi − qi)2

)1/2

.

Given any set of points P in Rd, there are a number of natural structures whose definition
involves the distances between points. Today, we will study one of the most important of
these, called the Voronoi diagram.

Voronoi Diagrams: Let P = {p1, p2, . . . , pn} be a set of points in Rd, which we call sites. We
want to subdivide Rd into regions according to the which site is most “influential”. To make
this formal, for any site pi, define its Voronoi cell, denoted VP (pi), to be the set of points
q ∈ Rd that are closer to pi than to any other site, that is,

VP (pi) = {q ∈ Rd : ‖pi − q‖ < ‖pj − q‖,∀j 6= i},

When P is clear from context, we will omit it and refer to this simply as V(pi). Clearly, the
Voronoi cells of two distinct sites of P are disjoint. The union of the closure of the Voronoi
cells defines a cell complex, which is called the Voronoi diagram of P , and is denoted Vor(P )
(see Fig. 55(a)).
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(a)

pi

VP (pi)

(b)

pj

h(pi, pj)

Fig. 55: Voronoi diagram Vor(P ) of a set of sites.

The cells of the Voronoi diagram are (possibly unbounded) convex polyhedra. To see this,
observe that the set of points that are strictly closer to one site pi than to another site pj is
equal to the open halfspace whose bounding hyperplane is the perpendicular bisector between
pi and pj . Denote this halfspace h(pi, pj). It is easy to see that a point q lies in V(pi) if and
only if q lies within the intersection of h(pi, pj) for all j 6= i. In other words,

V(pi) =
⋂
j 6=i

h(pi, pj)

(see Fig. 55(b)). Since the intersection of convex objects is convex, V(pi) is a (possibly
unbounded) convex polyhedron.

Voronoi diagrams have a huge number of important applications in science and engineer-
ing. These include answering nearest neighbor queries, computational morphology and shape
analysis, clustering and data mining, facility location, multi-dimensional interpolation.

Nearest neighbor queries: Given a set P of point sites, we wish to preprocess P so that,
given a query point q, it is possible to quickly determine the closest site of P to q. This
can be answered by first computing a Voronoi diagram and then locating the cell of the
diagram that contains q. (In the plane, this can be done by building the trapezoidal
map of the edges of the Voronoi diagram. Each trapezoid lies within a single Voronoi
cell, and can be labeled with the generating site.)

Computational morphology and shape analysis: A useful structure in shape analysis
is called the medial axis. The medial axis of a shape (e.g., a simple polygon) is defined to
be the union of the center points of all locally maximal disks that are contained within
the shape (see Fig. 56). If we generalize the notion of Voronoi diagram to allow sites
that are both points and line segments, then the medial axis of a simple polygon can be
extracted easily from the Voronoi diagram of these generalized sites.

Center-based Clustering: Given a set P of points, it is often desirable to represent the
union of a significantly smaller set of clusters. In center-based clustering, the clusters
are defined by a set C of cluster centers (which may or may not be required to be chosen
from P ). The cluster associated with a given center point q ∈ C is just the subset of
points of P that are closer to q than any other center, that is, the subset of P that lies
within q’s Voronoi cell (see Fig. 56(c)). (How the center points are selected is another
question.)
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(a) (b) (c)

Fig. 56: (a) A simple polygon, (b) its medial axis and a sample maximal disk, and (c) center-based
clustering (with cluster centers shown as black points).

Neighbors and Interpolation: Given a set of measured height values over some geometric
terrain. Each point has (x, y) coordinates and a height value. We would like to inter-
polate the height value of some query point that is not one of our measured points. To
do so, we would like to interpolate its value from neighboring measured points. One
way to do this, called natural neighbor interpolation, is based on computing the Voronoi
neighbors of the query point, assuming that it has one of the original set of measured
points.

Properties of the Voronoi diagram: Here are some properties of the Voronoi diagrams in the
plane. These all have natural generalizations to higher dimensions.

Empty circle properties: Each point on an edge of the Voronoi diagram is equidistant
from its two nearest neighbors pi and pj . Thus, there is a circle centered at any such
point where pi and pj lie on this circle, and no other site is interior to the circle (see
Fig. 57(a)).

pi

pj

(a)

pi

pj

(b)

pk

(c)

Fig. 57: Properties of the Voronoi diagram.

Voronoi vertices: It follows that the vertex at which three Voronoi cells V(pi), V(pj), and
V(pk) intersect, called a Voronoi vertex is equidistant from all sites (see Fig. 57(b)).
Thus it is the center of the circle passing through these sites, and this circle contains no
other sites in its interior. (In Rd, the vertex is defined by d+1 sites and the hypersphere
centered at the vertex passing through these sites is empty.)

Degree: Generally three points in the plane define a unique circle (generally, d+ 1 points in
Rd). If we make the general position assumption that no four sites are cocircular, then
each vertex of the Voronoi diagram is incident to three edges (generally, d+ 1 facets).

Convex hull: A cell of the Voronoi diagram is unbounded if and only if the corresponding
site lies on the convex hull. (Observe that a site is on the convex hull if and only if it is
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the closest site from some point at infinity, namely the point infinitely far along a vector
orthogonal to the supporting line through this vertex.) Thus, given a Voronoi diagram,
it is easy to extract the vertices of the convex hull in linear time.

Size: Letting n denote the number of sites, the Voronoi diagram with exactly n faces. It
follows from Euler’s formula11 that the number of Voronoi vertices is roughly 2n and
the number of edges is roughly 3n. (See the text for details. In higher dimensions the
diagram’s combinatorial complexity ranges from O(n) up to O(ndd/2e).)

Computing Voronoi Diagrams: There are a number of algorithms for computing the Voronoi
diagram of a set of n sites in the plane. Of course, there is a naive O(n2 log n) time algorithm,
which operates by computing V(pi) by intersecting the n− 1 bisector halfplanes h(pi, pj), for
j 6= i. However, there are much more efficient ways, which run in O(n log n) time. Since the
convex hull can be extracted from the Voronoi diagram in O(n) time, it follows that this is
asymptotically optimal in the worst-case.

Historically, O(n2) algorithms for computing Voronoi diagrams were known for many years
(based on incremental constructions). When computational geometry came along, a more
complex, but asymptotically superior O(n log n) algorithm was discovered. This algorithm
was based on divide-and-conquer. But it was rather complex, and somewhat difficult to
understand. Later, Steven Fortune discovered a plane sweep algorithm for the problem,
which provided a simpler O(n log n) solution to the problem. It is his algorithm that we will
discuss. Somewhat later still, it was discovered that the incremental algorithm is actually
quite efficient, if it is run as a randomized incremental algorithm. We will discuss a variant of
this algorithm later when we talk about the dual structure, called the Delaunay triangulation.

Sweep-Line Approach: Before discussing Fortune’s algorithm, it is interesting to consider why
this algorithm was not invented much earlier. In fact, it is quite a bit trickier than any
plane sweep algorithm we have seen so far. The key to any plane sweep algorithm is the
ability to discover all upcoming events in an efficient manner. (For example, in the line
segment intersection algorithm we considered all pairs of line segments that were adjacent in
the sweep-line status, and inserted their intersection point in the queue of upcoming events.)
The challenge posed by Voronoi diagrams is that of predicting when and where the upcoming
events will occur.

To better understand the difficulty, suppose that you are designing a plane sweep algorithm.
Behind the sweep line you have constructed the Voronoi diagram based on the sites that have
been encountered so far in the sweep. Now a site that lies beyond the sweep line (that is,
in the “future”) may generate a Voronoi vertex that lies behind the sweep line (in the past).
How can any reasonable sweep-line algorithm know of the existence events generated by sites
it has yet to encounter? It is these unanticipated events that make the design of a plane
sweep algorithm challenging (see Fig. 58).

The Beach Line: To deal with the difficulties of unanticipated events, our sweeping process will
involve maintaining two different object. First, there will be a horizontal sweep line, moving
from top to bottom. We will also maintain an x-monotonic curve called a beach line. (It
is so named because it looks like waves rolling up on a beach.) The beach line lags behind
the sweep line in such a way that it is unaffected by sites that lie beyond the current sweep

11Euler’s formula for planar graphs states that a planar graph with v vertices, e edges, and f faces satisfies
v − e + f = 2. There are n faces, and since each vertex is of degree three, we have 3v = 2e, from which we infer that
v − (3/2)v + n = 2, implying that v = 2n− 4. A similar argument can be used to bound the number of edges.

Lecture Notes 69 CMSC 754



sweep line

unantcipated events

Fig. 58: Unanticipated events generated by sites that lie beyond the current sweep line.

line. Thus, there can be no unanticipated events. The sweep-line status will be based on the
manner in which the Voronoi edges intersect the beach line, not the actual sweep line.

Let’s make this intuition more concrete. Given a point q ∈ R2 and a nonempty set R of points
(which may be finite or infinite) define dist(q,R) to be the closest Euclidean distance from
q to any point in R, that is, dist(q,R) = minp∈R ‖q − p‖. Given the current location of the
sweep ` (which we assume to be horizontal and sweeping downwards) let P+(`) ⊆ P denote
the subset of sites of P that lie strictly above `. Let us assume that P+(`) contains at least
one site. Define the beach line (for `) to be the set of points q ∈ R2 (all above the sweep line)
whose distance to its nearest site in P ′ is equal to its distance from the sweep line (see the
blue curve in Fig. 59(a)). That is

beach(`) = {q ∈ R2 | dist(q, P+(`)) = dist(q, `)}.

beach line

`

p

(b)(a)

p

`
sweep line

` `

p

Fig. 59: The beach line. Notice that only the portion of the Voronoi diagram that lies above the
beach line is computed. The sweep-line status maintains the intersection of the Voronoi diagram
with the beach line.

It is easy to see that for all points lying on or above the beach line, the closest site in P
must lie above the sweep line, that is, it must lie within P+(`). This means that it cannot be
affected by any site below the sweep line. This further implies that no part of any Voronoi cell
of a point lying below the sweep line can affect a point on or above the beach line. Thus, the
region above the beach line is “safe” in the sense that there can be no unanticipated events.

What does the beach line look like? Recall from your high-school geometry that the set of
points that are equidistant from a point (in this case a site p) and a line (in this case the
sweep line `) is a parabola separating p from `. The parabola’s shape depends on the relative
distance between p and `, and in particular, ` moves further away from p, the parabola’s
shape becomes progressively “flatter” (see Fig. 59(b)). Note that in the special case when p
lies on `, the parabola degenerates into a vertical ray shooting up from p.
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Thus, the beach line consists of the lower envelope of these parabolas, one for each site (see
Fig. 59(c)). Note that the parabola associated with some sites may be redundant in the sense
that they will not contribute to the beach line. Also, some sites can contribute multiple arcs,
but the total complexity of the beach line cannot exceed O(|P+(`)|) = O(n). Because the
parabolas are x-monotone, so is the beach line. The beach-line point q where two beach-line
arcs intersect is called a breakpoint. If these arcs are associated with sites pi and pj , then q is
equidistant to these sites and they are the closest sites to q. Therefore, q lies on an edge of
the final Voronoi diagram.

Fortune’s Algorithm: Fortune’s algorithm (at least, the variant described in our textbook) con-
sists of simulating the growth of the beach line as the sweep line moves downward, and in
particular tracing the paths of the breakpoints as they travel along the edges of the Voronoi
diagram. Of course, as the sweep line moves, the parabolas forming the beach line change
their shapes continuously. (For help visualizing this, run the applet described at the top of
the lecture.) As with all plane-sweep algorithms, we will maintain a sweep-line status and
we are interested in simulating the discrete event points where there is a “significant event”,
that is, any event that changes the topological structure of the Voronoi diagram or the beach
line.

Sweep-Line Status: The algorithm maintains the current location (y-coordinate) of the
sweep line. It stores, in left-to-right order the sequence of sites that define the beach
line. (We will say more about this later.) Important: The algorithm does not store
the parabolic arcs of the beach line. They are shown solely for conceptual purposes.

Events: There are two types of events:

Site events: When the sweep line passes over a new site a new parabolic arc will be
inserted into the beach line.

Voronoi vertex events: (What our text calls circle events.) When the length of an
arc of the beach line shrinks to zero, the arc disappears and a new Voronoi vertex
will be created at this point.

The algorithm consists of processing these two types of events. As the Voronoi vertices are
being discovered by Voronoi vertex events, it will be an easy matter to update the diagram
as we go (assuming any reasonable representation of this planar cell complex), and so to link
the entire diagram together. Let us consider the two types of events that are encountered.

Site events: A site event is generated whenever the horizontal sweep line passes over a site pi.
As we mentioned before, at the instant that the sweep line touches the point, its associated
parabolic arc will degenerate to a vertical ray shooting up from the point to the current beach
line. As the sweep line proceeds downwards, this ray will widen into an arc along the beach
line. To process a site event we determine the arc of the sweep line that lies directly above
the new site. (Let us make the general position assumption that it does not fall immediately
below a vertex of the beach line.) Let pj denote the site generating this arc. We then split
this arc in two by inserting a new entry at this point in the sweep-line status. (Initially this
corresponds to a infinitesimally small arc along the beach line, but as the sweep line sweeps
on, this arc will grow wider. Thus, the entry for 〈. . . , pj , . . .〉 on the sweep-line status is
replaced by the triple 〈. . . , pj , pi, pj , . . .〉 (see Fig. 60).

It is important to consider whether this is the only way that new arcs can be introduced into
the sweep line. In fact it is. We will not prove it, but a careful proof is given in the text.
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pi
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〈. . . pjpipjpk . . .〉
〈. . . pjpk . . .〉〈. . . pjpk . . .〉

Prior to event At the event After the event

pi

Fig. 60: Site event.

As a consequence, it follows that the maximum number of arcs on the beach line can be at
most 2n− 1, since each new site can result in creating one new arc, and splitting an existing
arc, for a net increase of two arcs per site (except the first). Note that a site may generally
contribute more than one arc to the beach line. (As an exercise you might consider what is
the maximum number of arcs a single site can contribute.)

The nice thing about site events is that they are all known in advance. Thus, the sites can
be presorted by the y-coordinates and inserted as a batch into the event priority queue.

Voronoi vertex events: In contrast to site events, Voronoi vertex events are generated dynami-
cally as the algorithm runs. As with the line segment intersection algorithm, the important
idea is that each such event is generated by objects that are adjacent on the beach line
(and thus, can be found efficiently). However, unlike the segment intersection where pairs of
consecutive segments generated events, here triples of points generate the events.

In particular, consider any three consecutive sites pi, pj , and pk whose arcs appear con-
secutively on the beach line from left to right (see Fig. 61(a). Further, suppose that the
circumcircle for these three sites lies at least partially below the current sweep line (meaning
that the Voronoi vertex has not yet been generated), and that this circumcircle contains no
sites lying below the sweep line (meaning that no future site will block the creation of the
vertex).

Consider the moment at which the sweep line falls to a point where it is tangent to the lowest
point of this circle. At this instant the circumcenter of the circle is equidistant from all three
sites and from the sweep line. Thus all three parabolic arcs pass through this center point,
implying that the contribution of the arc from pj has disappeared from the beach line. In
terms of the Voronoi diagram, the bisectors (pi, pj) and (pj , pk) have met each other at the
Voronoi vertex, and a single bisector (pi, pk) remains. Thus, the triple of consecutive sites
pi, pj , pk on the sweep-line status is replaced with pi, pk (see Fig. 61).

Sweep-line algorithm: We can now present the algorithm in greater detail. The main structures
that we will maintain are the following:

(Partial) Voronoi diagram: The partial Voronoi diagram that has been constructed so
far will be stored in any reasonable data structure for storing planar subdivisions, for
example, a doubly-connected edge list. There is one technical difficulty caused by the
fact that the diagram contains unbounded edges. This can be handled by enclosing
everything within a sufficiently large bounding box. (It should be large enough to contain
all the Voronoi vertices, but this is not that easy to compute in advance.) An alternative
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Fig. 61: Voronoi vertex event.

is to create an imaginary Voronoi vertex “at infinity” and connect all the unbounded
edges to this imaginary vertex.

Beach line: The beach line consists of the sorted sequence of sites whose arcs form the beach
line. It is represented using a dictionary (e.g., a balanced binary tree or skip list). As
mentioned above, we do not explicitly store the parabolic arcs. They are just there for
the purposes of deriving the algorithm. Instead for each parabolic arc on the current
beach line, we store the site that gives rise to this arc.

The key search operation is that of locating the arc of the beach line that lies directly
above a newly discovered site. (As an exercise, before reading the next paragraph you
might think about how you would design a binary search to locate this arc, given that
you only have the sites, not the actual arcs.)

Between each consecutive pair of sites pi and pj , there is a breakpoint. Although the
breakpoint moves as a function of the sweep line, observe that it is possible to compute
the exact location of the breakpoint as a function of pi, pj , and the current y-coordinate
of the sweep line. In particular, the breakpoint is the center of a circle that passes
through pi, pj and is tangent to the sweep line. (Thus, as with beach lines, we do not
explicitly store breakpoints. Rather, we compute them only when we need them.) Once
the breakpoint is computed, we can then determine whether a newly added site is to its
left or right. Using the sorted ordering of the sites, we use this primitive comparison to
drive a binary search for the arc lying above the new site.

The important operations that we will have to support on the beach line are:

Search: Given the current y-coordinate of the sweep line and a new site pi, determine
the arc of the beach line lies immediately above pi. Let pj denote the site that
contributes this arc. Return a reference to this beach line entry.

Insert and split: Insert a new entry for pi within a given arc pj of the beach line (thus
effectively replacing the single arc 〈. . . , pj , . . .〉 with the triple 〈. . . , pj , pi, pj , . . .〉.
Return a reference to the newly added beach line entry (for future use).

Delete: Given a reference to an entry pj on the beach line, delete this entry. This
replaces a triple 〈. . . , pi, pj , pk, . . .〉 with the pair 〈. . . , pi, pk, . . .〉.

It is not difficult to modify a standard dictionary data structure to perform these oper-
ations in O(log n) time each.

Event queue: The event queue is a priority queue with the ability both to insert and delete
new events. Also the event with the largest y-coordinate can be extracted. For each site
we store its y-coordinate in the queue. All operations can be implemented in O(log n)
time assuming that the priority queue is stored as an ordered dictionary.
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For each consecutive triple pi, pj , pk on the beach line, we compute the circumcircle of
these sites. (We’ll leave the messy algebraic details as an exercise, but this can be done in
O(1) time.) If the lower endpoint of the circle (the minimum y-coordinate on the circle)
lies below the sweep line, then we create a Voronoi vertex event whose y-coordinate is
the y-coordinate of the bottom endpoint of the circumcircle. We store this in the priority
queue. Each such event in the priority queue has a cross link back to the triple of sites
that generated it, and each consecutive triple of sites has a cross link to the event that
it generated in the priority queue.

The algorithm proceeds like any plane sweep algorithm. The algorithm starts by inserting
the topmost vertex into the sweep-line status. We extract an event, process it, and go on
to the next event. Each event may result in a modification of the Voronoi diagram and the
beach line, and may result in the creation or deletion of existing events.

Here is how the two types of events are handled in somewhat greater detail.

Site event: Let pi be the new site (see Fig. 60 above).

(1) Advance the sweep line so that it passes through pi. Apply the above search oper-
ation to determine the beach line arc that lies immediately above pi. Let pj be the
corresponding site.

(2) Applying the above insert-and-split operation, inserting a new entry for pi, thus
replacing 〈. . . , pj , . . .〉 with 〈. . . , pj , pi, pj , . . .〉.

(3) Create a new (dangling) edge in the Voronoi diagram, which lies on the bisector
between pi and pj .

(4) Some old triples that involved pj may need to be deleted and some new triples
involving pi will be inserted, based on the change of neighbors on the beach line.
(The straightforward details are omitted.)
Note that the newly created beach-line triple pj , pi, pj does not generate an event
because it only involves two distinct sites.

Voronoi vertex event: Let pi, pj , and pk be the three sites that generated this event, from
left to right (see Fig. 61 above).

(1) Delete the entry for pj from the beach line status. (Thus eliminating its associated
arc.)

(2) Create a new vertex in the Voronoi diagram (at the circumcenter of {pi, pj , pk}) and
join the two Voronoi edges for the bisectors (pi, pj), (pj , pk) to this vertex.

(3) Create a new (dangling) edge for the bisector between pi and pk.

(4) Delete any events that arose from triples involving the arc of pj , and generate new
events corresponding to consecutive triples involving pi and pk. (There are two of
them. The straightforward details are omitted.)

The analysis follows a typical analysis for plane sweep. Each event involves O(1) processing
time plus a constant number operations to the various data structures (the sweep line status
and the event queue). The size of the data structures is O(n), and each of these operations
takes O(log n) time. Thus the total time is O(n log n), and the total space is O(n).
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Lecture 11: Delaunay Triangulations: General Properties

Delaunay Triangulations: We have discussed the topic of Voronoi diagrams. In this lecture, we
consider a related structure, called the Delaunay triangulation (DT). The Voronoi diagram
of a set of sites in the plane is a planar subdivision, in fact, a cell complex. The dual of such
subdivision is a cell complex that is defined as follows. For each face of the Voronoi diagram,
we create a vertex (corresponding to the site). For each edge of the Voronoi diagram lying
between two sites pi and pj , we create an edge in the dual connecting these two vertices. Each
vertex of the Voronoi diagram corresponds to a face of the dual complex.

Recall that, under the assumption of general position (no four sites are collinear), the vertices
of the Voronoi diagram all have degree three. It follows that the faces of the resulting dual
complex (excluding the exterior face) are triangles. Thus, the resulting dual graph is a
triangulation of the sites. This is called the Delaunay triangulation (see Fig. 62(a)).

(a) (b)

pj

pi
c

Fig. 62: (a) The Voronoi diagram of a set of sits (broken lines) and the corresponding Delaunay
triangulation (solid lines) and (b) circle-related properties.

Delaunay triangulations have a number of interesting properties, that are immediate conse-
quences of the structure of the Voronoi diagram:

Convex hull: The boundary of the exterior face of the Delaunay triangulation is the bound-
ary of the convex hull of the point set.

Circumcircle property: The circumcircle of any triangle in the Delaunay triangulation is
“empty,” that is, the interior of the associated circular disk contains no sites of P (see
the blue circle in Fig. 62(b)).

Proof: This is because the center of this circle is the corresponding dual Voronoi vertex,
and by definition of the Voronoi diagram, the three sites defining this vertex are its
nearest neighbors.

Empty circle property: Two sites pi and pj are connected by an edge in the Delaunay
triangulation, if and only if there is an empty circle passing through pi and pj (see the
red circle in Fig. 62(b)).

Proof: If two sites pi and pj are neighbors in the Delaunay triangulation, then their cells
are neighbors in the Voronoi diagram, and so for any point on the Voronoi edge between
these sites, a circle centered at this point passing through pi and pj cannot contain any
other point (since they must be closest). Conversely, if there is an empty circle passing
through pi and pj , then the center c of this circle is a point on the edge of the Voronoi
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diagram between pi and pj , because c is equidistant from each of these sites and there
is no closer site (see Fig. 62(b)). Thus the Voronoi cells of two sites are adjacent in the
Voronoi diagram, implying that this edge is in the Delaunay triangulation.

Closest pair property: The closest pair of sites in P are neighbors in the Delaunay trian-
gulation (see the green circle in Fig. 62(b)).

Proof: Suppose that pi and pj are the closest sites. The circle having pi and pj as its
diameter cannot contain any other site, since otherwise such a site would be closer to
one of these two points, violating the hypothesis that these points are the closest pair.
Therefore, the center of this circle is on the Voronoi edge between these points, and so
it is an empty circle.

Combinatorial Complexity: Given a point set P with n sites where there are h sites on the
convex hull, it is not hard to prove by Euler’s formula that the Delaunay triangulation
has 2n− 2− h triangles and 3n− 3− h edges. Generally, in Rd, the number of simplices
(the d-dimensional generalization of a triangle) can range from O(n) up to O(ndd/2e).
For example, in R3 the Delaunay triangulation of n sites may have as many as O(n2)
tetrahedra. (If you want a challenging exercise, try to create such a point set.)

Euclidean Minimum Spanning Tree: The Delaunay triangulation possesses a number of in-
teresting properties that are not obviously related to the Voronoi diagram structure. One of
these is its relation to the minimum spanning tree. Given a set of n points in the plane, we
can think of the points as defining a Euclidean graph whose edges are all

(
n
2

)
(undirected)

pairs of distinct points, and edge (pi, pj) has weight equal to the Euclidean distance from pi
to pj . Given a graph, the minimum spanning tree (MST) is a set of n− 1 edges that connect
the points (into a free tree) such that the total weight of edges is minimized. The MST of
the Euclidean graph is called the Euclidean minimum spanning tree (EMST), see Fig. 63(c).

(a) (c)(b)

Fig. 63: (a) A point set and its EMST, (b) the Delaunay triangulation, and (c) the overlay of the
two.

We could compute the EMST by brute force by constructing the Euclidean graph and then
invoking Kruskal’s algorithm to compute its MST. This would lead to a total running time of
O(n2 log n). However there is a much faster method based on Delaunay triangulations. First
compute the Delaunay triangulation of the point set. We will see later that it can be done
in O(n log n) time. Then compute the MST of the Delaunay triangulation by, say, Kruskal’s
algorithm and return the result. This leads to a total running time of O(n log n). The reason
that this works is given in the following theorem.

Theorem: The minimum spanning tree of a set P of point sites (in any dimension) is a
subgraph of the Delaunay triangulation (see Fig. 63(c)).

Proof: Let T be the EMST for P , let w(T ) denote the total weight of T . Let a and b be any
two sites such that ab is an edge of T . Suppose to the contrary that ab is not an edge in
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the Delaunay triangulation. This implies that there is no empty circle passing through
a and b, and in particular, the circle whose diameter is the segment ab contains another
site, call it c (see Fig. 64.)

a b
c

T

a b
c

T ′

(a) (b)

Fig. 64: The Delaunay triangulation and EMST.

The removal of ab from the EMST splits the tree into two subtrees. Assume without
loss of generality that c lies in the same subtree as a. Now, remove the edge ab from
the EMST and add the edge bc in its place. The result will be a spanning tree T ′ whose
weight is

w(T ′) = w(T ) + ‖bc‖ − ‖ab‖.

Since ab is the diameter of the circle, any other segment lying within the circle is shorter.
Thus, ‖bc‖ < ‖ab‖. Therefore, we have w(T ′) < w(T ), and this contradicts the hypoth-
esis that T is the EMST, completing the proof.

Minimum Weight Triangulation (Not!): Given the above result about EMSTs, it is tempting
to conjecture that among all triangulations, the Delaunay triangulation minimizes the total
(Euclidean) edge length. Unfortunately, this is not true and, indeed, there is a simple four-
point counterexample. (This assertion was erroneously claimed in a highly cited paper on
Delaunay triangulations, and you may still hear it quoted from time to time.)

The triangulation that minimizes total Euclidean edge weight is called the minimum weight
triangulation (MWT). The computational complexity of MWT was open for many years,
and many special cases were shown to be solvable in polynomial time. Finally, in 2008 it
was proved by Mulzer and Rote12 that this problem is NP-hard. The hardness proof is
quite complex, and computer assistance was needed to verify the correctness of some of the
constructions used in the proof.

Spanner Properties: A natural observation about Delaunay triangulations is that its edges would
seem to form a resonable transporation road network between the points. On inspecting a few
examples, it is natural to conjecture that the length of the shortest path between two points
in a planar Delaunay triangulation is not significantly longer than the straight-line distance
between these points.

This is closely related to the theory of geometric spanners, that is, geometric graphs whose
shortest paths are not significantly longer than the straight-line distance. Consider any point
set P and a straight-line graph G whose vertices are the points of P . For any two points
p, q ∈ P , let δG(p, q) denote the length of the shortest path from p to q in G, where the weight
of each edge is its Euclidean length. Given any parameter t ≥ 1, we say that G is a t-spanner

12W. Mulzer and G. Rote, “Minimum-weight triangulation is NP-hard”, J. ACM, 55 (2), 2008.
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if for any two points p, q ∈ P , the shortest path length between p and q in G is at most a
factor t longer than the Euclidean distance between these points, that is

δG(p, q) ≤ t‖pq‖

Observe that when t = 1, the graph G must be the complete graph, consisting of
(
n
2

)
= O(n2)

edges. Of interest is whether there exist O(1)-spanners having O(n) edges.

It can be proved that the edges of the Delaunay triangulation form a spanner (see Fig. 65).
We will not prove the following result, which is due to Keil and Gutwin.13

Theorem: Given a set of points P in the plane, the Delaunay triangulation of P is a t-spanner
for t = 4π

√
3/9 ≈ 2.418.

p

q

Fig. 65: Spanner property of the Delaunay Triangulation.

It had been conjectured for many years that the Delaunay triangulation is a (π/2)-spanner
(π/2 ≈ 1.5708). This was disproved in 2009, and the lower bound now stands at roughly
1.5846. Closing the gap between the upper and lower bound is an important open problem.

Maximizing Angles and Edge Flipping: Another interesting property of Delaunay triangula-
tions is that among all triangulations, the Delaunay triangulation maximizes the minimum
angle. This property is important, because it implies that Delaunay triangulations tend to
avoid skinny triangles. This is useful for many applications where triangles are used for the
purposes of interpolation.

In fact, a stronger statement holds. Among all triangulations that maximize the smallest
angle, the Delaunay triangulation maximizes the second smallest angle. Among all triangula-
tions that maximize both the two smallest angles, the Delaunay triangulation maximizes the
third smallest angle. That is, the Delaunay triangulation maximizes the sequence of angles
lexicographically.

To make this more formal, consider any triangulation of a given set P of n sites. Let t denote
the number of triangles, so that the number of angles is m = 3t. We can associate this
triangulation with a sorted angle sequence, by which we mean a non-decreasing sequence of
angles (α1 ≤ α2 ≤ · · · ≤ αm) appearing in all the triangles of the triangulation. (Note that
the length of the sequence will be the same for all triangulations of the same point set, since
the number of triangles depends only on the number of sites n and the number of points on
the convex hull h.)

Theorem: Among all triangulations of a given planar point set, the Delaunay triangulation
has the lexicographically largest angle sequence.

13J. M. Keil and C. A. Gutwin, “Classes of graphs which approximate the complete Euclidean graph”, Discrete &
Computational Geometry, 7, 1992.
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Proof: (Optional) Before getting into the proof, we should recall a few basic facts about
angles from basic geometry. First, recall that if we consider the circumcircle of three
points, then each angle of the resulting triangle is exactly half the angle of the minor arc
subtended by the opposite two points along the circumcircle. It follows as well that if a
point is inside this circle then it will subtend a larger angle and a point that is outside
will subtend a smaller angle. Thus, in Fig. 66(a) below, we have θ1 > θ2 > θ3.

(a)

θ1
θ2

θ3

θ1 > θ2 > θ3

a

b
c

d

θad
θcd
θbc

θab

(c)

a

b
c

d

φad
φcd

φbc
φab

(d)(b)

a

b
c

d
a

b
c

d

Fig. 66: Angles and edge flips.

We will not give a formal proof of the theorem. (A full proof appears in the text.) The
main idea is to show that for any triangulation that fails to satisfy the empty circle
property, it is possible to perform a local operation, called an edge flip, which increases
the lexicographical sequence of angles. An edge flip is an important fundamental opera-
tion on triangulations in the plane. Given two adjacent triangles 4abc and 4cda, such
that their union forms a convex quadrilateral abcd, the edge flip operation replaces the
diagonal ac with bd (see Fig. 66(b)). Note that it is only possible when the quadrilateral
is convex.

Suppose that the initial triangle pair violates the empty circle condition, in that point
d lies inside the circumcircle of 4abc. (Note that this implies that b lies inside the
circumcircle of 4cda.) If we flip the edge it will follow that the two circumcircles of the
two resulting triangles,4abd and4bcd are now empty (relative to these four points), and
the observation above about circles and angles proves that the minimum angle increases
at the same time. In particular, in Fig. 66(c) and (d), we have

φab > θab, φbc > θbc, φcd > θcd, and φda > θda.

There are two other angles that need to be compared as well (can you spot them?). It
is not hard to show that, after swapping, these other two angles cannot be smaller than
the minimum of θab, θbc, θcd, and θda. (Can you see why?)

Since there are only a finite number of triangulations, this process must eventually
terminate with the lexicographically maximum triangulation, and this triangulation must
satisfy the empty circle condition, and hence is the Delaunay triangulation.

Polytopes and Spatial Subdivisions: At first, Delaunay triangulations and convex hulls ap-
pear to be quite different structures, one is based on metric properties (distances) and the
other on affine properties (collinearity, coplanarity). On the other hand, if you look at the
surface of the convex hull of a set of points in 3-dimensional space, the boundary structure
looks much like a triangulation. (If the points are in general position, no four points are
coplanar, so each face of the convex hull will be bounded by three vertices.)

Similarly, consider a boundary structure of a polytope defined by the intersection of a collec-
tion of halfplanes in 3-dimensional space. Assuming general position (no four planes inter-
secting at a common point), each vertex will be incident to exactly three faces, and hence to
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exactly three edges. Therefore, the boundary structure of this polytope will look very much
like a Voronoi diagram.

We will show that there is a remarkably close relationship between these structures. In
particular, we will show that:

� The Delaunay triangulation of a set of points in the plane is topologically equivalent to
the boundary complex of the convex hull of an appropriate set of points in 3-space. In
general, it is possible to reduce the problem of computing Delaunay triangulations in
dimension d to that of computing convex hulls in dimension d+ 1.

� The Voronoi diagram of a set of points in the plane is topologically equilvalent to the
boundary complex of the intersect of a set of halfspaces in 3-space. In general, it is pos-
sible to reduce the problem of computing Voronoi diagrams in dimension d to computing
the upper envelope of a set of hyperplanes in dimension d+ 1.

We will demonstrate these results in 2-dimensional space, but the generalizations to higher
dimensions are straightforward.

Delaunay Triangulations and Convex Hulls: Let us begin by considering the paraboloid Ψ
defined by the equation z = x2 + y2. Observe that the vertical cross sections (constant x or
constant y) are parabolas, and whose horizontal cross sections (constant z) are circles. For
each point in R2, p = (px, py), the vertical projection (also called the lifted image) of this
point onto this Ψ is p↑ = (px, py, p

2
x + p2

y) in R3.

Given a set of points P in the plane, let P ↑ denote the projection of every point in P onto
Ψ. Consider the lower convex hull of P ↑. This is the portion of the convex hull of P ↑ which
is visible to a viewer standing at z = −∞. We claim that if we take the lower convex hull
of P ↑, and project it back onto the plane, then we get the Delaunay triangulation of P (see
Fig. 67). In particular, let p, q, r ∈ P , and let p↑, q↑, r↑ denote the projections of these points
onto Ψ. Then 4p↑q↑r↑ defines a face of the lower convex hull of P ↑ if and only if 4pqr is a
triangle of the Delaunay triangulation of P .

Fig. 67: The Delaunay triangulation and convex hull.

The question is, why does this work? To see why, we need to establish the connection between
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the triangles of the Delaunay triangulation and the faces of the convex hull of transformed
points. In particular, recall that

Delaunay condition: Three points p, q, r ∈ P form a Delaunay triangle if and only no other
point of P lies within the circumcircle of the triangle defined by these points.

Convex hull condition: Three points p↑, q↑, r↑ ∈ P ↑ form a face of the convex hull of P ↑

if and only if no other point of P lies below the plane passing through p↑, q↑, and r↑.

Clearly, the connection we need to establish is between the emptiness of circumcircles in the
plane and the emptiness of lower halfspaces in 3-space. To do this, we will prove the following.

Lemma: Consider four distinct points p, q, r, and s in the plane, and let p↑, q↑, r↑, and s↑

denote their respective vertical projections onto Ψ, z = x2 + y2. The point s lies within
the circumcircle of 4pqr if and only if s↑ lies beneath the plane passing through p↑, q↑,
and r↑.

To prove the lemma, first consider an arbitrary (nonvertical) plane in 3-space, which we
assume is tangent to Ψ above some point (a, b) in the plane. To determine the equation of
this tangent plane, we take derivatives of the equation z = x2 + y2 with respect to x and y
giving

∂z

∂x
= 2x,

∂z

∂y
= 2y.

At the point (a, b, a2 + b2) these evaluate to 2a and 2b. It follows that the plane passing
through these point has the form

z = 2ax+ 2by + γ.

To solve for γ we know that the plane passes through (a, b, a2 + b2) so we solve giving

a2 + b2 = 2a · a+ 2b · b+ γ,

Implying that γ = −(a2 + b2). Thus the plane equation is

z = 2ax+ 2by − (a2 + b2). (1)

If we shift the plane upwards by some positive amount r2 we obtain the plane

z = 2ax+ 2by − (a2 + b2) + r2.

How does this plane intersect Ψ? Since Ψ is defined by z = x2 + y2 we can eliminate z,
yielding

x2 + y2 = 2ax+ 2by − (a2 + b2) + r2,

which after some simple rearrangements is equal to

(x− a)2 + (y − b)2 = r2.

Hey! This is just a circle centered at the point (a, b). Thus, we have shown that the inter-
section of a plane with Ψ produces a space curve (which turns out to be an ellipse), which
when projected back onto the (x, y)-coordinate plane is a circle centered at (a, b) whose radius
equals the square root of the vertical distance by which the plane has been translated.
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Thus, we conclude that the intersection of an arbitrary lower halfspace with Ψ, when projected
onto the (x, y)-plane is the interior of a circle. Going back to the lemma, when we project
the points p, q, r onto Ψ, the projected points p↑, q↑ and r↑ define a plane. Since p↑, q↑, and
r↑, lie at the intersection of the plane and Ψ, the original points p, q, r lie on the projected
circle. Thus this circle is the (unique) circumcircle passing through these p, q, and r. Thus,
the point s lies within this circumcircle, if and only if its projection s↑ onto Ψ lies within the
lower halfspace of the plane passing through p, q, r (see Fig. 68).

s
p q
r

Ψ

s↑
p↑

q↑r↑

Fig. 68: Planes and circles.

Now we can prove the main result.

Theorem: Given a set of points P in the plane (assuming no four are cocircular), and given
three points p, q, r ∈ P , the triangle 4pqr is a triangle of the Delaunay triangulation of
P if and only if triangle 4p↑q↑r↑ is a face of the lower convex hull of the lifted set P ↑.

From the definition of Delaunay triangulations we know that 4pqr is in the Delaunay trian-
gulation if and only if there is no point s ∈ P that lies within the circumcircle of pqr. From
the previous lemma this is equivalent to saying that there is no point s↑ that lies in the lower
convex hull of P ↑, which is equivalent to saying that 4p↑q↑r↑ is a face of the lower convex
hull. This completes the proof.

Voronoi Diagrams and Upper Envelopes: (Optional) Next, let us consider the relationship
between Voronoi diagrams and envelopes. We know that Voronoi diagrams and Delaunay
triangulations are dual geometric structures. We have also seen (informally) that there is
a dual relationship between points and lines in the plane, and in general, between points
and planes in 3-space. From this latter connection we argued that the problems of computing
convex hulls of point sets and computing the intersection of halfspaces are somehow “dual” to
one another. It turns out that these two notions of duality, are (not surprisingly) interrelated.
In particular, in the same way that the Delaunay triangulation of points in the plane can be
transformed to computing a convex hull in 3-space, the Voronoi diagram of points in the
plane can be transformed into computing the upper envelope of a set of planes in 3-space.

Here is how we do this. For each point p = (a, b) in the plane, recall from Eq. (1) that the
tangent plane to Ψ passing through the lifted point p↑ is

z = 2ax+ 2by − (a2 + b2).

Define h(p) to be this plane. Consider an arbitrary point q = (qx, qy) in the plane. Its vertical
projection onto Ψ is (qx, qy, qz), where qz = q2

x + q2
y). Because Ψ is convex, h(p) passes below

Ψ (except at its contact point p↑). The vertical distance from q↑ to the plane h(p) is

qz − (2aqx + 2bqy − (a2 + b2)) = (q2
x + q2

y)− (2aqx + 2bqy − (a2 + b2))

= (q2
x − 2aqx + a2) + (q2

y − 2bqy + b2) = ‖qp‖2.
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In summary, the vertical distance between q↑ and h(p) is just the squared distance from q to
p (see Fig. 69(a)).

‖qp‖2

‖qp‖
pq

p↑

q↑

h(p)Ψ

p4

p
↑
4

Ψ

(a) (b)

p1

p
↑
1

p2 p3

p
↑
2 p

↑
3

q

q↑

Fig. 69: The Voronoi diagram and the upper hull of tangent planes.

Now, consider a point set P = {p1, . . . , pn} and an arbitrary point q in the plane. From the
above observation, we have the following lemma.

Lemma: Given a set of points P in the plane, let H(P ) = {h(p) : p ∈ P}. For any point q
in the plane, a vertical ray directed downwards from q↑ intersects the planes of H(P ) in
the same order as the distances of the points of P from q (see Fig. 69(b)).

Consider the upper envelope U(P ) of H(P ). This is an unbounded convex polytope (whose
vertical projection covers the entire x, y-plane). If we label every point of this polytope with
the associated point of p whose plane h(p) defines this face, it follows from the above lemma
that p is the closest point of P to every point in the vertical projection of this face onto the
plane. As a consequence, we have the following equivalence between the Voronoi diagram of
P and U(P ) (see Fig. 70).

Theorem: Given a set of points P in the plane, let U(P ) denote the upper envelope of the
tangent hyperplanes passing through each point p↑ for p ∈ P . Then the Voronoi diagram
of P is equal to the vertical projection onto the (x, y)-plane of the boundary complex of
U(P ) (see Fig. 70).

Lecture 12: Delaunay Triangulations: Incremental Construction

Constructing the Delaunay Triangulation: We will present a simple randomized incremental
algorithm for constructing the Delaunay triangulation of a set of n sites in the plane. Its
expected running time is O(n log n) (which holds in the worst-case over all point sets, but
in expectation over all random insertion orders). This simple algorithm had been known for
many years as a practical solution, but it was dismissed by theoreticians as being inefficient
because its worst case running time is O(n2). When the randomized analysis was discovered,
the algorithm was viewed much more positively (albeit with the proviso to randomized the
input order).

Lecture Notes 83 CMSC 754



Fig. 70: The Voronoi diagram and an upper envelope.

The algorithm is remarkably similar in spirit to the randomized algorithm for trapezoidal map
algorithm in that it not only builds the triangulation, but it also provides a point-location
data structure for the final triangulation as well. (Rather then building a point-location data
structure, we will adopt an alternative method based on bucketing future sites.)

The input consists of a set P = {p1, . . . , pn} of point sites in R2. As with any randomized
incremental algorithm, the idea is to insert sites in random order, one at a time, and update
the triangulation with each new addition. The issues involved with the analysis will be
showing that, after each insertion, the expected number of structural changes in the diagram
is O(1).

As with the incremental algorithm for trapezoidal maps, we need some way of keeping track of
where newly inserted sites are to be placed in the diagram. We will store each of the uninserted
sites in a bucket according to the triangle in the current triangulation that contains it. We
will show that the expected number of times that a site is rebucketed throughout the course
of the algorithm is O(log n), which when summed over all the sites leads to a total time of
O(n log n).

Incremental update: It will be convenient to assume that each newly added site lies within some
triangle of the triangulation. This will not be true when sites are added that lie outside the
convex hull of the current point set. To satisfy this, we well start by adding three bogus
sentinel sites that will form an infinitely large triangle that contains all the sites. After
the final triangulation is completed, we will remove these sentinel sites and their incident
triangles. (In our trapezoidal map algorithm, this is analogous to putting all the segments in
an enclosing rectangle.)14 We won’t show this triangle in our figures, but imagine that it is
there nonetheless.

We permute the sites in random order and insert one by one. When a new site p is added,
we find the triangle 4abc of the current triangulation that contains this site (we will see how
later), insert the site into this triangle, and join the site to the three surrounding vertices (see

14Some care must be taken in the construction of this enclosing triangle. It is not sufficient that it simply contains
all the sites. It should be so large that the vertices of the triangle do not lie in the circumcircles of any of the triangles
of the final triangulation. Our book suggests a symbolic alternative, which is more reliable.
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Fig. 71(a)). This creates three new triangles incident to p, 4pab, 4pbc, and 4pca. For each
triangle (say, 4pab), we check whether vertex of the triangle that lies on the opposite side of
the edge ab lies within the circumcircle of 4pab. This is called a local Delaunay condition.
(If there is no such vertex, because this edge is on the convex hull, then we are done.) If this
vertex, call it d, fails the local Delaunay condition, we swap the edge ab out and replace it
with pd. We repeat the same test process recursively with these triangles (see Fig. 71(b)).

(a) (b)

pp p p

b

a
c

b

a
c c c

b

a

b

a

d d

Fig. 71: Delaunay site insertion.

Local vs. Global Delaunay: An obvious issue with the above process is that we do not test
all the sites for violation of the circumcircle condition, just for adjacent triangles. Why this
works is related to an important issue in Delaunay triangulations. We know from the empty
circumcircle condition that in a Delaunay triangulation, the circumcircle of every triangle is
empty of other sites. This suggests two different criteria for testing whether a triangulation
is Delaunay:

Global Delaunay: The circumcircle of each triangle4abc contains no other site d. (Fig. 72(a)
shows a violation.)

Local Delaunay: For each pair of neighboring triangles 4abc and 4acd, d lies outside the
circumcircle of 4abc. (Fig. 72(b) shows a violation.)
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b
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c
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b
e

d

c
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d
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(a) (b) (c) (d)
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Fig. 72: Global- and local-Delaunay conditions.

Clearly, if a triangulation is globally Delaunay it is locally Delaunay. Our incremental algo-
rithm only checks the local-Delaunay condition, however. Could it be that a triangulation
might satisfy the condition locally, but fail to satisfy it globally (see Fig. 72(c))? Delaunay
proved, however, that the two conditions are in fact equivalent:

Delaunay’s Theorem: A triangulation is globally Delaunay iff it is locally Delaunay.

Proof: (Sketch) The global to local implication is trivial, so it suffices to prove that local
implies global. Consider any triangle 4abc of a locally Delaunay triangulation, and let
d be the remaining vertex of neighboring triangle that lies on the opposite side of edge
bc. We assert that if d lies outside the circumcircle of 4abc, then no other site can lie
within this circumcircle.
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A formal justification will take too much work, so we’ll just consider a limited scenario,
which illustrates the key idea. Suppose that d is outside the circumcircle of 4abc (the
blue circle Fig. 72(d)) but (to the contrary) the vertex e opposite the edge cd lies within
this circumcircle (see Fig. 72(d)). Consider the circumcircle of 4cde (the red circle
Fig. 72(d)). By an elementary (but somewhat tedious) analysis of the configuration of
these sites, it follows that b lies within this circumcircle. Since b is in the neighboring
triangle to 4cde, this implies that the triangulation is not locally Delaunay, which yields
the contradiction.

Because the algorithm checks that all the newly created triangles are locally Delaunay, the
algorithm’s correctness follows as a direct consequence.

Incircle Test: Before presenting the algorithm, we shall introduce the geometric primitives in-
volved in testing whether triangles satisfy the Delaunay condition. Recall that a triangle
4abc is in the Delaunay triangulation, if and only if the circumcircle of this triangle contains
no other site in its interior. (Recall that we make the general position assumption that no
four sites are cocircular.)

How do we test whether a site d lies within the interior of the circumcircle of 4abc? Let’s
assume that the vertices of the triangle 4abc are given in counterclockwise order. We claim
that d lies in the circumcircle determined by the 4abc if and only if the following determinant
is positive (see Fig. 73(a)–(c)).

inCircle(a, b, c, d) ≡ det


ax ay a2

x + a2
y 1

bx by b2x + b2y 1

cx cy c2
x + c2

y 1

dx dy d2
x + d2

y 1

 > 0.

This is called the incircle test in R2. (The incircle test can be generalized to any dimension.)
It is notable that the incircle test in R2 can be viewed as an orientation test in 3-D, where we
have effectively lifted the sites onto a paraboloid in R3 by creating an addition z-coordinate
whose value is x2 + y2.

a

b

c

a

d
b

c

a

d
b

c

d

inCircle(a, b, c, d) < 0 inCircle(a, b, c, d) = 0 inCircle(a, b, c, d) > 0

(a) (b) (c)

Fig. 73: Incircle test.

It is also noteworthy that, while we have defined the incircle test as testing d with respect to
4abc, the basic laws of determinants imply that (subject to a possible sign change) this can
be used to test any of the four sites with respect to the triangle defined by the other three.

Deriving the Incircle Test (Optional): We will not prove the correctness of this test, but we
will show a somewhat simpler assertion, namely that if the four points are cocircular then the
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above determinant is equal to zero. (It follows from continuity that as d moves from inside
the circle to the outside, the sign of the determinant changes as well.)

Suppose that a, b, c, and d are all cocircular then there exists a center point q = (qx, qy) and
a radius r such that

(ax − qx)2 + (ay − qy)2 = r2,

and similarly for the other three points. (We won’t compute q and r, but merely assume their
existence for now.) Expanding this and collecting common terms we have

0 = (a2
x + a2

y)− 2qxax − 2qyay + (q2
x + q2

y − r2)

= (−2qx)ax + (−2qy)ay + 1 · (a2
x + a2

y) + (q2
x + q2

y − r2) · 1.

If we do the same for the other three points, b, c, and d, and express this in the form of a
matrix, we have 

ax ay a2
x + a2

y 1

bx by b2x + b2y 1

cx cy c2
x + c2

y 1

dx dy d2
x + d2

y 1




−2qx
−2qy

1
q2
x + q2

y − r2

 = 0.

In other words, there exists a linear combination of the columns of the 4 × 4 matrix that is
equal to the zero vector. We know from linear algebra that this is true if and only if the
determinant of the matrix is zero.

Randomized Incremental Construction: We can now present the complete algorithm. Given
the set P = {p1, . . . , pn} of sites, we first compute the sentinel triangle containing them all.
We then permute the sites randomly and insert them into the triangulation one by one.

The algorithm for the incremental algorithm is shown in the code block below, and an ex-
ample is presented in Fig. 74. The current triangulation is kept in a global data structure,
implemented as a doubly-connected edge list (DCEL). All of the basic operations described
below (finding edges and vertices and flipping edges) can be done in O(1) time.

Incremental Delaunay Triangulation Algorithm
Insert(p) {

Find the triangle 4abc containing p
Insert edges pa, pb, and pc into triangulation
SwapTest(ab) // check/fix the surrounding edges
SwapTest(bc)
SwapTest(ca)

}

SwapTest(ab) {
if (ab is an edge on the exterior face) return
Let d be the vertex to the right of edge ab
if (inCircle(p, a, b, d)) { // d violates the incircle test

Flip edge ab // replace ab with pd
SwaptTest(ad) // check/fix the new suspect edges
SwaptTest(db)

}
}
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4pad: OK
4pdb: fails!

flip db
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p a
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c

d

e
4pca: fails!

f

Fig. 74: Incremental site insertion.

As you can see, the algorithm is very simple. There are only two elements that have not been
shown are the implementation. The first is the update operations on the data structure for the
simplicial complex. These can be done in O(1) time each on any reasonable representation (a
DCEL, for example). The other issue is locating the triangle that contains p. We will discuss
this below.

Running-Time Analysis: To analyze the expected running time of algorithm we will establish
two bounds, each averaged over all possible insertion orders. With the addition of each site:

(1) O(1) structural changes are made to the triangulation (in expectation), and

(2) O(log n) time is spent determining which triangle contains each newly inserted site (in
expectation).

These bounds depend only on the insertion order, not the distribution of the sites.

Bounding the Structural Changes: We argue first that the expected number of edge changes
with each insertion is O(1) by a simple application of backwards analysis. First observe that
(assuming general position) the structure of the Delaunay triangulation is independent of the
insertion order of the sites so far. Thus, any of the existing sites is equally likely to have been
the last site to be added to the structure.

Suppose that some site p was the last to have been added. How much work was needed to
insert p? Observe that the initial insertion of p involved the creation of three new edges, all
incident to p. Also, whenever an edge swap is performed, a new edge is added to p. These
are the only changes that the insertion algorithm can make. Therefore the total number of
changes made in the triangulation for the insertion of p is proportional to the degree of p after
the insertion is complete (see Fig. 75). Although any one vertex may have a very high degree,
we will exploit the fact that in a planar graph, the average vertex degree is just a constant.

To perform the backwards analysis, we consider the situation after the insertion of the ith
site. Let di be a random variable that indicates the degree of the newly inserted site in our
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p

insert p

Fig. 75: Number of structural changes is equal to p’s degree after insertion (three initial edges and
three edge flips).

randomized algorithm. Let Pi = {p1, . . . , pi} denote the first i sites to be inserted. Although
the diagram depends on which particular i sites are in this subset, our analysis will not. For
1 ≤ j ≤ i, let deg(pj) denote the degree of site pj in triangulation DT (Pi) just after the ith
insertion.

Because the diagram does not depend on the insertion order, each of the sites of Pi has an
equal probability of 1

i of being the last site to be inserted. Recall that (by Euler’s formula),
the triangulation has at most 3i edges. It is easy to see that the sum of vertex degrees is
equal to twice the total number of edges (since each edge is counted twice), that is, 6i. We
conclude that expected value of di, denoted E[di], satisfies:

E[di] =
1

i

i∑
j=1

deg(pi) ≤
6i

i
= 6.

Therefore, by the magic of backwards analysis, the expected number of structural changes
following the insertion of the ith site is, in expectation, just 6.

Bounding the Location Cost: The second aspect of the expected-case running time is the cost
of determining which triangle contains each newly created site. As mentioned earlier, we
will employ a bucketing approach, as we did with the trapezoidal-map algorithm. Think of
each triangle of the current triangulation as a bucket that holds the sites that lie within this
triangle and have yet to be inserted (see Fig. 76(a)). When a new site p is inserted, a number
of old triangles are deleted (shaded red in Fig. 76(a)) and a number of new triangles are
created (shaded blue in Fig. 76(b)). All the sites in the buckets of the old triangles need to
be moved into the associated new triangle. This process is called rebucketing.

insert p

pp q

a

bc

∆

(a) (b) (c)

Fig. 76: Rebucketing sites after inserting site p.

For the sake of simplifying the analysis, let us assume that the cost of rebucketing a single site
during a single insertion is O(1). (The issue is that the cost of rebucketing depends on the
degree of the newly inserted site. In the previous section we showed that the average degree
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is a constant, so this assumption is not unreasonable.) We will show through a backwards
analysis that, in expectation, any fixed site is rebucketed O(log n) times.

Let us fix a site q ∈ P . Consider the situation just after the insertion of the ith site. We
may assume that q has not yet been inserted, since otherwise its rebucketing cost is zero
after the ith insertion. For 1 ≤ i ≤ n, let Xi(q) denote the random event that q is moved
to a new triangle after the ith insertion, and let Prob(Xi(q)) denote the probability of this
event. Letting B(q) denote the average number of times that q is rebucketed throughout the
algorithm, we have

B(q) ≤
n∑
i=1

Prob(Xi(q)).

To bound Prob(Xi(q)), let ∆ be the triangle containing q after the ith insertion. As observed
above, after we insert the ith site, all the newly created triangles are incident to this new
site. Thus, ∆ would have come into existence as a result of the last insertion if and only if
one of its three incident vertices happened to be the last to be inserted (see Fig. 76(c)). Since
∆ is incident to exactly three sites, and every site is equally likely to be the last inserted, it
follows that the probability that ∆ came into existence is 3

i . (We are cheating a bit here by
ignoring the three initial sites at infinity.) Therefore, Prob(Xi(q)) ≤ 3

i .

From this, it follows that the expected number of times that the site q is rebucketed is

B(q) ≤
n∑
i=1

3

i
= 3

n∑
i=1

1

i
.

Recall that
∑n

i=1
1
i is the Harmonic series, and for large n, its value is very nearly lnn. Thus

we have
B(q) ≤ 3 · lnn = O(log n).

Although the diagram depends on the order in which the sites have been added, this bound
does not. Summing over all the n sites, it follows that the total time spent rebucketing all
the sites is

∑n
i=1B(pi) = O(n log n).

Lecture 13: Line Arrangements

Line Arrangements: We have studied a number of the most fundamental structures in computa-
tional geometry: convex hulls, Voronoi diagrams and Delaunay triangulations. These are all
defined over a finite set of points. As we saw earlier, points and lines in the plane are related
to each other through the dual transformation. In this lecture, we will studey a fundamental
structure defined for a finite set of lines, called a line arrangement.

Consider a finite set L = {`1, . . . , `n} of lines in the plane. These lines naturally subdivide
the plane into a cell complex, which is called the arrangement of L, and is denoted A(L)
(see Fig. 77(a)). The points where two lines intersect form the vertices of the complex,
the segments between two consecutive intersection points form its edges, and the polygonal
regions between the lines form the faces, also called cells. Although an arrangement contains
unbounded edges and faces, as we did with Voronoi diagrams (from a purely topological
perspective) it is possible to add a vertex at infinity and attach all these edges to this vertex
to form a proper planar graph (see Fig. 77(b)). An arrangement can be represented using
any standard data structure for cell complexes, a DCEL for example.
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edge

vertex

(a) (b)

Fig. 77: Arrangement of lines; (a) the basic elements of an arrangement and (b) adding a vertex
at infinity to form a proper planar graph.

As we shall see, arrangements have many applications in computational geometry. Through
the use of point-line duality, many of these applications involve sets of points. We will begin by
discussing the basic geometric and combinatorial properties of arrangements and an algorithm
for constructing them. Later we will discuss applications of arrangements to other problems
in computational geometry. Although we will not discuss it, line arrangements in R2 can be
generalized to hyperplane arrangements in Rd. In such a case the arrangement is a polyhedral
cell complex.

Combinatorial Properties: The combinatorial complexity of an arrangement is the total number
of vertices, edges, and faces in the arrangement. An arrangement is said to be simple if no
three lines intersect at a common point. Through our usual general position assumption that
no three lines intersect in a single point, it follows that we will be interested only in simple
arrangements. We will also assume that no two lines are parallel. The following lemma shows
that all of these quantities are Θ(n2) for simple planar line arrangements.

Lemma: Let A(L) be a simple arrangement of n lines L in the plan. Then:

(i) the number of vertices (not counting the vertex at infinity) inA(L) is
(
n
2

)
= 1

2(n2−n).

(ii) the number of edges in A(L) is n2

(iii) the number of faces in A(L) is
(
n
2

)
+ n+ 1 = 1

2(n2 + n+ 2).

Proof: The fact that the number of vertices is
(
n
2

)
is clear from the fact that (since no two

are parallel) each pair of lines intersects in a single point.

The number of edges follows from the fact that each line contains n lines. This is because
each line is cut by each of the other n− 1 lines (assuming no two parallel lines), which
splits the line into n edges.

The number of faces follows from Euler’s formula, v−e+f = 2. To form a cell complex,
recall that we added an additional vertex at infinity. Thus, we have v = 1 +

(
n
2

)
and

e = n2. Therefore, the number of faces is

f = 2− v + e = 2−
(
1 +

(
n
2

))
+ n2 = 2−

(
1 + n(n−1)

2

)
+ n2

= 1 + n2

2 + n
2 = 1 + n(n−1)

2 + n =
(
n
2

)
+ n+ 1,

as desired.

By the way, this generalizes to higher dimensions as well. The combinatorial complexity of
an arrangement of n hyperplanes in Rd is Θ(nd). Thus, these structures are only practical in
spaces of relatively low dimension when n is not too large.
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Incremental Construction: Arrangements are used for solving many problems in computational
geometry. But in order to use an arrangement, we first must be able to construct it.15 We
will present a simple incremental algorithm, which builds an arrangement by adding lines
one at a time. Unlike the other incremental algorithms we have seen so far, this one is not
randomized. Its worst-case asymptotic running time, which is O(n2), holds irrespective of the
insertion order. This is asymptotically optimal, since this is the size of the arrangement. The
algorithm will also require O(n2) space, since this is the amount of storage needed to store
the final result.

Let L = {`1, . . . , `n} denote the set of lines. We will add lines one by one and update the
arrangement after each insertion. We will show that the ith line can be inserted in O(i)
time (irrespective of the insertion order). Summing over i, this yields a total running time
proportional to

∑n
i=1 i = O(n2).

Suppose that the first i− 1 lines have already been inserted. Consider the insertion of `i. We
start by determining the leftmost (unbounded) face of the arrangement that contains this line.
Observe that at x = ∞, the lines are sorted from top to bottom in increasing order of their
slopes. In time O(i) we can determine where the slope of `i falls relative to the slopes of the
prior i− 1 lines, and this determines the leftmost face of the arrangement that contains this
line. (In fact, we could do this in O(log i) time by storing the slopes in an ordered dictionary,
but this would not improve our overall running time. By our assumption that no two lines
are parallel, there are no duplicate slopes.)

The newly inserted line cuts through a sequence of i − 1 edges and i faces of the existing
arrangement. In order to process the insertion, we need to determine which edges are cut by
`i, and then we split each such edge and update the DCEL for the arrangement accordingly.

In order to determine which edges are cut by `i, we “walk” this line through the current
arrangement, from one face to the next. Whenever we enter a face, we need to determine
through which edge `i exits this face. We answer the question by a very simple strategy. We
walk along the edges of the face, say in a counterclockwise direction until we find the exit
edge, that is, the other edge that `i intersects. We then jump to the face on the other side of
this edge and continue the trace with the neighboring face. This is illustrated in Fig. 78(a).
The DCEL data structure supports such local traversals in time linear in the number of
edges traversed. (You might wonder why we don’t generalize the trapezoidal map algorithm.
We could build a trapezoidal map of the arrangement and walk the new segment through a
sequence of trapezoids. It turns out that this would be just as efficient.)

Clearly, the time that it takes to perform the insertion is proportional to the total number
of edges that have been traversed in this tracing process. A naive argument says that we
encounter i− 1 lines, and hence pass through i faces (assuming general position). Since each
face is bounded by at most i lines, each facial traversal will take O(i) time, and this gives a
total O(i2), which is much higher than the O(i) time that we promised earlier. Why is this
wrong? It is based on bound of the total complexity of the faces traversed. To improve this,
we need to delve more deeply into a concept of a zone of an arrangement.

Zone Theorem: The most important combinatorial property of arrangements (which is critical

15This is not quite accurate. For some applications, it suffices to perform a plane-sweep of the arrangement. If we
think of each line as an infinitely long line segment, the line segment intersection algorithm that was presented in
class leads to an O(n2 logn) time and O(n) space solution. There exists a special version of plane sweep for planar
line arrangements, called topological plane sweep, which runs in O(n2) time and O(n) space. In spite of its fancy
name, topological plane sweep is quite easy to implement.
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Fig. 78: Adding the line `i to the arrangement; (a) traversing the arrangement and (b) the zone of
a line `i. (Note that only a portion of the zone is shown in the figure.)

to their efficient construction) is a rather surprising result called the zone theorem. Given an
arrangement A of a set L of n lines, and given a line ` that is not in L, the zone of ` in A(L),
denoted ZA(`), is the set of faces of the arrangement that are intersected by ` (shaded in
Fig. 78(b)). For the purposes of the above construction, we are only interested in the edges of
the zone that lie below `i, but if we bound the total complexity of the zone, then this will be
an upper bound on the number of edges traversed in the above algorithm. The combinatorial
complexity of a zone (as argued above) is at most O(n2). The Zone theorem states that the
complexity is actually much smaller, only O(n).

Theorem: (Zone Theorem) Given an arrangement A(L) of n lines in the plane, and given
any line ` in the plane, the total number of edges in all the cells of the zone ZA(`) is at
most 6n.

As with many combinatorial proofs, the key is to organize matter so that the counting can
be done in an easy way. This is not trivial. We cannot count cell-by-cell, since some cells
have high complexity and some low. We also cannot count line-by-line, because some lines
contribute many edges to the zone and others just a few. The key in the proof is finding a
(clever!) way to add up the edges so that each line appears to induce only a constant number
of edges into the zone. (Note that our text counts zone edges a bit differently.)

Proof: The proof is based on a simple inductive argument. For the sake of illustration, let
us rotate the plane so that ` is horizontal. By general position, we may assume that
none of the lines of L are parallel to `. We split the edges of the zone into two groups,
those that bound some face from the left side and those that bound some face from
the right side. An edge of a face is said to be left bounding if the face lies in the right
halfplane of the line defining this edge, and a face is right bounding if the face lies in the
left halfplane of the line defining this edge (see Fig. 78(c)). We will show that there are
at most 3n left-bounding edges in the zone (highlighted in Fig. 79(a)), and by applying
a symmetrical argument to the right-bounding edges, we have a a total of 6n edges.

The proof is by induction on n. For the basis case, when n = 1, then there is exactly one
left-bounding edge in `’s zone, and 1 ≤ 3 = 3n. For the induction step, let us assume the
induction hypothesis is true for any set of n− 1 lines, and we will show that it holds for
an arrangement of n lines. Consider the rightmost line of the arrangement to intersect
`. Call this `1 (see Fig. 78(c)). Prior to its existence, the induction hypothesis implies
that there are at most 3(n − 1) left-bounding edges in the zone of the remaining n − 1
lines.
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Fig. 79: Proof of the Zone Theorem.

Now, let us add `1 and see how many more left-bounding edges are generated. Because
`1 is leftmost, it intersects the rightmost face of the zone. Observe that all of the edges
of this face are left-bounding edges. By convexity, `1 intersects the boundary of this
face in two edges, denoted ea and eb, where ea is above `, and eb is below. Its insertion
creates a new left-bounding edge running along `1 between ea and eb, and it splits each
of the edges ea and eb into two new left-bounding edges. Thus, there is a net increase
by three edges, for a total of 3(n− 1) + 3 = 3n edges.

We assert that `1 cannot contribute any other left-bounding edges to the zone. This is
because the lines containing ea and eb block any possibility of this. Therefore, there are
at most 3n left bounding edges, as desired.

Applications of Arrangements and Duality: Line arrangements, when combined with the dual
transformation, make it possible to solve a number of geometric computational problems. A
number of examples are given below. Unless otherwise stated, all these problems can be solved
in O(n2) time and O(n2) space by constructing a line arrangement. Alternately, they can be
solved in O(n2 log n) time and O(n) space by applying plane sweep to the arrangement.

General position test: Given a set of n points in the plane, determine whether any three
are collinear.

Minimum area triangle: Given a set of n points in the plane, determine the minimum
area triangle whose vertices are selected from these points.

Minimum k-corridor: Given a set of n points, and an integer k, determine the narrowest
pair of parallel lines that enclose at least k points of the set. The distance between the
lines can be defined either as the vertical distance between the lines or the perpendicular
distance between the lines (see Fig. 80(a)).

Visibility graph: Given line segments in the plane, we say that two points are visible if the
interior of the line segment joining them intersects none of the segments. Given a set
of n non-intersecting line segments, compute the visibility graph, whose vertices are the
endpoints of the segments, and whose edges a pairs of visible endpoints (see Fig. 80(b)).

Maximum stabbing line: Given a set of n line segments in the plane, compute the line `
that stabs (intersects) the maximum number of these line segments (see Fig. 80(c)).

Ham Sandwich Cut: Given n red points and m blue points, find a single line ` that si-
multaneously bisects these point sets. It is a famous fact from mathematics, called the
Ham-Sandwich Theorem, that such a line always exists. If the two point sets are sepa-
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Fig. 80: Applications of arrangements.

rable by a line (that is, the red convex hull and the blue convex hull do not intersect),
then this can be solved in time O(n+m) (see Fig. 80(d)).

In the remainder of the lecture, we’ll see how problems like these can be solved through the
use of arrangements.

Sweeping Arrangements: Since an arrangement of n lines is of size Θ(n2), we cannot expect to
solve problems through the explicit use of arrangements in less than quadratic time. Most
applications involve first constructing the arrangement, and then traversing it in some manner.
In many instances, the most natural traversal to use is based on a plane-sweep. (This is not
the only way however. Since a planar arrangement is a graph, methods such as depth-first
and breadth-first search can be used.)

If an arrangement is to be built just so it can be swept, then maybe you don’t need to
construct the arrangement at all. You can just perform the plane sweep on the lines, exactly
as we did for the line segment intersection algorithm. Assuming that we are sweeping from
left to right, the initial position of the sweep line is at x = −∞ (which means sorting by
slope). The sweep line status maintains the lines in, say, bottom to top order according to
their intersection with the sweep line. The events are the vertices of the arrangement.

Note that the sweep-line status always contains exactly n entries. Whenever an intersection
event occurs, we can update the sweep-line status by swapping two adjacent entries. Thus,
instead of an ordered dictionary, it suffices to store the lines in a simple n-element array,
sorted, say, from top to bottom. This means the sweep-line updates can be performed
in O(1) time, rather than O(log n)(see Fig. 81(a)). We still need to maintain the priority
queue, and these operations take O(log n) time each.

Sweeping an arrangement in this manner takes O(n2 log n) time, and O(n) space. Because
it is more space-efficient, this is often an attractive alternative to constructing the entire
subdivision.

Topological Plane Sweep: (Optional) As mentioned above, the priority queue is the slowest
part of plane sweeping an arrangement. Remarkably, there is a way to save this O(log n)
factor, but we must abandon hope of sweeping events in purely left-to-right order. There is
a somewhat more “relaxed” version of plane sweep, which works for line arrangements in the
plane. The method is called topological plane sweep. It runs in O(n2) time (thus, eliminating
an O(log n) factor from the running time) and uses O(n) space.
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Fig. 81: Sweeping a line arrangement.

It achieves efficiency relaxing the requirement that vertices be swept in strict left-to-right
order. Rather, it uses a more “local” approach for deciding which vertex of the arrangement
to sweep next.16 This local approach guarantees that the vertices along each line are swept
in their proper order, even though vertices lying on different lines are not necessarily swept in
their proper left-to-right order. Intuitively, we can think of the sweep line as a sort of pseu-
doline, that intersects each line of the arrangement exactly once (see Fig. 81(b)). Although
we will not present any justification, it method applicable to all the problems we will discuss
in today’s lecture.

Duality: Many of our applications will involve the dual transformation, which we introduced
earlier in the semester. Recall that the dual of a point p = (a, b) is the line p∗ : y = ax − b,
and the dual of a line ` : y = ax − b is the point `∗ = (a, b). Also recall the order-reversing
property that the point p lies above line ` (at vertical distance h) if and only if the dual line
p∗ lies below dual point `∗ (also at vertical distance h).

Narrowest k-corridor: We are given a set P of n points in the plane and an integer k, 1 ≤ k ≤ n,
and we wish to determine the narrowest pair of parallel lines that enclose at least k points
of the set. (We call this a slab or corridor.) We define the width of the corridor to be the
vertical distance between these. Our objective is to compute the corridor of minimum width
that encloses k points (which may lie on the corridor’s boundary.) It is straightforward to
adapt the algorithm to minimize the perpendicular distance between the lines. We will make
the usual general-position assumptions that no three points of P are collinear and no two
points have the same x-coordinate.

Consider any corridor defined by parallel lines `a (above) and `b (below) (see Fig. 82(a)).
Since the lines are parallel, these points share the same a-coordinate, which implies that the
line segment `∗a`

∗
b is vertical (see Fig. 82(b)). The vertical distance between the lines (that

is, the difference in their y-intercepts) is the same as the vertical distance between the dual
points.

By the order-reversing property, points that lie above/below/within the corridor (shown in
blue, red, and black in Fig. 82(a), respectively) are mapped to dual lines that pass be-
low/above/through this segment (see Fig. 82(b)). Thus, we have the following equivalent
dual formulation of this problem:

16For details, see “Topologically sweeping an arrangement” by H. Edelsbrunner and L. J. Guibas, J. Comput. Syst.
Sci., 38 (1989), 165–194.
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Fig. 82: A 3-corridor in primal and dual forms. (Note that the corridor is not as narrow as possible.)

Shortest vertical k-stabber: Given an arrangement of n lines, determine the shortest ver-
tical segment that stabs (intersects) k lines of the arrangement.

It is easy to show that the shortest vertical k-stabber may be assumed to have one of its
endpoints on a vertex of the arrangement. (If the vertical line has endpoints in the interior
of two edges, we can slide it left or right and decrease its length.)

3-stabber: The 3-stabber is the simplest to describe. A perform a simple plane sweep of
the arrangement (using a vertical sweep line). Whenever we encounter a vertex of the
arrangement, we consider the distance from this vertex to the edge of the arrangement
lying immediately above this vertex and the edge lying immediately below. (These are
illustrated by the blue broken lines in Fig. 83(a).) We can solve this problem by plane
sweep in O(n2 log n) time and O(n) space. (By using topological plane sweep, the extra
log n factor in the running time can be removed.)

Note that we can use this to test whether points are in general position. It is easy to
prove that a set of n points has three or more collinear points if and only if the dual
arrangement’s minimum 3-stabber is of length zero.

(a) (b)

k = 3 (all events) k = 5 (events involving two levels)

Fig. 83: The critical events in computing the shortest vertical 3-stabber (a) and 5-stabber (b).

k-stabber: Whenever we encounter a vertex in the plane sweep, we determine the distance
to the lines of the arrangement that lie k−2 above and k−2 below (see the blue broken
lines of Fig.83(b)). The reason for the “−2” is to account for two lines that pass through
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the vertex itself. Recalling that the sweep-line status can be stored in a simple n-element
array, it is possible to access these entries in O(1) time for any value of k.

Halfplane Discrepancy: Next we consider a problem derived geometric sampling. Suppose that
we are given a collection of n points P lying in a unit square U = [0, 1]2. We want to use these
points for random sampling purposes. In particular, the property that we would like these
points to possess is that for any halfplane h, we the fraction of points of P that lie within h
should be roughly equal to the area of intersection of h with U . More precisely, define µ(h)
to be the area of h ∩ U , and µP (h) = |P ∩ h|/|P |. A sample is good if µ(h) ≈ µP (h), for any
choice of h.

To make this more formal, we define the discrepancy (or more accurately, the halfplane
discrepancy) of a finite point set P with respect to a halfplane h to be

∆P (h) = |µ(h)− µP (h)|.

For example, in Fig. 84(a), the area of h∩U is µ(h) = 0.625, and there are 7 out of 13 points
in h, thus µP (h) = 7/13 = 0.538. Thus, the discrepancy of h is |0.625 − 0.538| = 0.087.
Define the halfplane discrepancy of P to be the maximum (or more properly the supremum,
or least upper bound) of this quantity over all halfplanes:

∆(P ) = sup
h

∆P (h).

Let’s consider the problem of computing the discrepancy of a given point set P .

(a)

h

(b)

p`
r1

r2

`

(c)

type-2

type-1

Fig. 84: Discrepancy of a point set.

Since there are an uncountably infinite number of halfplanes that intersect the unit square,
we should first derive some sort of finiteness criterion on the set of halfplanes that might
produce the greatest discrepancy.

Lemma: Let h denote the halfplane that generates the maximum discrepancy with respect
to P , and let ` denote the line that bounds h. Then either:

(i) ` passes through one point of P , and this point is the midpoint of the line segment
` ∩ U , or

(ii) ` passes through two points of P .

Remark: If a line passes through one or more points of P , then should this point be included
in µP (h)? For the purposes of computing the maximum discrepancy, the answer is
to either include or omit the point, whichever produces the larger discrepancy. The
justification is that it is possible to perturb h infinitesimally so that it includes none or
all of these points without altering µ(h).
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Proof: We will show that any line can be moved until it satisfies either (i) or (ii) in such
a manner that the discrepancy never decreases. First, if ` does not pass through any
point of P , then (depending on which is larger µ(h) or µP (h)) we can move the line
up or down without changing µP (h) and increasing or decreasing µ(h) to increase their
difference, until it does pass through a point of P . Next, if ` passes through a point
p ∈ P , but is not the midpoint of the line segment ` ∩ U , then we claim that we can
rotate this line about p and hence increase or decrease µ(h) without altering µP (h), to
increase their difference.

To establish the claim, consider Fig. 84(b). Suppose that the line ` passes through point
p and let r1 < r2 denote the two lengths along ` from p to the sides of the square. Observe
that if we rotate ` through a small angle θ, then to a first order approximation, the gain
due to area of the triangle on the right is r2

1θ/2, since this triangle can be approximated
by an angular sector of a circle of radius r1 and angle θ. The loss due to the area of
the triangle on the left is r2

2θ/2. Thus, since r1 < r2 this rotation will decrease the area
of region lying below h infinitesimally. A rotation in the opposite increases the area
infinitesimally. Since the number of points bounded by h does not change as a function
of θ, the discrepancy cannot be achieved as long as such a rotation is possible.

We say that a line is type-1 if it satisfies condition (i) and it is type-2 if it satisfies condition
(2) (see Fig. 84(c)). We will show that the discrepancy for each types of lines can be computed
in O(n2) time.

Type-1: For each point p ∈ P , there are only a constant number of lines ` (at most two, I
believe) through this point such that p is the midpoint of `∩U . It follows that there are
at most O(n) type-1 lines. We can compute the discrepancy of each such line in O(n)
time, which leads to a total running time of O(n2).

Type-2: Consider a type-2 line ` that passes through two points pi, pj ∈ P . This line defines
two halfplanes, one above and one below. We’ll explain how to compute the discrepancy
of the lower halfplane, h−, and the upper halfplane, h+, is symmetrical. First, observe
that we can compute µ(h−) in constant time, so all that remains is computing µP (h−),
that is, the number of points lying on or below `.

If we apply our standard dual transformation, ` is mapped in the dual plane to a point `∗

at which the dual lines p∗i and p∗j intersect. This is just a vertex in the line arrangement
A(P ∗). By the order-reversing property of the dual transformation, the points lying on
or below ` coincide with the dual lines that lie on or above this vertex.

We can compute this quantity in constant time for each vertex of the line arrangement.
Recall that the sweep-line status is stored in a simple n-element array, sorted from top
to bottom. The vertex in the arrangement corresponds to two consecutive entries in the
sweep-line status, say at positions k − 1 and k. The number of dual lines lying on or
above the vertex is therefore just k (assuming that we index the array from 1 to n).

For example, consider the vertex being swept in Fig. 81(a). These intersecting lines
are at indices k − 1 = 3 and k = 4 in the sweep-line status, and hence there are 4
lines on or above this vertex, which implies that there are 4 points lying on or below
the corresponding type-2 line p1p4 in the primal configuration. Since we can compute
the discrepancy for each type-2 line in O(1) time, the overall time to compute the
discrepancies of all type-2 lines is O(n2).
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Levels: The analysis that was done above for type-2 lines suggests another useful structure within a
line arrangement. We can classify each element of the arrangement according to the number
of lines lying above and below it. We say that a point is at level k, denoted Lk, in an
arrangement if there are at most k−1 lines (strictly) above this point and at most n−k lines
(strictly) below it. It is easy to see that Lk is an x-monotone polygonal curve (see Fig. 85(a)).
For example, L1 is the upper envelope of the lines, and Ln is the lower envelope. Assuming
general position, each vertex of the arrangement is on two levels, which meet at this vertex
in a “knocked-knee” manner. Given the arrangement A(L) of a set of n lines, it is an easy
matter to label every edge of the arrangement with its level number, by tracking its index in
the sweep-line status.

L1

L3

L5

(a) (b)

L2

L4

L6

`∗

` e

a

c
d

b

f a∗

f∗

d∗c∗

e∗

b∗

L3

Fig. 85: Levels in an arrangement and k-sets.

There is a dual equivalence between a level in an arrangement and a concept called k-sets.
Given an n-element point set P and integer 1 ≤ k ≤ n, a k-element subset of P ′ ⊆ P is called
a k-set of P if there exists a halfplane h such that P ′ = P ∩ h. For example, if (pi, pj) is
an edge of the convex hull of P , then P ′ = {pi, pj} is a 2-set of P . A classical question in
combinatorial geometry is, as a function of n and k, what is the maximum number of possible
k-sets that any n-element set can have. (The current best bounds range between O(n log k)
and O(nk1/3).)

There is a close relationship between the k-sets of P and level k of the dual arrangement
A(P ∗). To see this, let us first distinguish between two types of k-sets. We say that a k-set
is a lower k-set if it lies in the halfplane beneath a line ` and otherwise it is an upper k-set.
Let’s just consider lower k-sets, since upper k-sets are symmetrical (by reflecting the points
about the x-axis).

Consider any lower k-set defined by some line `. We may assume that ` passes through a
point of P , and hence there are k − 1 points strictly below `. The associated dual point
`∗ lies on an edge of the dual arrangement, and by the order-reversing property of the dual
transformation, there are k − 1 lines of A(P ∗) that pass strictly above `∗. (For example, in
Fig. 85(b), the lower 3-set {c, b, e} is defined by a line `, which passes through c. In the dual
setting, the point `∗ lies on the dual line c∗ and lies on level L3 because lines b∗ and e∗ lie
above it.) The upper k-sets can be identified with level Ln−k+1, because each point on this
level has k lines passing on or below it, and hence n− k + 1 lines on or above.

Sorting all angular sequences: Earlier, we introduced the problem of computing visibility graphs.
We will not explicitly discuss the solution of that problem here, but we will discuss a fun-
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damental subroutine in this algorithm. Consider a set of n points in the plane. For each
point p in this set we want to sort the remaining n − 1 point in cyclic order. Clearly, we
can compute the cyclically sorted order about any given point in O(n log n) time, and this
leads to an overall running time of O(n2 log n). We will show that we can do this O(n2) time.
(This is rather surprising. Lower bounds on sorting imply that we cannot sort n sets of n− 1
numbers faster than Ω(n2 log n) time. But here we are exploiting the special structure of the
cyclically ordered point sets.)

Here is how we do it. Suppose that p is the point around which we want to sort, and let
〈p1, . . . , pn〉 be the points in final angular order about p (see Fig. 86(a)). Consider the arrange-
ment defined by the dual lines p∗i . How does this order manifest itself in the arrangement?

(a) (b)

p1

p2

p3

p4
p5

p6

p7
p8

p

p∗
p∗4

p∗5

p∗6

p∗1

p∗8

p∗3

p∗2

p∗7

Fig. 86: Arrangements and angular sequences.

Consider the dual line p∗, and its intersection points with each of the dual lines p∗i . These
form a sequence of vertices in the arrangement along p∗. Consider this sequence ordered from
left to right. It would be nice if this order were the desired circular order, but this is not
quite correct. It follows from the definition of our dual transformation that the a-coordinate
of each of these vertices in the dual arrangement is the slope of some line of the form ppi
in the primal plane. Thus, the sequence in which the vertices appear on the line is a slope
ordering of the points about pi, which is not quite the same as the angular ordering.

However, given this slope ordering, we can simply test which primal points lie to the left of
p (shown in blue in Fig. 86(a)), and separate them from the points that lie to the right of p
(shown in red in Fig. 86(a)). We partition the vertices into two sorted sequences, and then con-
catenate these two sequences, with the points on the right side first, and the points on the left
side later. For example, in Fig. 86, we partition the slope-sorted sequence 〈4, 1, 5, 6, 2, 3, 7, 8〉
into the left sequence 〈4, 5, 6, 7, 8〉 and the right sequence 〈1, 2, 3〉, and then we concanate
them to obtain the final angle-sorted sequence 〈1, 2, 3, 4, 5, 6, 7, 8〉.
Thus, once the arrangement has been constructed, we can reconstruct each of the angular
orderings in O(n) time, for a total of O(n2) time. (Topological plane sweep can also be used,
but since the output size is Ω(n2), there no real benefit to be achieved by using topological
plane sweep.)

Lecture 14: Orthogonal Range Searching and kd-Trees

Range Searching: In this lecture we will discuss a new data structure problem,, called range
searching. We are given a set of n points P = {p1, . . . , pn} ⊂ Rd and a class of range shapes
(e.g., rectangles, balls, triangles, halfplanes). The points of P are to be preprocessed and
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stored in a data structure (whose structure may be based on the knowledge of the allowable
range shapes). Given a query range Q from this class, the objective is identify the points of
P that lie within Q. The term “identify” can mean a number of things:

Emptiness: If P ∩Q = ∅, return “empty” else “non-empty”

Counting: Return the count |P ∩Q| of the number of points of P within Q

Weighted counting: Each point pi ∈ P has an associated weight w(pi), and we are to
return the weighted sum of points in Q,

∑
p∈Qw(pi).

Semigroup weighted counting: Why limit to addition? For example, how about comput-
ing the product of weights or the maximum of the weights?

Generally, weighted counting makes sense as long as you have an operator that is both
commutative and associative. Your data structure may also take advantage of special
properties of your operator. For example, if the operator has an inverse, you have
the flexibility both add and subtract weights. If your operator is idempotent (that is,
a⊕ a = a) then there is no harm in counting the same item multiple times.

Reporting: Return a list containing all the points of P ∩Q.

Top-k: Report the (up to) k points of P ∩Q based on weight.

Complexity Bounds: Observe that all of the above queries can be answered inO(n) time trivially,
by just running through all the points and testing one-by-one whether they lie within Q. You
want to think of n as being huge (e.g., millions or more), but you want a query time that is
much smaller (say tens to hundreds). Data structures for range searching are usually analyzed
in terms of two quantities, space and query time. Ideally, one would like to achieve O(n) space
and O(log n) query time, since this matches the best you can expect in 1-dimensional space.
If you cannot achieve this “gold standard,” you might hope to do well with one criteria or the
other. For example, the query time might be O(log n), but the space is O(n2). Alternatively,
the space might be O(n), but the query time is O(

√
n). (Remember that from the perspective

of asymptotics, logarithmic query times are always better than polynomial times, thus logc n
is better than nb for positive numbers c and b, not matter how large c or how small b.)

Ideally, the query time does not depend on the number of points that lie within the query
range. It doesn’t matter whether your range contains no point or all the points, the (worst-
case) running time depends only on n. The exception is reporting queries, since you need to
take time to place the elements in the list. For example, the query time for range reporting
might be expressed as O(k + log n), where k = |P ∩Q| and n = |P |.
Another issue is the amount of time that it takes to construct the data structure. Ideally,
the construction time should be about the same as the space, perhaps larger by a factor of
O(log n).

Orthogonal Range Queries: In this lecture we will focus on perhaps the most common range
search, called an orthogonal range searching. In this case a range is defined by axis-parallel
rectangles in R2 and d-dimensional hyperrectangles in Rd. An important property of or-
thogonal ranges is that they can be expressed as the product of 1-dimensional ranges. Let’s
assume that a point p ∈ Rd is expressed as its coordinate vector (p1, . . . , pd). Given two points
a, b ∈ Rd, where ai < bi for 1 ≤ i ≤ d, they define an axis-parallel rectangle (see Fig. 87)

R(a, b) = {p ∈ Rd : ai ≤ pi ≤ bi} = [a1, b1]× · · · × [ad, bd]
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Fig. 87: Orthogonal range query.

Canonical Subsets: A common approach used in solving almost all range queries is to represent
P as a collection of canonical subsets {P1, . . . , Pk}, each Pi ⊆ P (where k is generally a
function of n and the type of ranges), such that any set can be formed as the disjoint union
of canonical subsets. Note that these subsets may generally overlap each other.

There are many ways to select canonical subsets, and the choice affects the space and time
complexities. For example, the canonical subsets might be chosen to consist of n singleton
sets, each of the form {pi}. This would be very space efficient, since we need only O(n) total
space to store all the canonical subsets, but in order to answer a query involving k objects
we would need k sets. (This might not be bad for reporting queries, but it would be too
long for counting queries.) At the other extreme, we might let the canonical subsets be all
the sets of the range space R. Thus, any query could be answered with a single canonical
subset (assuming we could determine which one), but we would have |R| different canonical
subsets to store, which is typically a higher ordered polynomial in n, and may be too high to
be of practical value. The goal of a good range data structure is to strike a balance between
the total number of canonical subsets (space) and the number of canonical subsets needed to
answer a query (time).

Perhaps the most common way in which to define canonical subsets is through the use of a
partition tree. A partition tree is a rooted (typically binary) tree, whose leaves correspond
to the points of P . Each node u of such a tree is naturally associated with a subset of P ,
namely, the points stored in the leaves of the subtree rooted at u. We will see an example of
this when we discuss one-dimensional range queries.

One-dimensional range queries: Before we consider how to solve general range queries, let us
consider how to answer 1-dimension range queries, or interval queries. Let us assume that we
are given a set of points P = {p1, p2, . . . , pn} on the line, which we will preprocess into a data
structure. Then, given an interval [xlo , xhi ], the goal is to count or report all the points lying
within the interval. Ideally, we would like to answer counting queries in O(log n) time, and
we would like to answer reporting queries in time O((log n) + k) time, where k is the number
of points reported.

Clearly one way to do this is to simply sort the points, and apply binary search to find the
first point of P that is greater than or equal to xlo , and less than or equal to xhi , and then
enumerate (or count) all the points between. This works fine in dimension 1, but does not
generalize readily to any higher dimensions. Also, it does not work when dealing with the
weighted version, unless the weights are drawn from a group.

Let us consider a different approach, which will generalize to higher dimensions. Sort the
points of P in increasing order and store them in the leaves of a balanced binary search tree.
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Each internal node of the tree is labeled with the largest key appearing in its left child. We
can associate each node of this tree (implicitly or explicitly) with the subset of points stored
in the leaves that are descendants of this node. This gives rise to the O(n) canonical subsets.
In order to answer reporting queries, the canonical subsets do not need to be stored explicitly
with each node of the tree. The reason is that we can enumerate each canonical subset in
time proportional to its size by simply traversing the subtree and reporting the points lying
in its leaves. This is illustrated in Fig. 88. For range counting, we associate each node with
the total weight of points in its subtree.

27

25 294 9

12

14 171

7

20 22 24 2725 294 9 12 14 171 3 7 15 31

22

3 20

24

15

xlo = 2 xhi = 23

u v

Canonical subset {9, 12, 14, 15}

Fig. 88: Canonical sets for interval queries. For range reporting, canonical subsets are generated
as needed by traversing the subtree.

We claim that the canonical subsets corresponding to any range can be identified in O(log n)
time from this structure. Given any interval [xlo , xhi ], we search the tree to find the rightmost
leaf u whose key is less than xlo and the leftmost leaf v whose key is greater than xhi . (To
make this possible for all ranges, we could add two sentinel points with values of −∞ and +∞
to form the leftmost and rightmost leaves.) Clearly all the leaves between u and v constitute
the points that lie within the range. To form these canonical subsets, we take the subsets of
all the maximal subtrees lying between the paths from the root u and v.

Here is how to compute these subtrees. The search paths to u and v may generally share
some common subpath, starting at the root of the tree. Once the paths diverge, as we follow
the left path to u, whenever the path goes to the left child of some node, we add the canonical
subset associated with its right child. Similarly, as we follow the right path to v, whenever
the path goes to the right child, we add the canonical subset associated with its left child.

As mentioned earlier, to answer a range reporting query we simply traverse the canonical
subtrees, reporting the points of their leaves. To answer a range counting query we return
the sum of weights associated with the nodes of the canonical subtrees.

Since the search paths to u and v are each of length O(log n), it follows that O(log n) canonical
subsets suffice to represent the answer to any query. Thus range counting queries can be
answered in O(log n) time. For reporting queries, since the leaves of each subtree can be
listed in time that is proportional to the number of leaves in the tree (a basic fact about
binary trees), it follows that the total time in the search is O((log n) + k), where k is the
number of points reported.

In summary, 1-dimensional range queries can be answered in O(log n) (counting) or ((log n)+
k) (reporting) time, using O(n) storage. This concept of finding maximal subtrees that are
contained within the range is fundamental to all range search data structures. The only
question is how to organize the tree and how to locate the desired sets. Let see next how can
we extend this to higher dimensional range queries.
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Kd-trees: The natural question is how to extend 1-dimensional range searching to higher dimen-
sions. First we will consider kd-trees. This data structure is easy to implement and quite
practical and useful for many different types of searching problems (nearest neighbor searching
for example). However it is not the asymptotically most efficient solution for the orthogonal
range searching, as we will see later.

Our terminology is a bit nonstandard. The data structure was designed by Jon Bentley. In
his notation, these were called “k-d trees,” short for “k-dimensional trees”. The value k was
the dimension, and thus there are 2-d trees, 3-d trees, and so on. However, over time, the
specific value of k was lost. Our text uses the term “kd-tree” rather than “k-d tree.” By the
way, there are many variants of the kd-tree concept. We will describe the most commonly
used one, which is quite similar to Bentley’s original design. In our trees, points will be stored
only at the leaves. There are variants in which points are stored at internal nodes as well.

A kd-tree is an example of a partition tree. For each node, we subdivide space either by
splitting along the x-coordinates or along the y-coordinates of the points. Each internal node
t of the kd-tree is associated with the following quantities:

t.cut-dim the cutting dimension (e.g., x = 0 and y = 1)
t.cut-val the cutting value (a real number)
t.weight the number (or generally, total weight) of points in t’s subtree

In dimension d, the cutting dimension may be represented as in integer ranging from 0 to
d− 1. If the cutting dimension is i, then all points whose ith coordinate is less than or equal
to t.cut-val are stored in the left subtree and the remaining points are stored in the right
subtree (see Fig. 89). If a point’s coordinate is equal to the cutting value, then we may allow
the point to be stored on either side. This is done to allow us to balance the number of points
in the left and right subtrees if there are many equal coordinate values. When a single point
remains (or more generally a small constant number of points), we store it in a leaf node,
whose only field t.point is this point.
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p4 p5
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p1 p2

p3 p4 p5
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p8 p9 p10
p1

p2

p3

p4 p5
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p7

p8
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u

u.cell

v

v.cell

Fig. 89: (a) Point set and kd-subdivision, (b) kd-tree structure, and (c) example of node cells.

The cutting process has a geometric interpretation. Each node of the tree is associated
implicitly with a rectangular region of space, called a cell. (In general these rectangles may
be unbounded, but in many applications it is common to restrict ourselves to some bounded
rectangular region of space before splitting begins, and so all these rectangles are bounded.)
The cells are nested in the sense that a child’s cell is contained within its parent’s cell. Hence,
these cells define a hierarchical decomposition of space (see Fig. 89(a)).

There are two key decisions in the design of the tree.
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How is the cutting dimension chosen? The simplest method is to cycle through the di-
mensions one by one. (This method is shown in Fig. 89.) Since the cutting dimension
depends only on the level of a node in the tree, one advantage of this rule is that the
cutting dimension need not be stored explicitly in each node, instead we keep track of
it while traversing the tree.

One disadvantage of this splitting rule is that, depending on the data distribution, this
simple cyclic rule may produce very skinny (elongated) cells, and such cells may adversely
affect query times. Another method is to select the cutting dimension to be the one along
which the points have the greatest spread, defined to be the difference between the largest
and smallest coordinates. Bentley call the resulting tree an optimized kd-tree.

How is the cutting value chosen? To guarantee that the tree has height O(log n), the
best method is to let the cutting value be the median coordinate along the cutting
dimension. If there is an even number of points in the subtree, we may take either the
upper or lower median, or we may simply take the midpoint between these two points.
In our example, when there are an odd number of points, the median is associated with
the left (or lower) subtree.

A kd-tree is a special case of a more general class of hierarchical spatial subdivisions, called
binary space partition trees (or BSP trees) in which the splitting lines (or hyperplanes in
general) may be oriented in any direction.

Constructing the kd-tree: It is possible to build a kd-tree in O(n log n) time by a simple top-
down recursive procedure. The most costly step of the process is determining the median
coordinate for splitting purposes. One way to do this is to maintain two lists of pointers to
the points, one sorted by x-coordinate and the other containing pointers to the points sorted
according to their y-coordinates. (In dimension d, d such arrays would be maintained.) Using
these two lists, it is an easy matter to find the median at each step in constant time. In linear
time it is possible to split each list about this median element.

For example, if x = s is the cutting value, then all points with px ≤ s go into one list and
those with px > s go into the other. (In dimension d this generally takes O(d) time per point.)
This leads to a recurrence of the form T (n) = 2T (n/2) + n, which solves to O(n log n). Since
there are n leaves and each internal node has two children, it follows that the number of
internal nodes is n− 1. Hence the total space requirements are O(n).

Theorem: Given n points, it is possible to build a kd-tree of height O(log n) and space O(n)
in time O(n log n) time.

Range Searching in kd-trees: Let us consider how to answer orthogonal range counting queries.
Range reporting queries are an easy extension. Let Q denote the desired range, and u denote
the current node in the kd-tree. We assume that each node u is associated with its cell, denoted
u.cell, which is the associated rectangular region in the hierarchical subdivision. (Cells can
either be computed as part of preprocessing or computed on the fly as the algorithm is
running.) The search algorithm is presented in the code block below.

The search algorithm traverses the tree recursively. If it arrives at a leaf cell, we check to
see whether the associated point, u.point, lies within Q in O(1) time, and if so we count it.
Otherwise, u is an internal node. If u.cell is disjoint from Q (which can be tested in O(1) time
since both are rectangles), then we know that no point in the subtree rooted at u is in the
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kd-tree Range Counting Query
int range-count(Range Q, KDNode u)

(1) if (u is a leaf)

(a) if (u.point ∈ Q) return u.weight,

(b) else return 0 /∗ or generally, the semigroup identity element ∗/
(2) else /∗ u is internal ∗/

(a) if (u.cell ∩Q = ∅) return 0 /∗ the query does not overlap u’s cell ∗/
(b) else if (u.cell ⊆ Q) return u.weight /∗ u’s cell is contained within query range ∗/
(c) else, return range-count(Q, u.left) + range-count(Q, u.right).

query range, and so there is nothing to count. If u.cell is entirely contained within Q (again
testable in O(1) time), then every point in the subtree rooted at u can be counted. (These
points constitute a canonical subset.) Otherwise, u’s cell partially overlaps Q. In this case
we recurse on u’s two children and update the count accordingly.

Fig. 90 shows an example of a range search. Blue shaded nodes contribute to the search
result and red shaded nodes do not. The red shaded subtrees are not visited. The blue-
shaded subtrees are not visited for the sake of counting queries. Instead, we just access their
total weight.
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Fig. 90: Range search in a kd-tree. (Note: This particular tree was not generated by the algorithm
described above.)

Analysis of query time: How many nodes does this method visit altogether? We claim that the
total number of nodes is O(

√
n) assuming a balanced kd-tree. Rather than counting visited

nodes, we will count nodes that are expanded. We say that a node is expanded if it is visited
and both its children are visited by the recursive range count algorithm.

A node is expanded if and only if the cell overlaps the range without being contained within
the range. We say that such a cell is stabbed by the query. To bound the total number of
nodes that are expanded in the search, it suffices to bound the number of nodes whose cells
are stabbed.

Lemma: Given a balanced kd-tree with n points using the alternating splitting rule, any
vertical or horizontal line stabs O(

√
n) cells of the tree.

Proof: Let us consider the case of a vertical line x = x0. The horizontal case is symmetrical.
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Consider an expanded node which has a cutting dimension along x. The vertical line
x = x0 either stabs the left child or the right child but not both. If it fails to stab one
of the children, then it cannot stab any of the cells belonging to the descendents of this
child either. If the cutting dimension is along the y-axis (or generally any other axis in
higher dimensions), then the line x = x0 stabs both children’s cells.

Since we alternate splitting on left and right, this means that after descending two levels
in the tree, we may stab at most two of the possible four grandchildren of each node.
In general each time we descend two more levels we double the number of nodes being
stabbed. Thus, we stab the root node, at most 2 nodes at level 2 of the tree, at most
4 nodes at level 4, 8 nodes at level 6, and generally at most 2i nodes at level 2i. Each
time we descend a level of the tree, the number of points falls by half. Thus, each time
we descend two levels of the tree, the number of points falls by one fourth.

This can be expressed more formally as the following recurrence. Let T (n) denote the
number of nodes stabbed for a subtree containing n points. We have

T (n) ≤
{

2 if n ≤ 4,
1 + 2T

(
n
4

)
otherwise.

We can solve this recurrence by appealing to the Master theorem for solving recurrences,
as presented in the book by Cormen, Leiserson, Rivest and Stein. To keep the lecture
self-contained, let’s solve it by repeated expansion.

T (n) ≤ 1 + 2T
(n

4

)
≤ 1 + 2

(
1 + 2T

(
n/4

4

))
= (1 + 2) + 4T

( n
16

)
≤ (1 + 2) + 4

(
1 + 2T

(
n/16

4

))
= (1 + 2 + 4) + 8T

( n
64

)
≤ . . .

≤
k−1∑
i=0

2i + 2kT
( n

4k

)
.

To get to the basis case (T (1)) let’s set k = log4 n, which means that 4k = n. Observe
that 2log4 n = 2(log2 n)/2 = n1/2 =

√
n. Since T (1) ≤ 2, we have

T (n) ≤ (2log4 n − 1) + 2log4 nT (1) ≤ 3
√
n = O(

√
n).

This completes the proof.

We have shown that any vertical or horizontal line can stab only O(
√
n) cells of the tree.

Thus, if we were to extend the four sides of Q into lines, the total number of cells stabbed by
all these lines is at most O(4

√
n) = O(

√
n). Thus the total number of cells stabbed by the

query range is O(
√
n). Since we only make recursive calls when a cell is stabbed, it follows

that the total number of expanded nodes by the search is O(
√
n), and hence the total number

of visited nodes is larger by just a constant factor.

Theorem: Given a balanced kd-tree with n points, orthogonal range counting queries can
be answered in O(

√
n) time and reporting queries can be answered in O(

√
n+ k) time.

The data structure uses space O(n).
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Lecture 15: Orthogonal Range Trees

Orthogonal Range Trees: In the previous lecture we saw that kd-trees could be used to answer
orthogonal range queries in the plane in O(

√
n) time for counting and O(

√
n + k) time for

reporting. It is natural to wonder whether we can replace the O(
√
n) term with something

closer to the ideal query time of O(log n). Today we consider a data structure, which is
more highly tuned to this particular problem, called an orthogonal range tree. Recall that we
are given a set P of n points in R2, and our objective is to preprocess these points so that,
given any axis-parallel rectangle Q, we can count or report the points of P that lie within Q
efficiently.

An orthogonal range tree is a data structure which, in the plane uses O(n log n) space and
can answer range reporting queries in O(log n + k) time, where k is the number of points
reported. In general in dimension d ≥ 2, it uses O(n log(d−1) n) space, and can answer
orthogonal rectangular range queries in O(log(d−1) n + k) time. The preprocessing time is
the same as the space bound. We will present the data structure in two parts, the first is a
version that can answer queries in O(log2 n) time in the plane, and then we will show how to
improve this in order to strip off a factor of log n from the query time. The generalization to
higher dimensions will be straightforward.

Multi-layered Search Trees: The orthogonal range-tree data structure is a nice example of a
more general concept, called a multi-layered search tree. In this method, a complex search
is decomposed into a constant number of simpler range searches. Recall that a range space
is a pair (X,R) consisting of a set X and a collection R of subsets of X, called ranges.
Given a range space (X,R), suppose that we can decompose it into two (or generally a
small number of) range subspaces (X,R1) and (X,R2) such that any query Q ∈ R can be
expressed as Q1 ∩ Q2, for Qi ∈ Ri. (For example, an orthogonal range query in the plane,
[xlo, xhi] × [ylo, yhi], can be expressed as the intersection of a vertical strip and a horizontal
strip, in particular, the points whose x-coordinates are in the range Q1 = [xlo, xhi] × R and
the points whose y-coordinates are in the range Q2 = R × [ylo, yhi].) The idea is to then
“cascade” a number of search structures, one for each range subspace, together to answer a
range query for the original space.

Let’s see how to build such a structure for a given point set P . We first construct an appro-
priate range search structure, say, a partition tree, for P for the first range subspace (X,R1).
Let’s call this tree T (see Fig. 91). Recall that each node u ∈ T is implicitly associated with
a canonical subset of points of P , which we will denote by P (u). In the case that T is a
partition tree, this is just the set of points lying in the leaves of the subtree rooted at u. (For
example, in Fig. 91, P (u6) = {p5, . . . , p8}.) For each node u ∈ T , we construct an auxiliary
search tree for the points of P (u), but now over the second range subspace (X,R2). Let Tu
denote the resulting tree (see Fig. 91). The final data structure consists of the primary tree
T , the auxiliary search trees Tu for each u ∈ T , and a link from each node u ∈ T to the
corresponding auxiliary search tree Tu. The total space is the sum of space requirements for
the primary tree and all the auxiliary trees.

Now, given a query range Q = Q1 ∩Q2, where Qi ∈ Ri, we answer queries as follows. Recall
from our earlier lecture that, the partition tree T allows us to express the answer to the query
P ∩ Q1 as a disjoint union

⋃
u P (u) for an appropriate (and ideally small) subset of nodes

u ∈ T , whose associated canonical subsets form a partition of P ∩Q1. Call this subset U(Q1).
In order to complete the query, for each u ∈ U(Q1), we access the corresponding auxiliary
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Fig. 91: Multi-layered search: A search the primary tree T identifies auxiliary trees Tui to search.

search tree Tu in order to determine the subset of points P (u) that lie within the query range
Q2. Therefore, once we have computed the answers to all the auxiliary ranges P (u) ∩Q2 for
all u ∈ U(Q1), all that remains is to combine the results (e.g., by summing the counts or
concatenating all the lists, depending on whether we are counting or reporting, respectively).
The query time is equal to the sum of the query times over all the trees that were accessed.

1-dimensional Range Tree: Before discussing 2-dimensional range trees, let us first recall the
1-dimensional range treee. Given a set P = {p1, . . . , pn} of scalar keys, we wish to preprocess
these points so that given a 1-dimensional interval Q = [Qlo, Qhi] along the x-axis, we can
count (or report) all the points that lie in this interval.

We begin by storing all the points of our data set in the external nodes (leaves) of any
balanced binary search tree sorted by x-coordinates (e.g., an AVL tree). We assume that if
an internal node contains a value x0 then the leaves in the left subtree are strictly less than
x0, and the leaves in the right subtree are greater than or equal to x0. Each node u in this
tree is implicitly associated with it canonical subset P (u) ⊆ P of elements of P that are in
the leaves descended from u. We assume that for each node u, we store the number of leaves
that are descended from u, denoted u.size. Thus u.size is equal to the number of elements in
P (u).

Given the query interval Q = [Qlo, Qhi], we identify all the maximal subtrees u such that the
canonical set associated with u lies entirely within Q (see Fig. 92(a)). We return the sum of
sizes of all these subtrees (see Fig. 92(b))

We claim that the nodes identifying the canonical subsets can be identified in O(log n) time
from this structure. Intuitively, we search the tree to find the leftmost leaf u whose key is
greater than or equal to Qlo and the rightmost leaf v whose key is less than or equal to Qhi.
Clearly all the leaves between u and v (including u and v) constitute the points that lie within
the range. Since these two paths are of length at most O(log n), there are at most O(2 log n)
such trees possible, which is O(log n). To form the canonical subsets, we take the subsets of
all the maximal subtrees lying between u and v.

To perform this search, we maintain for each node u a cell C = [x0, x1], which in this 1-
dimensional case is just an interval running from the leftmost leaf key to the rightmost leaf
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Fig. 92: The canonical subtrees (shaded in red) for the query [2, 23].

key in this subtree.

The recursive search procedure is shown below. Its arguments to the procedure are the current
node u, the range interval Q, and the current cell C. Let C0 = [−∞,+∞] be the initial cell
for the root node (or generally, any interval large enough to contain all the points). The initial
call is range1D(root, Q, C0). As with the kd-tree, there are three cases. If Q ∩ C = ∅,
there is no overlap and we return 0. If C ⊆ Q, then all the points of the canononical set are
included in the count. Otherwise, we recurse on the left and right subtrees.

1-Dimensional Range Counting Query
int range1Dx(Node u, Range Q, Interval C=[x0,x1]) {

if (u is a leaf) // hit the leaf level?

return (Q contains u.point ? 1 : 0) // count if point in range

else if (Q contains C ) // Q contains entire cell?

return u.size // return entire subtree size

else if (Q is disjoint from C) // no overlap

return 0

else

return range1Dx(u.left, Q, [x0, u.x]) + // count left side

range1Dx(u.right, Q, [u.x, x1]) // and right side

}

Lemma: Given a (balanced) 1-dimensional range tree and any query range Q, in O(log n)
time we can compute a set of O(log n) canonical nodes u, such that the answer to the
query is the disjoint union of the associated canonical subsets P (u).

Orthogonal Range Trees: Now let us consider how to answer range queries in 2-dimensional
space. We first create 1-dimensional tree T as described in the previous section sorted by the
x-coordinate (see the left side of Fig. 93). For each internal node u of T , recall that P (u)
denotes the canonical set of points associated with the leaves descended from u. For each
node u of this tree we build a 1-dimensional range tree for the points of P (u), but sorted on
y-coordinates (see the right side of Fig. 93). This called the auxiliary tree associated with u.
Thus, there are n− 1 auxiliary trees, one for each internal node of T .

Notice that there is a significant amount of duplication here. Each point in a leaf of the
x-range tree arises in the sets P (u) for all of its ancestors u in the x-range tree. We will
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Fig. 93: 2-Dimensional Range tree.

analyze the space usage below.

Query Processing: Now, when a 2-dimensional range is presented we do the following. First, we
invoke a variant of the 1-dimensional range search algorithm to identify the O(log n) canonical
nodes. (These are shown in blue in the left side of Fig. 93.) For each such node u, we know
that all the points of the set lie within the x portion of the range, but not necessarily in
the y part of the range. So, for each of the nodes u of the canonical subtrees, we search the
associated 1-dimensional auxiliary y-range and return a count of the resulting points. These
counts are summed up over all the auxiliary subtrees to obtain the final answer.

The algorithm given in the code block below is almost identical the previous one, except that
we make explicit reference to the x-coordinates in the search, and rather than adding u.size
to the count, we invoke a 1-dimensional version of the above procedure using the y-coordinate
instead. Let Q.x denote the x-portion of Q’s range, consisting of the interval [Qlo.x,Qhi.x].
The procedure range1Dy() is the same procedure described above, except that it searches on
y-coordinates rather than x.

Space and Preprocessing Time: To derive a bound on the total space used, we sum the sizes
of all the trees. The primary search tree T for the x-coordinates requires only O(n) storage.
For each node u ∈ T , the size of the auxiliary search tree Tu is clearly proportional to the
number of points in this tree, which is the size of the associated canonical subset, |P (u)|.
Thus, up to constant factors, the total space is

n+
∑
u∈T
|P (u)|.

To bound the size of the sum, observe that each point of P appears in the set P (u) for each
ancestor of this leaf. Since the tree T is balanced, its depth is O(log n), and therefore, each
point of P appears in O(log n) of the canonical subsets. Since each of the n points of P
contributes O(log n) to the sum, it follows that the sum is O(n log n).
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2-Dimensional Range Counting Query
int range2D(Node u, Range2D Q, Range1D C=[x0,x1]) {

if (u is a leaf) // hit the leaf level?

return (Q contains u.point ? 1 : 0) // count if point in range

else if (Q’s x-range contains C) { // Q’s x-range contains C

[y0, y1] = [-infinity, +infinity] // initial y-cell

return range1Dy(u.aux, Q, [y0, y1]) // search auxiliary tree

}

else if (Q.x is disjoint from C) // no overlap

return 0

else

return range2D(u.left, Q, [x0, u.x]) + // count left side

range2D(u.right, Q, [u.x, x1]) // and right side

}

We claim that it is possible to construct a 2-dimensional range tree in O(n log n) time. Con-
structing the 1-dimensional range tree for the x-coordinates is easy to do in O(n log n) time.
However, we need to be careful in constructing the auxiliary trees, because if we were to sort
each list of y-coordinates separately, the running time would be O(n log2 n). Instead, the
trick is to construct the auxiliary trees in a bottom-up manner. The leaves, which contain a
single point are trivially sorted. Then we simply merge the two sorted lists for each child to
form the sorted list for the parent. Since sorted lists can be merged in linear time, the set of
all auxiliary trees can be constructed in time that is linear in their total since, or O(n log n).
Once the lists have been sorted, then building a tree from the sorted list can be done in linear
time.

Lemma: The total size of an 2-dimensional range tree storing n keys is O(n log n), and it
can be constructed in time O(n log n).

Query Time: It takes O(log n) time to identify the canonical nodes in the x-range tree. For each
of these O(log n) nodes we make a call to a 1-dimensional y-range tree. When we invoke this
on the subtree rooted at a node u, the running time is O(log |P (u)|). But, |P (u)| ≤ n, so this
takes O(log n) time for each auxiliary tree search. Since we are performing O(log n) searches,
each taking O(log n) time, the total search time is O(log2 n). As above, we can replace the
counting code with code in range1Dy() with code that traverses the tree and reports the
points. This results in a total time of O(k + log2 n), assuming k points are reported.

Higher Dimensions: Thus, each node of the 2-dimensional range tree has a pointer to a auxiliary
1-dimensional range tree. We can extend this to any number of dimensions. At the highest
level the d-dimensional range tree consists of a 1-dimensional tree based on the first coordinate.
Each of these trees has an auxiliary tree which is a (d− 1)-dimensional range tree, based on
the remaining coordinates. A straightforward generalization of the arguments presented here
show that the resulting data structure requires O(n logd n) space and can answer queries in
O(logd n) time.

Theorem: Given an n-element point set in d-dimensional space (for any constant d) orthog-
onal range counting queries can be answered in O(logd n) time, and orthogonal range
reporting queries can be answered in O(k+logd n) time, where k is the number of entries
reported.
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Faster Queries by Cascading Search: Can we improve on the O(log2 n) query time? We would
like to reduce the query time to O(log n). (In general, this approach will shave a factor of
log n from the query time, which will lead to a query time of O(logd−1 n) in Rd).
What is the source of the extra log factor? As we descend the search the x-interval tree,
for each node we visit, we need to search the corresponding auxiliary search tree based on
the query’s y-coordinates [ylo, yhi]. It is this combination that leads to the squaring of the
logarithms. If we could search each auxiliary in O(1) time, then we could eliminate this
annoying log factor.

There is a clever trick that can be used to eliminate the additional log factor. Observe that
we are repeatedly searching different lists (in particular, these are subsets of the canonical
subsets P (u) for u ∈ U(Q1)) but always with the same search keys (in particular, ylo and
yhi). How can we exploit the fact that the search keys are static to improve the running times
of the individual searches?

The idea to rely on economies of scale. Suppose that we merge all the different lists that we
need to search into a single master list. Since

⋃
u P (u) = P and |P | = n, we can search this

master list for any key in O(log n) time. We would like to exploit the idea that, if we know
where ylo and yhi lie within the master list, then it should be easy to determine where they
are located in any canonical subset P (u) ⊆ P . Ideally, after making one search in the master
list, we would like to be able to answer all the remaining searches in O(1) time each. Turning
this intuition into an algorithm is not difficult, but it is not trivial either.

In our case, the master list on which we will do the initial search is the entire set of points,
sorted by y-coordinate. We will assume that each of the auxiliary search trees is a sorted
array. (In dimension d, this assumption implies that we can apply this only to the last level
of the multi-layered data structure.) Call these the auxiliary lists.

Here is how we do this. Let v be an arbitrary internal node in the range tree of x-coordinates,
and let v′ and v′′ be its left and right children. Let A be the sorted auxiliary list for v and
let A′ and A′′ be the sorted auxiliary lists for its respective children. Observe that A is the
disjoint union of A′ and A′′ (assuming no duplicate y-coordinates). For each element in A,
we store two pointers, one to the item of equal or larger value in A′ and the other to the item
of equal or larger value in A′′. (If there is no larger item, the pointer is null.) Observe that
once we know the position of an item in A, then we can determine its position in either A′ or
A′′ in O(1) additional time.

Here is a quick illustration of the general idea. Let v denote a node of the x-tree, and let v′

and v′′ denote its left and right children. Suppose that (in increasing order of y-coordinates)
the associated nodes within this range are: 〈p1, p2, p3, p4, p5, p6〉, and suppose that in v′ we
store the points 〈p2, p4, p5〉 and in v′′ we store 〈p1, p3, p6〉 (see Fig. 94(a)). For each point in
the auxiliary list for v, we store a pointer to the lists v′ and v′′, to the position this element
would be inserted in the other list (assuming sorted by y-values). That is, we store a pointer
to the largest element whose y-value is less than or equal to this point (see Fig. 94(b)).

At the root of the tree, we need to perform a binary search against all the y-values to
determine which points lie within this interval, for all subsequent levels, once we know where
the y-interval falls with respect to the order points here, we can drop down to the next level
in O(1) time. Thus, the running time is O(log n), rather than O(log2 n). By applying this
to the last level of the auxiliary search structures, we save one log factor, which gives us the
following result.
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Fig. 94: Cascaded search in range trees.

Theorem: Given a set of n points in Rd, orthogonal rectangular range queries can be an-
swered in O(log(d−1) n + k) time, from a data structure of space O(n log(d−1) n) which
can be constructed in O(n log(d−1) n) time.

We call this cascading search. This technique is special case of a more general data structures
technique called fractional cascading. The idea is that information about the search the results
“cascades” from one level of the data structure down to the next.

The result can be applied to range counting queries as well, but under the provision that we
can answer the queries using a sorted array representation for the last level of the tree. For
example, if the weights are drawn from a group, then the method is applicable, but if the the
weights are from a general semigroup, it is not possible. (For general semigroups, we need to
sum the results for individual subtrees, which implies that we need a tree structure, rather
than a simple array structure.)

Lecture 16: Well-Separated Pair Decompositions

Approximation Algorithms in Computational Geometry: Although we have seen many ef-
ficient techniques for solving fundamental problems in computational geometry, there are
many problems for which the complexity of finding an exact solution is unacceptably high.
Geometric approximation arises as a useful alternative in such cases.

Approximations arise in a number of contexts. One is when solving a hard optimization prob-
lem. A famous example is the Euclidean traveling salesman problem, in which the objective
is to find a minimum length path that visits each of n given points. This is an NP-hard
problem, but there exists a polynomial time approximation scheme (or PTAS), which is an
algorithm that achieves an approximation factor of 1 + ε, for any ε > 0.

Another source arises for algorithms in higher dimensions. For example, in an earlier lecture
we showed that the Euclidean minimum spanning tree (EMST) could be solved in O(n log n)
time in R2, but in dimensions 3 and higher, the running time can be considerably higher
(growing close to O(n2), a running time achievable without any consideration of geometry).
However, it is possible to achieve an approximation in time O(n log n) in any space of constant
dimension (see Fig. 95(a)). Another example is computing the convex hull of a point set. We
saw in an earlier lecture that the complexity can be as high as Ω(nbd/2c), which is Ω(n2) in
R3. We will show that it is possible to compute an approximation to the convex hull in time
O(n log n) in any constant dimension (see Fig. 95(b)).

Another important motivations for geometric approximations is that geometric inputs are
typically the results of sensed measurements, which are subject to limited precision. There is
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Fig. 95: Geometric approximations: (a) Euclidean traveling salesman, (b) approximate convex hull.

no good reason to solve a problem to a degree of accuracy that exceeds the precision of the
inputs themselves.

Motivation: The n-Body Problem: We begin our discussion of approximation algorithms in
geometry with a simple and powerful example. To motivate this example, consider an ap-
plication in physics involving the simulation of the motions of a large collection of bodies
(e.g., planets or stars) subject to their own mutual gravitational forces. In physics, such a
simulation is often called the n-body problem. Exact analytical solutions are known to exist
in only extremely small special cases. Even determining a good numerical solution is relative
costly. In order to determine the motion of a single object in the simulation, we need to know
the gravitational force induced by the other n− 1 bodies of the system. In order to compute
this force, it would seem that at a minimum we would need Ω(n) computations per point, for
a total of Ω(n2) total computations. The question is whether there is a way to do this faster?

What we seek is a structure that allows us to encode the distance information of Ω(n2) pairs
in a structure of size only O(n). While this may seem to be an impossible task, a clever
approximate answer to this question was discovered by Greengard and Rokhlin in the mid
1980’s, and forms the basis of a technique called the fast multipole method17 (or FMM for
short). We will not discuss the FMM, since it would take us out of the way, but will instead
discuss the geometric structure that encodes much of the information that made the FMM
such a popular technique.

Well Separated Pairs: A set of n points in space defines a set of
(
n
2

)
= Θ(n2) distinct pairs.

To see how to encode this set approximately, let us return briefly to the n-body problem.
Suppose that we wish to determine the gravitational effect of a large number of stars in a one
galaxy on the stars of distant galaxy. Assuming that the two galaxies are far enough away
from each other relative to their respective sizes, the individual influences of the bodies in
each galaxy can be aggregated into a single physical force. If there are n1 and n2 points in
the respective galaxies, the interactions due to all n1 · n2 pairs can be well approximated by
a single interaction pair involving the centers of the two galaxies.

To make this more precise, assume that we are given an n-element point set P in Rd, and
a separation factor s > 0. We say that two disjoint sets of A and B are s-well separated if
the sets A and B can be enclosed within two Euclidean balls of radius r such that the closest
distance between these balls is at least sr (see Fig. 96).

Observe that if a pair of points is s-well separated, it is also s′-well separated for all s′ < s.
Of course, since any point lies within a (degenerate) ball of radius 0, it follows that a pair of

17As an indication of how important this algorithm is, it was listed among the top-10 algorithms of the 20th century,
along with quicksort, the fast Fourier transform, and the simplex algorithm for linear programming.

Lecture Notes 116 CMSC 754



r

r

A

B
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Fig. 96: A well separated pair with separation factor s.

singleton sets, {{a}, {b}}, for a 6= b, is well-separated for any s > 0.

Well Separated Pair Decomposition: Okay, distant galaxies are well separated, but if you were
given an arbitrary set of n points in Rd (which may not be as nicely clustered as the stars in
galaxies) and a fixed separation factor s > 0, can you concisely approximate all

(
n
2

)
pairs? We

will show that such a decomposition exists, and its size is O(n). The decomposition is called
a well separated pair decomposition. Of course, we would expect the complexity to depend
on s and d as well. The constant factor hidden by the asymptotic notion grows as O(sd).

Let’s make this more formal. Given arbitrary sets A and B, define A⊗B to be the set of all
distinct (unordered) pairs from these sets, that is

A⊗B = {{a, b} | a ∈ A, b ∈ B, a 6= b} .

Observe that A ⊗ A consists of all the
(
n
2

)
distinct pairs of A. Given a point set P and

separation factor s > 0, we define an s-well separated pair decomposition (s-WSPD) to be a
collection of pairs of subsets of P , denoted {{A1, B1}, {A2, B2}, . . . , {Am, Bm}}, such that

(1) Ai, Bi ⊆ P , for 1 ≤ i ≤ m
(2) Ai ∩Bi = ∅, for 1 ≤ i ≤ m
(3)

⋃m
i=1Ai ⊗Bi = P ⊗ P

(4) Ai and Bi are s-well separated, for 1 ≤ i ≤ m

Conditions (1)–(3) assert we have a cover of all the unordered pairs of P , and (4) asserts
that the pairs are well separated. Although these conditions alone do not imply that every
unordered pair from P occurs in a unique pair Ai⊗Bi (that is, the cover of P ⊗P is actually
a partition), our construction will have this further property. An example is shown in Fig. 97.
(Although there appears to be some sort of hierarchical structure here, note that the pairs
are not properly nested within one another.)

Trivially, there exists a WSPD of size O(n2) by setting the {Ai, Bi} pairs to each of the
distinct pair singletons of P . Our goal is to show that, given an n-element point set P in Rd
and any s > 0, there exists a s-WSPD of size O(n) (where the constant depends on s and d).
Before doing this, we must make a brief digression to discuss the quadtree data structure, on
which our construction is based.

Quadtrees: A quadtree is a hierarchical subdivision of space into regions, called cells, that are
hypercubes. The decomposition begins by assuming that the points of P lie within a bounding
hypercube. For simplicity we may assume that P has been scaled and translated so it lies
within the unit hypercube [0, 1]d.
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28 pairs 11 well-separated pairs

Fig. 97: A point set and a well separated pair decomposition for separation s = 1.

The initial cell, associated with the root of the tree, is the unit hypercube. The following
process is then repeated recursively. Consider any unprocessed cell and its associated node u
in the current tree. If this cell contains either zero or one point of P , then this is declared a
leaf node of the quadtree, and the subdivision process terminates for this cell. Otherwise, the
cell is subdivided into 2d hypercubes whose side lengths are exactly half that of the original
hypercube. For each of these 2d cells we create a node of the tree, which is then made a
child of u in the quadtree. (The process is illustrated in Fig. 98. The points are shown in
Fig. 98(a), the node structure in Fig. 98(b), and the final tree in Fig. 98(c).) Quadtrees can
be used to store various types of data. Formally, the structure we have just described in
called a PR-quadtree (for “point-region quadtree”).

b
a

c

d e
f

g

h
SW NW SE NE

a b

(a) (b) (c)

SW

NW

SE

NE c

fe

d hg

Fig. 98: The quadtree for a set of eight points.

Although in practice, quadtrees as described above tend to be reasonably efficient in fairly
small dimensions, there are a number of important issues in their efficient implementation in
the worst case. The first is that a quadtree containing n points may have many more than
O(n) nodes. The reason is that, if a group of points are extremely close to one another relative
to their surroundings, there may be an arbitrarily long trivial path in the tree leading to this
cluster, in which only one of the 2d children of each node is an internal node (see Fig. 99(a)).

(a) (b)

compress

Fig. 99: Compressed quadtree: (a) The original quadtree, (b) after path compression.

This issue is easily remedied by a process called path compression. Every such trivial path
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is compressed into a single link. This link is labeled with the coordinates of the smallest
quadtree box that contains the cluster (see Fig. 99(b)). The resulting data structure is called
a compressed quadtree. Observe that each internal node of the resulting tree separates at least
two points into separate subtrees. Thus, there can be no more than n− 1 internal nodes, and
hence the total number of nodes is O(n).

A second issue involves the efficient computation of the quadtree. It is well known that
the tree can be computed in time O(hn), where h is the height of the tree. However, even
for a compressed quadtree the tree height can be as high as n, which would imply an O(n2)
construction time. We will not discuss it here, but it can be shown that in any fixed dimension
it is possible to construct the quadtree of an n-element point set in O(n log n) time. (The
key is handling uneven splits efficiently. Such splits arise when one child contains almost all
of the points, and all the others contain only a small constant number.)

Summary and Augmentation: Here are the key properties that we will use about quadtrees:

(a) Given an n-element point set P in a space of fixed dimension d, a compressed quadtree
for P of size O(n) can be constructed in O(n log n) time.

(b) Each internal node has a constant number children (at most 2d).

(c) The cell associated with each node of the quadtree is a d-dimensional hypercube, and
as we descend from the parent to a child (in the uncompressed quadtree), the size (side
length) of the cells shrinks by a factor of 2.

(d) The cells associated with any level of the tree (where tree levels are interpreted relative
to the uncompressed tree) are of the same size and all have pairwise disjoint interiors.

An important consequence stemming from (c) and (d) is a packing property of quadtrees,
which limits the number of quadtree cells of a given side length that can overlap a Euclidean
ball. We will return to this later.

For the construction of the WSPD, we need to make a few augmentations to the quadtree
structure.

Associated set: Given any node u, let P (u) denote the set of points stored in u’s subtree.
(We will represent each well separated pairs concisely as a pair of nodes {u, v}, but the
actual WSP is implicitly understood to be {P (u), P (v)}.)

Representative: Each node u (other than empty leaves) is associated with an arbitrary
point from P (u), called its representative, and denoted rep(()u). We can compute the
representatives by a simple bottom-up traversal of the quadtree.

Level: We label each node u with its level in the tree, denoted level(u). It is defined to be
the depth of the node in the tree, where the root is at level 0, the root’s children at at
depth 1, its grandchildren at depth 2, and so on. Observe that if the points are scaled
so that the bounding box has side length 1, then a node of depth i is associated with a
cell of side length 1/2i. This, the higher the level, the smaller the cell.

For technical reasons, it will be convenient to treat leaf nodes differently. For each leaf
node u, set level(u) = +∞. The algorithm always splits nodes of lower level first, and
this will prevent us from ever splitting a leaf node.

Constructing a WSPD: We now have the tools needed to to show that, given an n-element
point set P in Rd and any s > 0, there exists a s-WSPD of size O(sdn), and furthermore,
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this WSPD can be computed in time that is roughly proportional to its size. In particular,
the construction will take O(n log n + sdn) time. We will show that the final WSPD can be
encoded in O(sdn) total space. Under the assumption that s and d are fixed (independent of
n) then the space is O(n) and the construction time is O(n log n).

The construction operates as follows. Recall the conditions (1)–(4) given above for a WSPD.
We will maintain a collection of sets that satisfy properties (1) and (3), but in general they may
violate conditions (2) and (4), since they may not be disjoint and may not be well separated.
When the algorithm terminates, all the pairs will be well-separated, and this will imply that
they are disjoint. Each set {Ai, Bi} of the pair decomposition will be encoded as a pair of
nodes {u, v} in the quadtree. Implicitly, this pair represents the pairs P (u) ⊗ P (v), that is,
the set of pairs generated from all the points descended from u and all the points descended
from v. This is particularly nice, because it implies that the total storage requirement is
proportional to the number of pairs in the decomposition.

(a) (b)

u

v
u1

v
u2

u3

u4

u1

u

u2 u3 u4 v u1

u

u2 u3 u4 v

Fig. 100: WSPD recursive decomposition step.

The algorithm is based on a recursive subdivision process. Consider a pair of nodes {u, v}
that arise in the decomposition process. If either of the nodes is an empty leaf, then we
may ignore this pair. If both of the nodes are leaves, then they are clearly well-separated
(irrespective of the value of s), and we may output this pair. Otherwise, let us assume that
u’s cell is least as large as v’s. That is, u’s level number is not greater than v’s. (Recall that
a leaf node is treated as an infinitesimally small quadtree cell that contains the node’s point,
and its level is defined to be +∞. So if an internal node and a leaf node are compared, the
internal node is always deemed to have the larger cell.) Consider the two smallest Euclidean
balls of equal radius that enclose u’s cell and v’s cell (see Fig. 100(a)). If these balls are well
separated, then we can report {u, v} as (the encoding of) a well separated pair. Otherwise,
we subdivide u by considering its children, and apply the procedure recursively to the pairs
{ui, v}, for each child of ui of u (see Fig. 100(b)).

A more formal presentation of the algorithm is presented in the following code block. The
procedure is called ws-pairs(u, v, s), where u and v are the current nodes of a compressed
quadtree for the point set, and s is the separation factor. The procedure returns a set node
pairs, encoding the well separated pairs of the WSPD. The initial call is ws-pairs(u0, u0, s),
where u0 is the root of the compressed quadtree.

How do we test whether two nodes u and v are s well separated? For each internal node,
consider the smallest Euclidean balls enclosing the associated quadtree cells. For each leaf
node, consider a degenerate ball of radius zero that contains the point. In O(1) time, we can
determine whether these balls are s well separated. Note that a pair of leaf cells will always
pass this test (since the radius is zero), so the algorithm will eventually terminate.
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Construction of a Well Separated Pair Decomposition
ws-pairs(u, v, s) {

if (u and v are leaves and u = v) return;
if (rep(u) or rep(v) is empty) return ∅; // no pairs to report
else if (u and v are s-well separated) // (see remark below)

return {{u, v}}; // return the WSP {P (u), P (v)}
else { // subdivide

if (level(u) > level(v)) swap u and v;// swap so that u’s cell is at least as large as v’s
Let u1, . . . , uk denote the children of u;

return
⋃k

i=1 ws-pairs(ui, v, s); // recurse on children
}

}

Remark: Due to its symmetry, this procedure may produce duplicate pairs {P (u), P (v)}
and {P (v), P (u)}. A simple disambiguation rule can be applied to eliminate this issue.

Analysis: How many pairs are generated by this recursive procedure? It will simplify our proof
to assume that the quadtree is not compressed (and yet it has size O(n)). This allows us to
assume that the children of each node all have cell sizes that are exactly half the size of their
parent’s cell. (We leave the general case as an exercise.)

From this assumption, it follows that whenever a call is made to the procedure ws-pairs(),
the sizes of the cells of the two nodes u and v differ by at most a factor of two (because we
always split the larger of the two cells). It will also simplify the proof to assume that s ≥ 1
(if not, replace all occurrences of s below with max(s, 1)). The analysis involves a number of
steps.

Terminal/Non-Terminal Calls: To evaluate the number of well separated pairs, we will
count calls to the procedure ws-pairs(). We say that a call to ws-pairs is terminal if
it does not make it to the final “else” clause. Each terminal call generates at most
one new well separated pair, and so it suffices to count the number of terminal calls to
ws-pairs. In order to do this, we will instead bound the number of nonterminal calls.
Each nonterminal call generates at most 2d recursive calls (and this is the only way that
terminal calls may arise). Thus, the total number of well separated pairs is at most 2d

times the number of nonterminal calls to ws-pairs.

Charging: To count the number of nonterminal calls to ws-pairs, we will apply a charging
argument to the nodes of the compressed quadtree. Each time we make it to the final
“else” clause and split the cell u, we assign a charge to the “unsplit” cell v. Recall that
u is generally the larger of the two, and thus the smaller node receives the charge. We
assert that the total number of charges assigned to any node v is O(sd). Because there
are O(n) nodes in the quadtree, the total number of nonterminal calls will be O(sdn),
as desired. Thus, to complete the proof, it suffices to establish this assertion about the
charging scheme.

Who gets charged? A charge is assessed to node v only if the call is nonterminal, which
implies that u and v are not s-well separated. Let x denote the side length of v’s cell
and let rv = x

√
d/2 denote the radius of the ball enclosing this cell. As mentioned

earlier, because we are dealing with an uncompressed quadtree, and the construction
always splits the larger cell first, we may assume that u’s cell has a side length of either
x or 2x. Therefore, the ball enclosing u’s cell is of radius ru ≤ 2rv. Since u and v are
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not well separated, it follows that the distance between their enclosing balls is at most
s ·max(ru, rv) ≤ 2srv = sx

√
d. The centers of their enclosing balls are therefore within

distance

rv + ru + sx
√
d ≤

(
1

2
+ 1 + s

)
x
√
d ≤ 3sx

√
d (since s ≥ 1),

which we denote by Rv (see Fig. 101(a)).

v

u
x

rv
Rv

≤ sx
√
d

bv

Fig. 101: WSPD analysis.

Let bv be a Euclidean ball centered at v’s cell of radius Rv. Summarizing the above
discussion, we know that the set of quadtree nodes u that can assess a charge to v have
cell sizes of either x or 2x and overlap bv. Clearly the cells of side length x are disjoint
from one another and the cells of side length 2x are disjoint from one another.

Packing Lemma: To bound the number of charges assessed, we prove a lemma that provides
an upper bound on the number of quadtree disjoint quadtree cells of size at least x that
can overlap a ball of radius r.

Lemma: Consider a ball b of radius r in any fixed dimension d, and consider any
collection X of pairwise disjoint quadtree cells of side lengths at least x that overlap
b. Then

|X| ≤
(

1 +

⌈
2r

x

⌉)d
≤ O

(
max

(
2,

r

x

)d)
Proof: We may assume that all the cells of X are of side length exactly equal to x, since

making cells larger only reduces the number of overlapping cells (see Fig. 102(b)).

(a) (b)

b

r

x

b

x
2r

G

H

Fig. 102: Proof of the Packing Lemma.

By the nature of a quadtree decomposition, the cells of side length x form a hy-
percube grid G of side length x. Consider a hypercube H of side length 2r that
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encloses b (see Fig. 102). Clearly every cell of X overlaps this hypercube. Along
each dimension, the number of cells of G that can overlap an interval of side length
2r is at most 1 + d2r/xe. Thus, the number of grid cubes of G that overlap H is
at most (1 + d2r/xe)d. If 2r < x, this quantity is at most 2d, and otherwise it is
O((r/x)d).

Putting it all together: Thus, by the Packing Lemma, the total number of nodes that can
assess a charge to node v is at most C, where

C ≤
(

1 +

⌈
2Rv
x

⌉)d
+

(
1 +

⌈
2Rv
2x

⌉)d
≤ 2

(
1 +

⌈
2Rv
x

⌉)d
≤ 2

(
1 +

⌈
6sx
√
d

x

⌉)d
≤ 2(2 + 6s

√
d)d.

(In the last inequality, we used the fact that dze ≤ 1 + z.) Since the dimension d is
assumed to be a constant and s ≥ 1, this is O(sd).

Putting this all together, we recall that there are O(n) nodes in the compressed quadtree
and O(sd) charges assigned to any node of the tree, which implies that there are a total
of O(sdn) total nonterminal calls to ws-pairs. As observed earlier, the total number of
well separated pairs is larger by a factor of O(2d), which is just O(1) since d is a constant.
Together with the O(n log n) time to build the quadtree, this gives an overall running
time of O((n log n) + sdn) and O(sdn) total well separated pairs. In summary we have
the following result.

In summary, we have the following:

Theorem: Given a point set P in Rd, and a fixed separation factor s ≥ 1, in O(n log n+sdn)
time it is possible to build an s-WSPD for P consisting of O(sdn) pairs.

As mentioned earlier, if 0 < s < 1, then replace s with max(s, 1). In the next lecture we will
consider applications of WSPDs to solving a number of geometric approximation problems.

Lecture 17: Applications of WSPDs

Review of WSPDs: Recall that given a parameter s > 0, we say that two sets of A and B are
s-well separated if the sets can be enclosed within two Euclidean balls of radius r such that the
closest distance between these spheres is at least sr (see Fig. 103(a)). Given an n-element point
set P in Rd and separation factor s > 0, recall that an s-well separated pair decomposition
(s-WSPD) is a collection of pairs of subsets of P {{A1, B1}, {A2, B2}, . . . , {Am, Bm}} such
that

(1) Ai, Bi ⊆ P , for 1 ≤ i ≤ m
(2) Ai ∩Bi = ∅, for 1 ≤ i ≤ m (disjoint)
(3)

⋃n
i=1Ai ⊗Bi = P ⊗ P (cover all pairs)

(4) Ai and Bi are s-well separated, for 1 ≤ i ≤ m, (well separated)

where A ⊗ B denotes the set of all unordered pairs from A and B. We refer to the pairs
{Ai, Bi} as well-separated pairs or WSPs.
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In the previous lecture we showed that, given P and s ≥ 1, there exists an s-WSPD of
size O(sdn), which can be constructed in time O(n log n + sdn). Because the construction
concealed exponential factors depending on the dimension, we assumed that d is a constant,
but we do not assume that s is a constant. (The WSPD definition allows for any s > 0, but
we can simply apply this construction by with a modified separation factor s′ ← max(s, 1).)

r

r
≥ sr

Ai

Bi u v

Quadtree

P (u) P (v)

(a) (b)

r

r
≥ sr

P (u)

P (v)

rep(u)

rep(v)

(c)

Fig. 103: WSPD and quadtree-based representation.

Quadtree-based Representation: Recall that our approach to constructing the WSPD was to
first construct a compressed quadtree of size O(n) storing the points of P in its leaves (see
Fig. 103(b)). Each node u is implicitly associated with the set of points P (u) stored within its
subtree, and the WSPD is represented as a set of unordered pairs of nodes the quadtree. The
pair {u, v} implicitly refers to the WSP {P (u), P (v)}. Thus, the m pairs of the WSPD can
be represented in O(m) space. Also recall that each (nonempty) node u of the compressed
quadtree is assumed to store a representative point, denoted rep(u). This can be chosen
arbitrarily from among u’s descendants (or its choice may be based on the application we
have in mind).

Utility Lemma: If two sets are s-well separated, we can infer some bounds on the relative dis-
tances between point. This is encapsulated in the following useful lemma (see Fig. 104).
(When reading this, it is useful to imagine that s is a large number, so quantities like 2/s are
small.)

Lemma: (WSPD Utility Lemma) If the pair {P (u), P (v)} is s-well separated and x, x′ ∈
P (u) and y, y′ ∈ P (v) then:

(i) ‖x− x′‖ ≤ 2
s · ‖x− y‖ (Pairs on the same side are close compared to opposite sides)

(ii) ‖x′ − y′‖ ≤
(
1 + 4

s

)
‖x− y‖ (Pairs on opposite sides have similar distances)

2r 2r

≥ sr
x

Pu Pv

y
x′ y′

Fig. 104: WSPD Utility Lemma.

Proof: Since the pair is s-well separated, we can enclose each of P (u) and P (v) in a ball of
radius r such that the minimum separation between these two balls is at least sr. It
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follows that max(‖x−x′‖, ‖y−y′‖) ≤ 2r, and any pair from {x, x′}×{y, y′} is separated
by a distance of at least sr. Thus, we have

‖x− x′‖ ≤ 2r =
2r

sr
sr ≤ 2r

sr
‖x− y‖ =

2

s
‖x− y‖,

which proves (i). Also, through an application of the triangle inequality (‖a − c‖ ≤
‖a− b‖+ ‖b− c‖) and the fact that 2r ≤ 2

s‖x− y‖ we have

‖x′ − y′‖ ≤ ‖x′ − x‖+ ‖x− y‖+ ‖y − y′‖ ≤ 2r + ‖x− y‖+ 2r

≤ 2

s
‖x− y‖+ ‖x− y‖+

2

s
‖x− y‖ =

(
1 +

4

s

)
‖x− y‖,

which proves (ii).

Approximating the Diameter: The diameter of a point set P is defined to be the maximum
distance between any pair of points of the set (see Fig. 105(a)). That is,

diam(P ) = max
x,y∈P

‖x− y‖.

x

y
y′ Pv

Pu

≥ sr

2r

2r

x

y

(a) (b)

x′

Fig. 105: Approximating the diameter.

The diameter can be computed exactly by brute force in O(n2) time. For points in the plane,
it is possible to compute the diameter18 in O(n log n) time. Unfortunately, generalizing this
idea to higher dimensions results in an O(n2) running time, which is no better than brute
force search.

Using the WSPD construction, we can easily compute an ε-approximation to the diameter of a
point set P in linear time. Given ε, we let s = 4/ε and construct an s-WSPD. As mentioned
above, each pair (P (u), P (v)) in our WSPD construction consists of the points descended
from two nodes, u and v, in a compressed quadtree. Let x′ = rep(u) and y′ = rep(v) denote
the representative points associated with u and v, respectively. For every well separated pair
{P (u), P (v)}, we compute the distance ‖x′−y′‖ between their representative, and output the
pair achieving the largest such distance.

18This is nontrivial, but is not much harder than a homework exercise. In particular, observe that the diameter
points must lie on the convex hull. After computing the hull, it is possible to perform a rotating sweep that finds the
diameter.
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To prove correctness, let x and y be the points of P that realize the diameter. Let {P (u), P (v)}
be the well separated pair containing these points, and let x′ and y′ denote their respective
representatives. By the WSPD Utility Lemma we have

‖x− y‖ ≤
(

1 +
4

s

)
‖x′ − y′‖ = (1 + ε)‖x′ − y′‖.

Since {x, y} is the diametrical pair, we have

‖x− y‖
1 + ε

≤ ‖x′ − y′‖ ≤ ‖x− y‖,

which implies that the output pair {x′, y′} is an ε-approximation to the diameter.19 The
running time is dominated by the time to construct the WSPD, which is O(n log n+ sdn) =
O(n log n+ n/εd). If we treat ε as a constant, this is O(n log n).

Closest Pair (Exact!): The same sort of approach we used for the diameter (farthest pair) could
be applied to produce an ε-approximation to the closest pair as well. For example, we
could first compute the s-WSPD where s ≈ 1/ε and compute the distances between all
representatives and take the pair with the smallest value. However, we can in fact do much
better and obtain an exact solution. The reason is given by the following lemma.

Lemma: Let P be any point set in Rd and let x and y be the closest pair of points in P .
For any separation factor s > 2 an s-WSPD for P contains a pair {{x}, {y}}. (That is,
x and y show up as singleton sets in some pair.)

Assuming this lemma for now, this yields the following simple solution. First, take any
s > 2 (e.g., s = 2.000001) and compute an s-WSPD for P . Then for each WSP {u, v},
compute ‖rep(u) − rep(v)‖ and return the minimum of all of these. By the above lemma,
there must exist a pair where P (u) = {x} and P (v) = {y}, and therefore, the associated
representatives must be the closest pair x and y. Therefore, the algorithm will correctly find
the closest pair (exactly!). Since s is a constant, the running time of the WSPD construction
is O(n log n + sdn) = O(n log n). This is essentially optimal (in the algebraic decision tree
model of computing).

To prove the above lemma, let u and v be the WSP that separated x and y. Such a pair
must exist by definition of WSPDs. We assert that P (u) = {x} and P (v) = {y} (that is, u
and v are leaves containing x and y, respectively.) Suppose to the contrary that either P (u)
or P (v) contains another point. Without loss of generality, suppose that P (u) has another
point x′.

By the utility lemma and the fact that s > 2, we have

‖x− x′‖ ≤ 2

s
· ‖x− y‖ < ‖x− y‖,

but this contradicts the hypothesis that x and y are the closest pair in P . Therefore, the
lemma holds.

19You might wonder, why we didn’t select the representatives more carefully, so that x′ and y′ are the diametrical
pair for the WSPD. Remember that there is only one representative for each node u, and there are many WSPs
involving u. So, no one representative will work for all WSPs.
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Low-Stretch Spanners: In an earlier lecture we defined the notion of a spanner graph. Recall
that any set P of n points in Rd defines a complete weighted graph, called the Euclidean
graph, in which each point is a vertex, and every pair of vertices is connected by an edge
whose weight is the Euclidean distance between these points. This graph is dense, meaning
that it has Θ(n2) edges. Intuitively, a spanner is a sparse graph (having only O(n) edges) in
which shortest paths are not significantly longer than the Euclidean distance between points.
Such a graph is called a (Euclidean) spanner.

More formally, suppose that we are given a set P in Rd and a parameter t ≥ 1, called the
stretch factor. A t-spanner is any weighted graph G whose vertex set is P and, given any
pair of points x, y ∈ P we have

‖x− y‖ ≤ δG(x, y) ≤ t · ‖x− y‖,

where δG(x, y) denotes the length of the shortest path between x and y in G.

In an earlier lecture, we showed that the Delaunay triangulation of P is an O(1)-spanner.
This was only really useful in the plane, since in dimension 3 and higher, the Delaunay
triangulation can have a quadratic number of edges. Here we consider the question of how
to produce a spanner in any space of constant dimension that achieves any desired stretch
factor t > 1. There are many different ways of building spanners. Here we will discuss a
straightforward method based on a WSPD of the point set.

WSPD-based Spanner Construction: Given the point set P and a (constant) stretch factor t,
the idea is to build an s-WSPD for P , where s is an appropriately chosen separation factor
(which will depend on t). We will then create one edge in the spanner from each well-separated
pair.

Given t, we set s = 4(t + 1)/(t − 1). (Later we will justify the mysterious choice.) For
each well-separated pair {P (u), P (v)} associated with the nodes u and v of the quadtree, let
pu = rep(u) and let pv = rep(v). Add the undirected edge {pu, pv} to our graph. Let G
be the resulting undirected weighted graph (see Fig. 106). G will be the desired spanner.
Clearly the number of edges of G is equal to the number of well-separated pairs, which is
O(sdn) = O(n), and it can be built in the same O(n log n + sdn) = O(n log n) running time
as the WSPD construction.

(a) (b)

Spanner

rep(u) rep(v)

P (v)

P (u)

WSPDFull Graph

(c)

Fig. 106: WSPD-based spanner construction.
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Correctness: To establish the correctness of our spanner construction algorithm, it suffices to
show that for all pairs x, y ∈ P , we have

‖x− y‖ ≤ δG(x, y) ≤ t · ‖x− y‖.

Clearly, the first inequality holds trivially, because (by the triangle inequality) no path in
any graph can be shorter than the distance between the two points. To prove the second
inequality, we apply an induction based on the number of edges of the shortest path in the
spanner.

For the basis case, observe that, if x and y are joined by an edge in G, then clearly δG(x, y) =
‖x− y‖ ≤ t · ‖x− y‖ for all t ≥ 1.

If, on the other hand, there is no direct edge between x and y, we know that x and y must lie
in some well-separated pair {P (u), P (v)} defined by the pair of nodes {u, v} in the quadtree.
let x′ = rep(u) and y′ = rep(v) be the respective representative points. (It might be that
x′ = x or y′ = y, but not both.) Let us consider the length of the path from x to x′ to y′ to
y. Since the edge {x′, y′} is in the graph, we have

δG(x, y) ≤ δG(x, x′) + δG(x′, y′) + δG(y′, y)

≤ δG(x, x′) + ‖x′ − y′‖+ δG(y′, y).

(See Fig. 107.)

2r 2r

≥ sr
x

y′
Pu Pv

y′

y

Fig. 107: Proof of the spanner bound.

The paths from x to x′ and y′ to y are subpaths of the full spanner path from x to y, and
hence they use fewer edges. Thus, we may apply the induction hypothesis, which yields
δG(x, x′) ≤ t‖x− x′‖ and δG(y′, y) ≤ t‖y′ − y‖, yielding

δG(x, y) ≤ t(‖x− x′‖+ ‖y′ − y‖) + ‖x′ − y′‖. (2)

By the WSPD Utility Lemma (with {x, x′} from one pair and {y, y′} from the other) we have

max(‖x− x′‖, ‖y′ − y‖) ≤ 2

s
· ‖x− y‖ and ‖x′ − y′‖ ≤

(
1 +

4

s

)
‖x− y‖.

Combining these observations with Eq. (2) we obtain

δG(x, y) ≤ t

(
2 · 2

s
· ‖x− y‖

)
+

(
1 +

4

s

)
‖x− y‖ =

(
1 +

4(t+ 1)

s

)
‖x− y‖.

To complete the proof, observe that it suffices to select s so that 1 + 4(t+ 1)/s ≤ t. Towards
this end, let us set

s = 4

(
t+ 1

t− 1

)
.

Lecture Notes 128 CMSC 754



This is well defined for any t > 1. By substituting in this value of s, we have

δG(x, y) ≤
(

1 +
4(t+ 1)

4(t+ 1)/(t− 1)

)
‖x− y‖ = (1 + (t− 1))‖x− y‖ = t · ‖x− y‖,

which completes the correctness proof.

Because we have one spanner edge for each well-separated pair, the number of edges in the
spanner is O(sdn). Since spanners are most interesting for small stretch factors, let us assume
that t ≤ 2. If we express t as t = 1 + ε for ε ≤ 1, we see that the size of the spanner is

O(sdn) = O

((
4

(1 + ε) + 1

(1 + ε)− 1

)d
n

)
≤ O

((
12

ε

)d
n

)
= O

( n
εd

)
.

In conclusion, we have the following theorem:

Theorem: Given a point set P in Rd and ε > 0, a (1 + ε)-spanner for P containing O(n/εd)
edges can be computed in time O(n log n+ n/εd).

Approximating the Euclidean MST: The Euclidean Minimum Spanning Tree (EMST) of a
point set P is the minimum spanning tree of the complete Euclidean graph on P . In an
earlier lecture, we showed that the EMST is a subgraph of the Delaunay triangulation of P .
This provided an O(n log n) time algorithm in the plane. Unfortunately, the generalization to
higher dimensions was not interesting because the worst-case number of edges in the Delaunay
triangulation is quadratic in dimensions 3 and higher.

We will now that for any constant approximation factor ε, it is possible to compute an ε-
approximation to the minimum spanning tree in any constant dimension d. Given a graph
G with v vertices and e edges, it is well known that the MST of G can be computed in time
O(e+ v log v). It follows that we can compute the EMST of a set of points in any dimension
by first constructing the Euclidean graph and then computing its MST, which takes O(n2)
time. To compute the approximation to the EMST, we first construct a (1 + ε)-spanner, call
it G, and then compute and return the MST of G (see Fig. 108). This approach has an overall
running time of O(n log n+ sdn).

Euclidean graph Euclidean MST Spanner Approximate MST

Fig. 108: Approximating the Euclidean MST.

Let EMST(P ) denote P ’s EMST, and let emst(P ) denote its total weight. Similarly, let
MST(G) denote G’s (exact) MST, and let mst(G) be its weight. We define a spanning
subgraph of G, call it H, as follows. For each edge (x, y) in EMST(P ), find the shortest
path between x and y in G and add all these edges to H. Let δG(x, y) be the total weight
of these edges, and let w(H) denote the total weight of all of H’s edges. By definition of
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the spanner, δG(x, y) ≤ (1 + ε)‖x − y‖. (Note that some of these paths may share common
edges, and so the total weight of H may be smaller than the sum of the weights of these
paths). Since the edges of the EMST span all the points of P , union of paths from G also
spans these points. Since the MST is the spanning structure of minimum weight, we have
mst(G) ≤ w(H). Putting this all together, we obtain

mst(G) ≤ w(H) ≤
∑

(x,y)∈EMST(P )
δG(x, y)

= (1 + ε)
∑

(x,y)∈EMST(P )
‖x− y‖

= (1 + ε) · emst(P ),

as desired.

Lecture 18: Coresets and Kernels

Approximation by Sampling: One of the issues that arises when dealing with very large geo-
metric data sets, especially in multi-dimensional spaces, is that the computational complexity
of many geometric optimization problems grows so rapidly that it is not feasible to solve the
problem exactly. In the previous lecture, we saw how the concept of a well-separated pair
decomposition can be used to approximate a quadratic number of objects (all pairs) by a
smaller linear number of objects (the well separated pairs). Another approach for simplifying
large data sets is to apply some sort of sampling. The idea is as follows. Rather than solve
an optimization problem on some (large) set P ⊂ Rd, we will extract a relatively small subset
Q ⊆ P , and then solve the problem exactly on Q.

The question arises, how should the set Q be selected and what properties should it have in
order to guarantee a certain degree of accuracy? The simplest and most natural approach is
to select a random subset. While this may work for many problems, there are some instances
where it may fail miserably. For example, suppose that you wanted to approximate the
minimum enclosing ball (MEB) for a point set P (see Fig. 109(a)). A random subset may
result in a ball that is much smaller than the MEB. The problem is that the MEB is determined
by points that are “peripheral”, whereas random sampling may sample an excessive number of
points near the “center” of the point set (see Fig. 109(b)). We would like a sampling method
that is tailored to selecting points that will be most valuable to the MEB construction (see
Fig. 109(c)).

exact MEB MEB of random sample MEB of coreset

(a) (b) (c)

Fig. 109: (a) exact MEB, (b) MEB of a random sample, (c) MEB of a coreset.
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Coresets: Abstractly, consider any optimization problem on point sets. For a point set P , let
f∗(P ) denote the value of the objective function for the optimal solution. (For example, in
the minimum enclosing ball problem, f∗(P ) is the radius of the MEB.) Given ε > 0, we say
that subset Q ⊆ P is an ε-coreset for this problem if, the relative error committed by solving
the problem on Q is at most ε, that is:

1− ε ≤ f∗(Q)

f∗(P )
≤ 1 + ε.

For a given optimization problem, the relevant questions are: (1) does a small coreset exist?
(2) if so, how large must the coreset be to guarantee a given degree of accuracy? (3) how
quickly can such a coreset be computed? Ideally, the coreset should be significantly smaller
than n and it should be computable much faster than solving the original optimization prob-
lem. For many optimization problems, the coreset size is actually independent of n (but does
depend on ε).

In this lecture, we will present algorithms for computing coresets for a problem called the
directional width. This problem can be viewed as a way of approximating the convex hull of
a point set.

Directional Width and Coresets: Consider a set P of points in real d-dimensional space Rd.
Given vectors ~u,~v ∈ Rd, let (~v ·~u) denote the standard inner (dot) product in Rd. From basic
linear algebra we know that, given any vector ~u of unit length, for any vector ~v, (~v · ~u) is
the length of ~v’s orthogonal projection onto ~u. The directional width of P in direction ~u is
defined to be the minimum distance between two hyperplanes, both orthogonal to ~u, that has
P “sandwiched” between them. More formally, if we think of each point p ∈ P as a vector
~p ∈ Rd, the directional width can be formally defined to be

Wu(P ) = max
p∈P

(~p · ~u)−min
p∈P

(~p · ~u)

(see Fig. 110(a)). Note that this is a signed quantity, but we are typically interested only in
its magnitude.

(a)

P

~uWu(P ))

(b)

P

~uWu(R)

Fig. 110: Directional width and kernels. In (b) the points of R are shown as black points.

The directional width has a number of nice properties. For example, it is invariant under
translation and it scales linearly if P is uniformly scaled.

Suppose we want to answer width queries, where we are given a vector ~u and we want to
efficiently compute the width in this direction. We want a solution that is substantially faster
than the O(n) time brute force solution. We saw earlier in the semester that if P is a planar
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point set, then by dualizing the point set into a set P ∗ of lines, the vertical distance between
two parallel lines that enclose P is the same as the vertical distance between two points, one
on the upper hull of P ∗ and one on the lower hull. This observation holds in any dimension.
Given the vertical width for any slope, it is possible to apply simple trigonometry to obtain
the orthogonal width. The problem, however, with this approach is that the complexity of
the envelopes grows as O(nbd/2c). Thus, a solution based on this approach would be quite
inefficient (either with regard to space or query time).

Given 0 < ε < 1, we say that a subset R ⊆ P is an ε-coreset for directional width, also called
an ε-kernel, if for any unit vector ~u,

(1− ε)Wu(P ) ≤Wu(R) ≤ Wu(P ).

Since R ⊆ P , the second inequality is trivially satisfied, so it is the first inequality that
important. Intuitively, this says that for any unit vector ~u, the directional width of R is
smaller than that of P by a factor of only (1− ε) (see Fig. 110(b)). We will show that, given
an n-element point set P in Rd, it is possible to compute an ε-kernel whose size depends only
on ε and d (not on n).

Note that kernels combine nicely. In particular, it is easy to prove the following:

Chain Property: If X is an ε-kernel of Y and Y is an ε′-kernel of Z, then X is an (ε+ ε′)
kernel of Z.

Union Property: If X is an ε-kernel of P and X ′ is an ε-kernel of P ′, then X ∪ X ′ is an
ε-kernel of P ∪ P ′.

Canonical Position: Let’s begin by considering a very simple, but not very efficient, ε-kernel.
Before giving the algorithm, it will be useful to precondition the point set by making it “fat”.
Let’s start with some definitions. Given α ≤ 1, we say that a convex body K in Rd is α-fat if
there exist two positive scalars λ− ≤ λ+, such that K is sandwiched between two concentric
Euclidean balls of radii λ− and λ+ such that λ−/λ+ = α (see Fig. 111(a)).

(a)

λ−
K

(b)

α = λ−
λ+

λ+

conv(P )

λ−

λ+

(c)

1/2α

K

1/2

origin

Fig. 111: The definition of α-fatness for: (a) a convex body K and (b) for a point set P .

Observe that any Euclidean ball is 1-fat. A line segment is 0-fat. It is easy to verify that a
d-dimensional hypercube is (1/

√
d)-fat. We say that a point set P is α-fat if its convex hull,

conv(P ), is α-fat (see Fig. 111(b)).

Once we have fattened the body, it will also be nice to scale it to a convenient size and center
it about the origin. We say that a convex body K is in α-canonical position if it is α-fat
and the two sandwiching balls are of radii λ+ = 1

2 and λ− = 1
2α , respectively. The reason for

chosing the outer radius to be 1
2 is so that body has diameter at most 1. The following lemma

makes reference to an “affine transformation”. Such a transformation consists of a linear
transformation (as you learned in linear algebra) combined with an arbitrary translation.
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Lemma 1: Given an n-element point set P ⊂ Rd, there exists an affine transformation T
such that T (P ) is in 1

d -canonical position. Further, a subset R ⊆ P is an ε-kernel for P
if and only if T (R) is an ε-kernel for T (P ). The transformation T can be computed in
O(n) time.

Proof: (Sketch) Let K = conv(P ). If computation time is not an issue, it is possible to use
a famous (and remarkable) fact from the theory of convexity. John’s Theorem, states
that if E is a maximum volume ellipsoid contained within K (called K’s John ellipsoid),
then K is contained within dE, where dE denotes a concentrically scaled copy of E by
a factor of d (see Fig. 112(a)).

(a) (b)

E

dE

d
2

1
2

Fig. 112: The John ellipsoid and transformation to canonical position.

There is an O(n) time algorithm for computing the maximum volume ellipsoid of a
convex body given as the intersection of k halfspaces in any fixed dimensional space
(by Chazelle and Matoušek), and there is an efficient algorithm which computes a good
enough approximation to the John ellipsoid (by Barequet and Har-Peled).

To obtain the transformation T , we first translate E so that its center coincides with the
origin. It is a well-known fact from linear algebra that for any origin-centered ellipsoid
E, there exists an affine transformation that maps it to a unit ball. (Intuitively, this
involves scaling each of the principal axes of the ellipsoid to unit length.) To complete
the transformation to canonical position, we apply an additional uniform scaling by
1/2d. Take T to be the resulting affine transformation (see Fig. 112(b)).

In the scaling process, the inner ball has radius 1
2d and the outer ball has radius 1

2 , and
so the resulting body is in 1

d -canonical position, as desired.

Generally, affine transformations do not preserve lengths, but the do preserve the ratio
of lengths of vectors that the parallel to each other. The proof that ratios of directional
widths are preserved will involve some technical details of linear algebra, which are
beyond the scope of this course.

Quick and Dirty Kernel: Armed with the above lemma, we can compute an ε-kernel by the fol-
lowing “quick-and-dirty” approach. First, we assume that P has been mapped to 1

d -canonical
position by the above lemma. Since P is sandwiched between two balls of diameters 1 and
1
d , it follows that the width of P along any direction is at most 1 and at least 1

d . In order to
achieve a relative error of ε, it suffices to approximate any width to an absolute error of at
most ε

d , which we will denote by ε′.

Let H =
[
− 1

2 ,−
1
2

]d
be a hypercube of unit side length centered at the origin. Clearly,

P ⊆ H. Subdivide H into a uniform square grid into cells of side length at most ε′/2
√
d, or

equivalently of diameter at most ε′/2 (see Fig. 113(a)).
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(a)

ε′/2

(b)

H H

∈ R
∈ P

ε′/2

q p

≤ ε′/2

(c)

Fig. 113: (a) The quick-and-dirty kernel construction, (b) the improved construction, (c) correct-
ness.

Each side of H is subdivided into O(1/ε′) = O(1/ε) intervals. Thus, the total number of cells
in the grid is O(1/εd). Next, we determine which cell of the grid each point of P belongs to.
(This involves a straightforward application of integer division.) Once we know the indices of
the grid square that contains a point, we can apply hashing to bucket all the points that lie
within the same grid square. Since hashing takes O(1) time in expectation, we can hash all
the points into their grid squares in O(n) expected time.

To obtain the final kernel, we select one representative point from each nonempty grid cell.
(These are indicated using black dots in Fig. 113(a).) We output the resulting set R as the
ε-kernel. Since we have at most one representative per grid square, we have |R| = O(1/εd).
The entire contstruction takes O(n) time.

To establish the correctness consider any direction ~u, and let p1, p2 ∈ P be the two points
of P that determine Wu(P ). Let q1, q2 ∈ R be the corresponding representative points from
these respective cells. (It may be that q1 = p1 and/or q2 = p2.) Since each cell is of diameter
at most ε′/2, the directional width of the pair {q1, q2} is smaller than the directional width
of p1 and p2 by at most ε′/2 + ε′/2 = ε′. Since q1 and q2 are arbitrary elements of R, Wu(R)
is at least as large as the directional width of these two points. Because P is in canonical
position, we know that Wu(P ) ≥ 1

d . Putting this together, we have

Wu(P ) = Wu({p1, p2})
≤ ε′ +Wu({q1, q2}) ≤ ε′ +Wu(R)

=
ε

d
+Wu(R)

≤ εWu(P ) + wu(R),

which implies that (1−ε)Wu(P ) ≤ wu(R). Since R ⊆ P , we have Wu(R) ≤ wu(P ). Therefore,
for any unit vector u, we have

(1− ε)Wu(P ) ≤ wu(R) ≤ wu(P ),

which implies that R is an ε-kernel of size O(1/εd).

Small Improvement: It is possible make a small improvement in the size of the “quick-and-dirty”
kernel. Observe from Fig. 113(a) that we may select many points from the interior of conv(P ).
Clearly, many of these play no useful role for the purposes of a kernel. The fix is that, rather
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than partition H into small hypercubes, we can instead partition it into thin columns of unit
height. In particular, we create a square grid on just the upper (d−1)-dimensional facet of H
into hypercubes of diameter at most ε′/2 (where ε′ is the same as the previous construction).
For each grid, we “extrude” it vertically into a square column of height 1. Finally, we select
two representatives from each column, the topmost and bottommost points (see Fig. 113(b)).
We output these representatives as the ε-kernel.

Since the top facet is of dimension d − 1, the total number of columns in our construction
is O(1/εd−1), and hence the total number of representatives R is also O(1/εd−1). (This is
better than the previous construction by a factor of 1/ε.)

To show correctness, as above we can show that for any given direction ~u, if p is the extreme
point of P along this direction, then we there exists a representative q ∈ R (from p’s column)
that is within distance ε′/2 with respect to ~u. We will not give a formal proof, but this follows
because the diameter of the column is at most ε′/2. It is a relatively simple geometric exercise
to prove that the highest (or lowest) point of the column has a directional distance with respect
to u that is within ε′/2 from the true extreme point (see Fig. 113(c)). In summary, we have
the following.

Theorem: Given a set P of points in Rd and ε > 0, in O(n) time it is possible to construct
an ε-kernel of size O(1/εd−1).

Optimal Kernel Construction: The above kernel construction has the advantage of simplicity,
but, as shall see next, it is possible to construct much smaller kernels for directional widths.
We will reduce the size from O(1/εd−1) to O(1/ε(d−1)/2), thus reducing the exponential de-
pendency by half. While we will not prove it here, it can be shown that this is asymptotically
optimal (as a function of ε and d, assuming d is a constant).

Our general approach will be similar to the one taken above. First, we map P into canonical
position, so it is sandwiched between balls of diameter 1 and 1

d . After this, the width of P in
any direction is between 1

d and 1. Thus, in order to achieve a relative error of ε, it suffices to
compute a kernel whose absolute difference in width along any direction is at most ε′ = ε

d .

A natural approach to solving this problem would involve uniformly sampling a large number
(depending on ε) of different directions ~u, computing the two extreme points that maximize
and minimize the inner product with ~u and taking these to be the elements of R. It is
noteworthy, that this construction does not result in the best solution. In particular, it can
be shown that the angular distance between neighboring directions may need to be as small
as ε, and this would lead to O(1/εd−1) sampled directions, which is asymptotically the same
as the (small improvement to) the quick-and-dirty method. The approach that we will take
is similar in spirit, but the sampling process will be based not on computing extreme points
but instead on computing nearest neighbors.

We proceed as follows. Recall that P is contained within a unit ballB. Let S denote the sphere
of radius 2 that is concentric with B. (The expansion factor 2 is not critical. Any constant
factor expansion works, but the constants in the analysis will need to be adjusted.) Let
δ =

√
ε/4d. (The source of this “magic number” will become apparent later.) On the sphere

S, construct a δ-dense set of points, denoted Q (see Fig. 114). This means that, for every
point on S, there is a point of Q within distance δ. The surface area of S is constant, and since
the sphere is a manifold of dimension d− 1, it follows that |Q| = O(1/δd−1) = O(1/ε(d−1)/2).
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For each point of Q, compute its nearest neighbor in P .20 Let R denote the resulting subset
of P . We will show that R is the desired kernel.

S

conv(P )

∈ Q

∈ R

Fig. 114: Smarter kernel construction. (Technically, the points of Q are connected to the closest
point of P , not conv(P ).)

In the figure we have connected each point of Q to its closest point on conv(P ). It is a bit
easier to conceptualize the construction as sampling points from conv(P ). (Recall that the
kernel definition requires that the kernel is a subset of P .) There are a couple of aspects of
the construction that are noteworthy. First, observe that the construction tends to sample
points of P that lie close to regions where the curvature of P ’s convex hull is higher (see
Fig. 114). This is useful, because areas of high curvature need more points to approximate
them well. Also, because the points on S are chosen to be δ-dense on S, it can be shown that
they will be at least this dense on P ’s convex hull. Before presenting the proof of correctness,
we will prove a technical lemma.

Lemma 2: Let 0 < δ ≤ 1/2, and let q, q′ ∈ Rd such that ‖q‖ ≥ 1 and ‖q′ − q‖ ≤ δ (see
Fig. 115). Let B(q′) be a ball centered at q′ of radius ‖q′‖. Let ~u be a unit length vector
from the origin to q. Then

min
p′∈B(q′)

(p′ · ~u) ≥ − δ2.

Proof: (Sketch) We will prove the lemma in R2 and leave the generalization to Rd as an
exercise. Let O denote the origin, and let ` = ‖q‖ be the distance from q to the origin.
Let us assume (through a suitable rotation) that ~u is aligned with the x-coordinate axis.
The quantity (p′ ·~u) is the length of the projection of p′ onto the x-axis, that is, it is just
the x-coordinate of p′. We want to show that this coordinate cannot be smaller than
−δ2.

We will prove a slightly stronger version of the above. In particular, let us assume that
q′ is contained within a square of side length 2δ centered at q. This suffices because this
square contains all points that lie within distance δ of q. Observe that the boundary of
the ball B(q′) passes through the origin. We wish to bound how far such a ball might
protrude over the (−x)-axis. Its easy to see that worst case arises when q′ is placed in
the upper left corner of the square (see Fig. 115(a)). Call this point q′′.

The distance between q′′ and the origin is `′′ =
√

(`− δ)2 + δ2. This is the same as
the horizontal distance from q′′ to the leftmost point of B(q′′). The horizontal distance

20This clever construction was discovered in the context of polytope approximation independently by E. M. Bron-
stein and L. D. Ivanov, “The approximation of convex sets by polyedra,” Siber. Math J., 16, 1976, 852–853 and
R. Dudley, “Metric entropy of some classes of sets with differentiable boundaries,” J. Appr. Th., 10, 1974, 227–236.
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` ≥ 1

q
q′

B(q′)

O

wδ ≤ δ2
δ

~u

p′
q′′

(a)

` ≥ 1

q

q′

p

≤ δ2

δ
~u

p′

(b)
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Fig. 115: Analysis of the kernel construction.

between q′′ and the origin is ` − δ. Therefore, the amount by which the ball of radius
‖q′′‖ centered at ‖q′′‖ may protrude over the (−x)-axis is at most wq, which we define
to be

wδ = `′′ − (`− δ) =
√

(`− δ)2 + δ2 − (`− δ)

Since p lies in this ball, to complete the proof it suffices to show that wδ ≤ δ2.

To simplify this, let us multiply it by a fraction whose numerator and denominator are
both

√
(`− δ)2 + δ2 + (` − δ). Clearly,

√
(`− δ)2 + δ2 ≥ ` − δ. Also, since ` ≥ 1 and

δ ≤ 1
2 , we have `− δ ≥ 1

2 . Therefore,

wδ =
((`− δ)2 + δ2)− (`− δ)2√

(`− δ)2 + δ2 + (`− δ)
=

δ2√
(`− δ)2 + δ2 + (`− δ)

≤ δ2

(`− δ) + (`− δ)
= δ2,

as desired.

To establish the correctness of the construction, consider any direction ~u. Let p ∈ P be
the point that maximizes (p · ~u). We will show that there is a point p′ ∈ R such that
(p ·~u)− (p′ ·~u) ≤ ε′/2. In particular, let us translate the coordinate system so that p is at the
origin, and let us rotate space so that ~u is horizontal (see Fig. 115(b)). Let q be the point at
which the extension of ~u intersects the sphere S. By our construction, there exists a point
q′ ∈ Q that lies within distance δ of q, that is ‖q′ − q‖ ≤ δ. Let p′ be the nearest neighbor of
P to q′. Again, by our construction p′ is in the kernel. Since q lies on a sphere of radius 2 and
P is contained within the unit ball, it follows that ‖q‖ ≥ 1. Thus, we satisfy the conditions
of Lemma 2. Therefore,

(p′ · ~u) ≥ − δ2 = − ε

4d
≥ − ε′

2
.

Thus, the absolute error in the directional distance to p′ compared to p is at most ε′/2. By
combining the errors from both sides, the total absolute error is at most ε′. By the remarks
made earlier (see also the analysis of the “quick and dirty” construction), this implies that
the total relative error is ε, as desired.

Theorem: Given a set P of points in Rd and ε > 0, it is possible to construct an ε-kernel of
size O(1/ε(d−1)/2).
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Lecture 19: Geometric Sampling, VC-Dimension, and Applications

Geometric Set Systems: Many problems in computational geometry involve an interaction be-
tween points and subsets of points defined by geometric objects. For example, suppose that a
point set P represents a set of n locations on campus where students tend to congregate (see
Fig. 116(a)). An internet wireless service provider wants to place a set of towers around the
campus equipt with wireless routers to provide high-capacity data service to these locations.
Due to power considerations, each wireless user needs to be within a certain distance δ of one
of these towers in order to benefit from the special service. The service provider would like to
determine the smallest number of locations such that each of the congregation points is within
distance δ of one of these towers (see Fig. 116(b)). This is equivalent to a set-cover problem,
where we want to cover a set of n points with set of circular disks of radius δ. In general, set
cover is a hard problem, but the constraint of having geometric sets can help ameliorate the
situation. We begin with a discussion of the concept of geometric range spaces.

(a) (b)

Fig. 116: Set cover by circular disks.

Range Spaces: Given a set P of n points in Rd, its power set, denoted 2P , is the set of all subsets
of P , including P and the empty set. The power set has 2n elements. If we constrain ourselves
to subsets formed by some geometric property (e.g., the subsets of P lying within a circular
disk, a halfplane, or a rectangle), this severely limits the types of subsets can can be formed.

We can characterize such geometric set systems abstractly as follows. A range space is defined
to be a pair (X,R), where X is an arbitrary set (which might be finite or infinite) and R is a
subset of the power set of X. We will usually apply range spaces to finite point sets. Given
a set P ⊆ X, define the restriction (sometimes called the projection) of R to P as

R|P = {P ∩Q | Q ∈ R}.

For example, if X = Rd, P is a set of n points in Rd, and R consists of the subsets of
real space contained within axis-parallel rectangles, then R|P consists of the subsets of P
contained within axis-parallel rectangles (see Fig. 117). Note that not all subsets of P may
be in R|P . For example, the sets {1, 4} and {1, 2, 4} cannot be formed by intersecting P with
axis-parallel rectangular ranges.

Measures, Samples, and Nets: When dealing with range spaces over very large point sets, it
is often desirable to approximate the set with a much smaller sample of the set that does a
good job of representing the set. What does it mean for a sample to be “good”? (We have
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Fig. 117: A 4-point set and the range space of axis-parallel rectangles. Note that sets {1, 4} and
{1, 2, 4} cannot be generated.

already seen one example in our coverage of coresets.) The concept of a range space provides
one way of making this precise.

Given a range space (P,R), where P is finite, and given a range Q ∈ R, we define Q’s measure
to be the fraction of points of P that it contains, that is

µ(Q) =
|Q ∩ P |
|P |

.

Given a subset S ⊆ P (which we want to think of as being our sample, so that |S| � |P |) it
provides an estimate on the measure of a range. Define

µ̂S(Q) =
|Q ∩ S|
|S|

.

(When S is clear, we will omit it from the subscript and just write µ̂(Q).) A set S is a good
sample of P if the estimate is close to the actual measure. That is, we would like to select S
so that for all Q ∈ R, µ̂(Q) ≈ µ(Q).

There are two common ways of characterizing good sample sets: ε-samples and ε-nets.

ε-sample: Given a range space (P,R) and any ε > 0, a subset S ⊆ P is an ε-sample if for
any range Q ∈ R we have

|µ(Q)− µ̂(Q)| ≤ ε.

For example, suppose that ε = 0.1 and Q encloses 60% of the points of P (µ(Q) = 0.6)
then Q should enclose a fraction of 60±10% (50–70%) of the points of S (see Fig. 118(b)).
If this is true for every possible choice of Q, then S is a 0.1-sample for P .

ε-net: While ε-samples intuitively correspond a desirable standard for good samples, it is
often the case that we are can be satisfied with something weaker, where we just require
the sample to provide us with a single point. Given a range space (P,R) and any ε > 0,
a subset S ⊆ P is an ε-net if for any range Q ∈ R, if µ(Q) ≥ ε then Q contains at least
one point of S. For example, if ε = 0.2 and |P | = 25, then any range Q that contains at
least 0.2·25 = 5 points of P must contain at least one point of the ε-net (see Fig. 118(c)).

Observe that if S is an ε-sample, then it is surely an ε-net. The reason that ε-nets are of
interest is that they are usually much smaller than ε-samples, and so it is more economical
to use ε-nets whenever they are applicable.

VC Dimension: In looking at the definitions, it is clear that any sufficiently large random sample
is likely to be an ε-sample (or ε-net) for an arbitrary range Q. But we want it to be the case
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µ(Q) = 15
25 = 0.6

µ̂(Q) = 5
10 = 0.5

Fig. 118: ε-samples and ε-nets.

that the sampling/netting condition applies to all ranges. Generally, this cannot be achieved
unless we impose additional constraints on the range space, but these constraints are usually
satisfied by the sorts of ranges that arise in geometric contexts.

Suppose that we are given a set P of n points in the plane and R consists of axis parallel
rectangles. How large might R|P be? If we take any axis-parallel rectangle that encloses
some subset of P , and we shrink it as much as possible without altering the points contained
within, we see that such a rectangle is generally determined by at most four points of P , that
is, the points that lie on the rectangle’s top, bottom, left, and right sides (see Fig. 119(b)).
(It might be fewer if a point lies in the corner of the range.) Since there are essentially at
most

(
n
4

)
= O(n4) distinct ranges, we have |R|P | = O(n4).

How can we generalize this to arbitrary range spaces? (Including those where ranges are not
defined by geometric shapes.) Remarkably, the definition makes no mention of geometry at
all! This is the notion of VC-dimension, which is short for Vapnik-Chervonenkis dimension.21

Given an arbitrary range space (X,R) and finite point set P , we say that R shatters P if
R|P is equal to the power set of P , that is, we can form any of the 2|P | subsets of P by
taking intersections with the ranges of R. For example, the point set shown in Fig. 117 is
not shattered by the range space of axis-parallel rectangles. However, the four-element point
set P shown in Fig. 119 is shattered by this range space, because we can form all 24 = 16
subsets of this set.

Definition: The VC-dimension of a range space (X,R), is defined to be the size of the
largest point set that is shattered by the range space.

We will denote the VC-dimension as dimVC(X,R), or simply dimVC(R) when X is clear.
Here are a couple of examples:

Axis-parallel rectangles: Axis-parallel rectangles have VC-dimension four. In Fig. 119(a)
we gave a 4-element point set that can be shattered. We assert that no five points can
be shattered. Consider any set P of five points in the plane, and assume the points are
in general position. Because of general position, at least one of the points of P , call

21The concept of VC-dimension was first developed in the field of probability theory in the 1970’s. The topic was
discovered to be very relevant to the fields of machine learning and computational geometry in late 1980’s.
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Fig. 119: (a) a 4-element point set that is shattered by the range space of axis-parallel rectangles
(showing only the 2-element subsets in the drawing), and (b) the proof that no 5-element point set
is shattered.

it q, does not lie on the boundary of P ’s smallest enclosing axis-parallel rectangle (see
Fig. 119(b)). It is easy to see that it is not possible to form the subset P \{q}, since any
axis-parallel rectangle containing the points that define the minimum bounding rectangle
must contain all the points of P .

Euclidean disks in the plane: Planar Euclidean disks have VC-dimension three. A 3-
element point set that is shattered is shown Fig. 120(a).

To see that no four-element set can be shattered, consider any set of four points {a, b, c, d}
in general position (see Fig. 120(b)). If any point lies in the convex hull of the other
three, then clearly it is not possible to form the subset that excludes this one point and
contains all the others. Otherwise, all the points are on the convex hull. Consider their
Delaunay triangulation. Let a and b denote the two points of the group that are not
connected by an edge of the triangulation (see Fig. 120(b)). Because ab is not and edge
of the Delaunay triangulation, by the empty-circle property, any circle that contains a
and b, must contain at least one other point of the set. Therefore, the subset {a, b}
cannot be generated.

(a) (b)

a
b

c

da
b

c

{a, b} {b, c} {a, c}
a b

c

d
a

ca
b b

c

Fig. 120: (a) a 3-element point set that is shattered by the range space of Euclidean disks (showing
just the 2-element subsets), and (b) the proof that no 4-element point set is shattered.

Sauer’s Lemma: We have seen (1) that the range space of axis-parallel rectangles over an n
element point set contains O(n4) ranges and (2) that such a range space has VC-dimension
four. This raises the interesting conjecture that the size of any range space is related to its
VC-dimension. Indeed, this is the case, and it is proved by a useful result called Sauer’s
Lemma (also called the Sauer-Shelah Lemma).

Before giving this lemma, let us first define a useful function. Given 0 ≤ d ≤ n, define Φd(n)
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to be the number of subsets of size at most d over a ground set of size n, that is,

Φd(n) =

(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

d

)
=

d∑
i=0

(
n

i

)
.

An important fact about this function is that it satisfies the following recurrence

Φd(n) = Φd(n− 1) + Φd−1(n− 1).

An intuitive way to justify the recurrence is to fix one element x0 of the n-element set. The
number of sets of size at most d that do not contain x0 is Φd(n−1) (since the element itself is
not available from the n elements) and the number of sets that do contain x0 is Φd−1(n− 1)
(since once x0 is removed from each of these sets, we have d − 1 remaining elements to pick
from).

Sauer’s Lemma: If (X,R) is a range space with VC-dimension d and |X| = n, then |R| ≤
Φd(n).

Proof: The proof is by induction on d and n. It is trivially true if d = 0 or n = 0. (Note
that Φ0(n) = Φd(0) = 1, and the range space consists of just the empty set.) Assuming
n ≥ 1, fix any one element x ∈ X. Consider the following two range sets:

Rx = {Q \ {x} : Q ∪ {x} ∈ R and Q \ {x} ∈ R}
R \ {x} = {Q \ {x} : Q ∈ R}

Intuitively, Rx is formed from pairs of ranges from R that are identical except that one
contains x and the other does not. (For example, if x is along the side of some axis-
parallel rectangle, then there is a range that includes x and a slightly smaller one that
does not. We put the range that does not contain x into Rx.) The set R \ {x} is the
result of throwing x entirely out of the point set and considering the remaining ranges.

We assert that |R| = |Rx| + |R \ {x}|. To see why, suppose that we charge each range
of R to its corresponding range in R\ {x}. Every range of R\ {x} receives at least one
charge, but it receives two charges if there exist two ranges that are identical except that
one contains x and one doesn’t. The elements of Rx account for these extra charges.

Now, let us apply induction. Observe that the range space (X \ {x},Rx) has VC-
dimension d − 1. In particular, we claim that no set P ′ of size d can be shattered. To
see why, suppose that we were to throw x back into the mix. The pairs of sets of R
that gave rise to the ranges of Rx would then shatter the d + 1 element set P ′ ∪ {x}.
(This is the critical step of the proof, so you should take a little time to convince yourself
of it!) Clearly, the VC-dimension of R \ {x} cannot be larger than the original, so its
VC-dimension is at most d. Since both range sets involve one fewer element (n− 1), by
applying the induction hypothesis and our earlier recurrence for Φd(n), we have

|R| = |Rx|+ |R \ {x}| ≤ Φd−1(n− 1) + Φd(n− 1) = Φd(n).

And this completes the proof.

Clearly, Φd(n) = Θ(nd), so Sauer’s Lemma implies that an range space of VC-dimension d
over a point set of size n contains at most O(nd) ranges. It can be shown that this bound is
tight.
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On the Sizes of ε-nets and ε-samples: One of the important features of range spaces of low
VC-dimension is that there exist good samples of small size. Intuitively, by restricting our-
selves to simple geometric ranges, we do not have the power to construct arbitrarily compli-
cated sets. Observe that if sets of arbitrary complexity are allowed, then it would be hopeless
to try to construct ε-samples or ε-nets, because given any sample, we could find some nasty
range Q that manages to exclude every point of the sample and include all the remaining
points of P (see Fig. 121).

(a) (b)

P
Q

Fig. 121: Why VC-dimension matters.

If a range space has VC-dimension d, we will show that there exist ε-samples and ε-nets whose
sizes depend on ε and d alone, independent of the original point set n! This is very important
in geometric approximation algorithms, because it allows us to extract a tiny set from a huge
one, with the knowledge that the tiny set is guaranteed to do a good job of representing the
huge one.

Theorem: (ε-Sample Theorem) Let (X,R) be a range space of VC-dimension d, and let P
be any finite subset of X. There exists a positive constant c (independent of the range
space) such that with probability at least 1 − ϕ any random sample S of P of size at
least

c

ε2

(
d log

d

ε
+ log

1

ϕ

)
is an ε-sample for (P,R). Assuming that d and ϕ are constants, this isO((1/ε2) log(1/ε)).

Theorem: (ε-Net Theorem) Let (X,R) be a range space of VC-dimension d, and let P be
any finite subset of X. There exists a positive constant c (independent of the range
space) such that with probability at least 1 − ϕ any random sample S of P of size at
least

c

ε

(
d log

1

ε
+ log

1

ϕ

)
is an ε-sample for (P,R). Assuming that d and ϕ are constants, this is O((1/ε) log(1/ε)).

We will not prove these theorems. Both involve fairly standard applications of techniques from
probability theory (particularly the Chernoff bounds), but there are quite a few non-trivial
technical details involved.

Application — Geometric Set Cover: Nets and samples have applications in many areas of
computational geometry. We will discuss one such application involving geometric set cover.
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Given an n-element ground set X and a collection of subsets R over X, the set cover problem
problem is that of computing a subset of R of minimum size whose union contains all the
elements of X. It is well known that this problem is NP-hard, and assuming that P 6= NP, it
is hard to approximate to within a factor of Ω(log n).

There is a well-known greedy approximation algorithm for set cover that achieves an ap-
proximation ratio of lnn. This algorithm repeatedly selects the set of R that contains the
largest number of elements of X that have not yet been covered. This algorithm can be
applied to arbitrary set systems, but we will show that if the range space (X,R) has constant
VC-dimension then there exists an approximation algorithm that achieves an approximation
ratio of O(log k∗), where k∗ is the number of sets in the optimal solution. If k∗ � n, then
this algorithm provides a significant theoretical improvement over the greedy algorithm. (In
practice, the greedy heuristic is very good.)

For the sake of simplicity, we will present this algorithm in a slightly simpler context, but
it readily generalizes to any range space of constant VC-dimension. Rather than solve the
set cover problem, we will present an approximation for the dual problem, called hitting set.
Here, we are given a set system (X,R), and the problem is to compute a subset of H ⊆ X
(as small as possible) so that every set Q in R contains at least one element (that is, it is
“hit”) by H.

The set cover and hitting set problems are actually dual equivalents. Given a set system
(X,R) for the set cover problem, we can form an equivalent instance of hitting set as follows.
We create a new set system (X ′,R′), where each element of X ′ corresponds to a set in R, and
each set in R′ corresponds to an element in X. For each x ∈ X, let Ri1 , Ri2 , . . . , Rij denote
the sets of R that contain x. We create the set {i1, . . . , ij} and add it to R′. It is easy to
see that any set cover for (X,R) corresponds to an equivalent hitting set for (X ′,R′). (We’ll
leave this as an exercise.)

Suppose that we are an n-element point set X in R2 and a collection R of disks. We want to
compute the smallest hitting set for (X,R). An example of this is shown in Fig. 122. On the
left, the set X is shown as black points, which are being covered by the circular unit disks R,
centered at the hollow points. In the dual version (X ′,R′), the hollow center points are the
members of X ′, and circular unit disks centered at each of the black points of X are the sets
of R′. It is easy to see that a set of unit disks from R cover all the points of X (four of them
shown on the left side of the figure) if and only the corresponding points of X ′ (four of them
highlighted in on the right side of the figure) hit all the disks of R′.

Iterative Reweighting Algorithm: Given (XR) and k, we present an algorithm which deter-
mine either that there exists a hitting set of size at most k′ = ck log k (where c is a suitably
chosen constant), or it will report failure, indicating that there is no hitting set of size k. To
approximate the hitting set problem, we simply run this algorithm with k = 1, 2, 4, . . . , 2j ,
until we achieve success. Letting k∗ denote the size of the optimal hitting set, it follows that
when the algorithm first reports success, the hitting set can have size at most O(k∗ log k∗),
and therefore it is an O(log k∗) factor approximation.

To start, we associate each point of X with a positive integer weight, which initially is 1.
When computing measures, a point x ∈ X with weight w(x) will contribute w(x) to the
weight. For a suitable value of ε (which will depend on k) we compute a weighted ε-net S
of size k′ for X. This means that any disk of radius δ whose weight is at least ε times the
total weight of X must contain at least one point of S. If S is a hitting set, we output S
and we are done. If not, we must have failed to hit some disk. We double the weights of the
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Set cover Hitting set

Fig. 122: Set cover and hitting set

points within this disk (thus making them more likely to be sampled in the future). If we
don’t succeed after a sufficient number of iterations, we declare that no hitting set of size k
exists. Here is a detailed description:

(1) Let ε← 1/(4k). For a suitable value of c (depending on ε) set k′ ← ck log k.

(2) Repeat the following either 2k log(n/k) times or until returns “success”

(a) Compute a weighted ε-net S ofX of size k′ (see Fig. 123(a)). (By the ε-Net Theorem,
this can be done by computing a random sample ofX of size k′, where the probability
that a point is sampled is proportional to its weight.)

(b) Enumerate the disks of R, and determine whether there exists any disk that is not
hit by any of the points of S.

(i) If there is no such disk, then S is a hitting set, and we return “success” (and
output S as the answer).

(ii) If there is some disk Q that is not hit, we double the weight of all the points
lying within Q (see Fig. 123(b)).

(3) If we exit the loop without success, we return “failure”. (This means that there is no
hitting set of size k or smaller.)

Analysis: Before delving into the analysis, let’s see intuitively what the algorithm is doing. Clearly,
if this algorithm terminates, then it has computed a hitting set of size k′. We want to
argue that if such a hitting set exists, the algorithm will find it within 2k log(n/k) iterations.
Observe that if an iteration is not successful, then some disk was not hit by our random
sample. Because (by our assumption) the random sample is an ε-net, such a disk cannot
contain more than an ε fraction of the total weight. All the points within this disk have their
weights doubled. It follows that the total weight of the entire point set does not increase
very much as a result, basically by a factor of at most (1 + ε). Since the optimal hitting set
must hit all disks, at least one of these doubled points is in the optimal hitting set. It follows
that the total weight of the points in the optimal hitting set are increasing rapidly. Thus, the
overall weight is growing slowly and the weight of the optimum set is growing rapidly. But
since the optimum hitting set is a subset of the overall set, its weight can never be larger.
Therefore, this process cannot go on forever. The analysis provides a formal bound on when
it must end.
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Fig. 123: The hitting-set approximation algorithm

Lemma: If (X,R) has constant VC-dimension, and there exists a hitting set of size k, then
after at most 2k log(n/k) iterations, the above algorithm will terminate successfully with
a hitting set of size O(k log k). If not, it terminates with failure.

Let us assume that there exists a hitting set H of size k (which we’ll call the optimal hitting
set). We will show that the algorithm terminates within 2k log(n/k) iterations. Let Wi(X)
denote the total weight of all the points of X after the ith iteration. When the algorithm
starts, each of the n points of X has weight 1, so W0(X) = n.

Let’s consider the trnasition from the i − 1st to the ith iteration in detail. The set S is
an ε-net, which means that any disk that is not hit by S must have a weight smaller than
εWi−1(X). If the iteration is not successful, then there is a disk Q that was not hit. All the
points within Q have their weights doubled, which implies that the total weight has increased
by at most Wi−1(Q) ≤ εWi−1(X). Therefore, after an unsuccessful iteration, we have

Wi(X) = Wi−1(X) +Wi−1(Q) ≤ Wi−1(X) + εWi−1(X) = (1 + ε)Wi−1.

Since W0(X) = n, we have Wi(X) ≤ (1 + ε)in. Using the standard inequality 1 + x ≤ ex, we
have Wi(X) ≤ n · eεi.
Because any hitting set (including the optimal) must hit all the disks, we know that there is
at least one point of the optimal hitting set that lies within the “unhit” disk, meaning that at
least one of the k optimal points will have its weight doubled. For 1 ≤ j ≤ k, let ti(j) denote
the number of times that the jth optimal point has been doubled during stage i. (It’s either
once or not at all.) Since each of these points started with a weight of 1, the total weight of
the optimal hitting set after i iterations, which we will denote by Wi(H) satisfies

Wi(H) =

k∑
j=1

2ti(j).

Because the function f(x) = 2x is a convex function, it follows from standard combinatorics (in
particular, Jensen’s inequality) that this sum is minimized when all the ti(j)’s are as nearly
equal as possible. We know that at least one point must be doubled with each iteration,
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and therefore the minimum occurs when ti(j) = i/k, for all j. (We’ll ignore the minor
inconvenience that ti(j) is an integer. It won’t affect the asymptotics.) Therefore:

Wi(H) ≥ k2i/k.

Because H ⊆ X, we know that Wi(H) ≤ Wi(X). Therefore, we know that the number of
iterations i must satisfy

k2i/k ≤ n · eεi.

Simplifying and recalling that ε = 1/(4k), we obtain

lg k +
i

k
≤ lg n+

i

4k
lg e ≤ lg n+

i

2k
.

(Here we have used the fact that lg e ≈ 1.45 ≤ 2.) Therefore, i/(2k) ≤ lg n − lg k, which
implies that (assuming there is a hitting set of size k) the number of iterations i satisfies

i ≤ 2k lg
n

k
,

and therefore, if the algorithm runs for more than 2 lg(n/k) iterations, we know that there
cannot be a hitting set of size k. (At this point, the algorithm will double the value of k and
try again.)

The total running time is polynomial in n = |X| andm = |R|. There are at mostO(n log(n/k)) =
O(n log n) iterations. Each iteration involves the generation of an ε-net, which takes O(k log k)
time. Also, for each of the m sets of R, we take O(k log k) time to determine whether any of
the elements of S lie within this set. This takes O(km log k) = O(nm log n) time. Thus, the
overall running time is (crudely) O(n2m log2 n).

(Naive) Proof of ε-Sample Theorem: (Optional)

The proofs of the ε-Net and ε-Sample Theorems involve fairly straightforward applications
of probability theory, but since we have not built up the necessary probability-theoretic
background, it is not all that easy to present them. We will give a short (but not fully
accurate) justification of the ε-Sample Theorem, which is due to Har-Peled (who presents the
full proof in his book). This will give an idea of where the various expressions come from,
even though the proof is not fully rigorous.

Before giving the proof, we will need to make use of a standard result from probability theory.
This are well worth remembering, because it is used frequently in the analysis of randomized
algorithms. To begin, let Y1, . . . , Yn be a set of n Bernoulli trials, that is, a sequence of
independent “coin flips” having the value 1 with probability pi and value 0 with probability
qi = 1 − pi. Let Y =

∑
i Yi, and let µ = E[Y ] =

∑
i pi, be its expected value. Clearly, we

expect Y to be close to its expected value. What is the probability that it deviates from this
by, say, a factor of 1 ± δ (where δ is a value that we will select based on our needs). The
following result, called the Chernoff bound, credited to Herman Chernoff from 1952.

Theorem: (Chernoff Bound) For any δ > 2e− 1:

Pr[Y > (1 + δ)µ] < exp(−µδ2/4) and Pr[Y < (1− δ)µ] < exp(−µδ2/2).
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Suppose we have a range space (X,R) with VC-dimension d, and consider any range Q that
contains a fraction p of the points of X, where p ≥ 2ε. Consider any random sample S of s
points from X (sampling with replacement so that the probabilities of lying within r do not
change).

Let qi be the ith sample point, and let Yi be an indicator variable whose value is 1 if qi ∈ Q
and 0 otherwise. Clearly, (

∑
i Yi)/s is an estimate for p = |Q∩X|/|X|. To prove the ε-Sample

Theorem, we want to determine how many samples s we should take so that this estimate is
within a factor 1± ε of p with confidence at least 1− ϕ.

Observe that the number of points of X we expect to see in Q is µ = ps. A sample fails the
sampling theorem if the actual count differs from the expected value by at least εs, that is∣∣∣∣∣

s∑
i=1

Yi − µ

∣∣∣∣∣ > εs =
ε

p
ps = δµ,

where δ = ε/p. Letting Y =
∑s

i=1 Yi, this is equivalent to saying that Y either exceeds its
expected value µ by a factor of 1 + δ or falls short by a factor of 1 − δ. We can therefore
apply the Chernoff bound (combining both the upper and lower bounds), obtaining

Pr

[∣∣∣∣∣
s∑
i=1

Yi − µ

∣∣∣∣∣ > δµ

]
≤ Pr[Y < (1− δ)µ] + Pr[Y > (1 + δ)µ]

≤ exp(−µδ2/2) + exp(−µδ2/4)

≤ 2 exp

(
−µδ

2

4

)
= 2 exp

(
− ε

2

4p
s

)
.

We want this probability of a bad sample to be at most ϕ. If we set ϕ to this value and solve
for s, we obtain

s ≥ 4

ε2
ln

2

ϕ
≥ 4p

ε2
ln

2

ϕ
.

This is pretty close to the value given in the ε-Sample Theorem, but strangely we never made
use of the VC-dimension d. (Something must be wrong!) The problem with this proof is that
we only applied it to a single range Q. To generalize it to all ranges, we need work a bit
harder, and in doing so, we will introduce the VC-dimension. (We refer you to Har-Peled’s
book for the details.)

Lecture 20: Motion Planning

Motion planning: In this lecture we will discuss applications of computational geometry to the
problem of motion planning. This problem arises in robotics and in various areas where the
objective is to plan the collision-free motion of a moving agent in a complex environment.

Work Space and Configuration Space: The environment in which the robot operates is called
its work space, which consists of a domain in which the robot can move and a set of obstacles,
which the robot must avoid. Any overlap between the robot and an obstacle is called a
collision. We assume that the work space is static, that is, the obstacles do not move. We
also assume that a complete geometric description of the work space is available to us.
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For our purposes, a robot will be modeled by two main elements. The first is a configuration,
which is a finite sequence of values that fully specifies the position of the robot. The sec-
ond element is the robot’s geometric shape description (relative to some default placement).
Combined, these two elements fully define the robot’s exact position and shape in space.

For example, suppose that the robot is a triangle that can translate and rotate in the plane (see
Fig. 124(a)). Its configuration may be described by the (x, y) coordinates of some reference
point for the robot, and an angle θ that describes its orientation. Its geometric information
would include its shape (say at some canonical position), given, say, as a simple polygon.
Given its geometric description and a configuration (x, y, θ), this uniquely determines the
exact position R(x, y, θ) of this robot in the plane. Thus, the position of the robot can be
identified with a point in the robot’s configuration space.

R(0, 0, 0)

R(2, 3, 45◦)

(a)

θ1

θ2

θ3

(b)

Fig. 124: Configurations of a translating and rotating robot.

A more complex example would be an articulated arm consisting of a set of links, connected
to one another by a set of rotating joints. The configuration of such a robot might consist
of a vector of joint angles (θ1, . . . , θk) (see Fig. 124(b)). The geometric description would
probably consist of a geometric representation of the links. Given a sequence of joint angles,
the exact shape of the robot could be derived by combining this configuration information
with its geometric description. For example, a typical 3-dimensional industrial robot has six
joints, and hence its configuration can be thought of as a point in a 6-dimensional space. Why
six? Generally, there are three degrees of freedom needed to specify a location the (x, y, z)
coordinates of its location in 3-space, and 3 more degrees of freedom needed to specify the
direction and orientation of the robot’s end manipulator. Given a point p in the robot’s
configuration space, let R(p) denote the placement of the robot at this configuration (see
Fig. 124).

The problem of computing a collision-free path for the robot can be reduced to computing
a path in the robot’s configuration space. To distinguish between these, we use the term
work space to denote the (standard Euclidean) space where the robot and obstacles reside
(see Fig. 125(a)), and the configuration space to denote to the space in which each point
corresponds to the robot’s configuration (see Fig. 125(b)). Planning the motion of the robot
reduces to computing a path in configuration space.

A configuration that results in the robot to intersecting with one or more of the obstacles is
called a forbidden configuration. The set of all forbidden configurations is denoted Cforb(R, S).
All other placements are called free configurations, and the set of these configurations is
denoted Cfree(R, S), or free space.

Now consider the motion planning problem in robotics. Given a robotR, an work space S, and
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(a) (b)

Work space Configuration space

Fig. 125: (a) Translational motion in the work space amidst obstacles and (b) motion in the
configuration space amidst collision obstacles.

initial configuration s and final configuration t (both points in the robot’s free configuration
space), determine (if possible) a way to move the robot from one configuration to the other
without intersecting any of the obstacles. This reduces to the problem of determining whether
there is a path from s to t that lies entirely within the robot’s free configuration space. Thus,
we map the task of computing a robot’s motion to the problem of finding a path for a single
point through a collection of obstacles.

Configuration Obstacles: While motion occurs in the robot’s work space, we perform motion
planning in the robot’s configuration space. For example, given a 2-dimensional robot that
can translate and rotate amidst 2-dimensional polygonal objects, we determine collisions in
the 2-dimensional space. But our motion plan is a path in 3-dimensional (x, y, θ) space, where
(x, y) indicate the robot’s translation and θ gives its rotation (about the reference point).

In order to determine which configurations are free and forbidden, we need to determine
the meaning of an obstacle in configuration space. Let’s suppose that the work space is d-
dimensional and the configuration space is k-dimensional. Given an obstacle P ⊂ Rd, its
configuration obstacle or (or C-obstacles for short) is defined to be

CR(P ) = {p ∈ Rk : R(p) ∩ P 6= ∅}.

(Note that the configuration p is in Rk, but the determination of collision between R(p) and
P is done in the work space Rd.)
Configuration spaces are typically higher dimensional than the work space, and configuration
obstacles can be quite complex. When rotation is involved, they are bounded by curved
surfaces. The simplest case to visualize is that of translating a convex polygonal robot in the
plane amidst a collection of polygonal obstacles, since both the work space and configuration
space are two dimensional. Consider a reference point placed in the center of the robot. The
process of mapping to configuration space involves replacing the robot with a single point (its
reference point) and “growing” the obstacles by a compensating amount (see Fig. 125(b)).

For the rest of the lecture we will consider a very simple case of a convex polygonal robot that
is translating among a convex set of obstacles. Even this very simple problem has a number
of interesting algorithmic issues.
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Planning the Motion of a Point Robot: As mentioned above, we can reduce complex motion
planning problems to the problem of planning the motion of a point in free configuration
space. First we will consider the question of how to plan the motion of a point amidst a set
of obstacles, and then we will consider the question of how to construct configuration spaces.

s

t

s

t

(a) (b)

Fig. 126: Simple point motion planning through road maps.

Let us start with a very simple case in which the configuration space is 2-dimensional and the
objects are simple polygons, possibly with holes (see Fig. 126(a)). To determine whether there
is a path from one point s to another point t of free configuration space, we can subdivide
free space into simple convex regions. In the plane, we already know of one way to do this by
computing a trapezoidal map. We construct a trapezoidal map for all of the line segments
bounding the obstacles, then throw away any trapezoids that lie in the forbidden space (see
Fig. 126(b)). We also assume that we have a point location data structure for the trapezoidal
map.

Next, we create a planar graph, called a road map, based on this subdivision. To do this we
create a vertex in the center of each trapezoid and a vertex at the midpoint of each vertical
edge. We create edges joining each center vertex to the vertices on its (at most four) edges.

Now to answer the motion planning problem, we assume we are given the start point s and
destination point t. We locate the trapezoids containing these two points, and connect them
to the corresponding center vertices. We can join them by a straight line segment, because
the cells of the subdivision are convex. Then we determine whether there is a path in the
road map graph between these two vertices, say by breadth-first search. Note that this will
not necessarily produce the shortest path, but if there is a path from one position to the
other, it will find it.

Practical Considerations: While the trapezoidal map approach guarantees correctness, it is
rather limited. If the configuration space is 2-dimensional, but the configuration obstacles
have curved boundaries, we can easily extend the trapezoidal map approach, but we will
generally need to insert walls at points of vertical tangency.

Higher-dimensional spaces pose a much bigger problem (especially when combined with
curved boundaries). There do exist subdivision methods (one is called the Collins cylin-
drical algebraic decomposition, which can be viewed as a generalization of the trapezoidal
map to higher dimensions and curved surfaces), but such subdivisions often can have high
combinatorial complexity. Most practical road map-based approaches dispense with com-
puting the subdivision, and instead simply generate a large random sample of points in free
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space. The problem is that if no path is found, who is to blame? Is there really no path, or
did we simply fail to sample enough points? The problem is most extreme when the robot
needs to navigate through a very narrow passage.

Another widely used heuristic is called the rapidly-exploring random tree (RRT). These trees
provide a practical approach to sampling the configuration space and building a tree-based
road map. While this method has good practical value, it can also fail when tight squeezes
are necessary.

C-Obstacles via Minkowski Sums: Let us consider how to build a configuration space for a set
of polygonal obstacles. We consider the simplest case of translating a convex polygonal robot
amidst a collection of convex obstacles. If the obstacles are not convex, then we may subdivide
them into convex pieces. One way to visualize CR(P ) is to imagine “scraping” R along the
boundary of P and seeing the region traced out by R’s reference point (see Fig. 127(a)).

P

Q

P ⊕Q

p

q

p + q

(b)(a)

P

R

C(P )

Fig. 127: Minkowski sum of two polygons.

Given R and P , how do we compute the configuration obstacle CR(P )? To do this, we first
introduce the notion of a Minkowski sum. Let us think of points in the plane as vectors.
Given any two sets P and Q in the plane, define their Minkowski sum to be the set of all
pairwise sums of points taken from each set (see Fig. 127(b)), that is,

P ⊕Q = {p+ q : p ∈ P, q ∈ Q}.

Also, define −S = {−p : p ∈ S}. (Intuitively, we are reflecting S through the origin.) We
introduce the shorthand notation R⊕ p to denote R⊕ {p}. Observe that the translate of R
by vector p is R(p) = R⊕ p. The relevance of Minkowski sums to C-obstacles is given in the
following claim.

Lemma: Given a translating robot R and an obstacle P , CR(P ) = P ⊕ (−R) (see Fig. 128).

Proof: Consider any translation vector t. Observe that t ∈ CR(P ) iff R(t) intersects P ,
which is true iff there exist r ∈ R and p ∈ P such that p = r+ t (see Fig. 128(a)), which
is true iff there exist −r ∈ −R and p ∈ P such that t = p+(−r) (see Fig. 128(b)), which
is equivalent to saying that t ∈ P ⊕ (−R). Therefore, t ∈ CR(P ) iff t ∈ P ⊕ (−R), which
means that CR(P ) = P ⊕ (−R), as desired.

It is an easy matter to compute −R in linear time (by simply negating all of its vertices) the
problem of computing the C-obstacle CR(P ) reduces to the problem of computing a Minkowski
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P

R

C(P )

P

−R

P ⊕ (−R)

R

p

q

r

−r

p

q

Fig. 128: Configuration obstacles and Minkowski sums.

sum of two convex polygons. We’ll show next that this can be done in O(m+n) time, where
m is the number of vertices in R and n is the number of vertices in P .

Note that the above proof made no use of the convexity of R or P . It works for any shapes
and in any dimension. However, computation of the Minkowski sums is most efficient for
convex polygons.

Computing the Minkowski Sum of Convex Polygons: Let’s consider how to compute P⊕R
for two convex polygons P and R, having m and n vertices, respectively. The algorithm is
based on the following observation. Given a vector u, We say that a point p is extreme in
direction u if it maximizes the dot product p ·u (equivalently, a support line perpendicular to
u passes through p with the outward normal u). The following observation is easy to prove
by the linearity of the dot product.

Observation: Given two polygons P and R, the set of extreme points of P ⊕R in direction
u is the set of sums of points p and r that are extreme in direction u for P and R,
respectively.

This observation motivates an algorithm for computing P ⊕R. We perform an angular sweep
by sweeping a unit vector u counterclockwise around a circle. As u rotates, it is an easy matter
to maintain the vertex or edge of P and R that is extreme in this direction. Whenever u is
perpendicular to an edge of either P or R, we add this edge to the vertex of the other polygon.
The algorithm is given in the text, and is illustrated in the figure below. The technique of
applying one or more angular sweeps to a convex polygon is called the method of rotating
calipers.

P

R
u

u

e

r

e⊕ r

P ⊕R

u

u

Fig. 129: Computing Minkowski sums.
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Assuming P and R are convex, observe that each edge of P and each edge of R contributes
exactly one edge to P ⊕R. (If two edges are parallel and on the same side of the polygons,
then these edges will be combined into one edge, which is as long as their sum.) Thus we
have the following.

Claim: Given two convex polygons, P and R, with n and m edges respectively, their Min-
kowski sum P ⊕ R can be computed in O(n + m) time, and consist of at most n + m
edges.

Complexity of Minkowski Sums: We have shown that free space for a translating robot is the
complement of a union of C-obstacles CR(P )i, each of which is a Minkowski sum of the form
Pi ⊕R, where Pi ranges over all the obstacles in the environment. If Pi and R are polygons,
then the resulting region will be a union of polygons. How complex might this union be, that
is, how many edges and vertices might it have?

To begin with, let’s see just how bad things might be. Suppose you are given a robot R
with m sides and a set of work-space obstacle P with n sides. How many sides might the
Minkowski sum P⊕R have in the worst case? O(n+m)? O(nm), even more? The complexity
generally depends on what special properties if any P and R have.

Nonconvex Robot and Nonconvex Obstacles: Suppose that bothR and P are (possibly non-
convex) simple polygons. Let m be the number of sides of R and n be the number of sides of
P . How many sides might there be in the Minkowski sum P ⊕R in the worst case? We can
derive a quick upper bound as follows. First observe that if we triangulate P , we can break
it into the union of at most n− 2 triangles. That is:

P =
n−2⋃
i=1

Ti and R =
m−2⋃
j=1

Sj .

It follows that

P ⊕R =
n−2⋃
i=1

m−2⋃
j=1

(Ti ⊕ Sj).

Thus, the Minkowski sum is the union of O(nm) polygons, each of constant complexity. Thus,
there are O(nm) sides in all of these polygons. The arrangement of all of these line segments
can have at most O(n2m2) intersection points (if each side intersects with each other), and
hence this is an upper bound on the number of vertices in the final result.

Could the complexity really be this high? Yes it could. Consider the two polygons in
Fig. 130(a). Suppose that P and R have m and n “teeth”, respectively. For each of in-
dependent choice of two teeth of P (one from the top and one from the side), and two gaps
from R (one from the top and one from the side), there is a valid placement where these
teeth fit within these gaps (see the arrows in Fig. 130(a)). However, as can be seen from the
figure, it is impossible to move from one of these to another by translation without causing a
collision. It follows that there are Ω(n2m2) connected components of the free configuration
space, or equivalently in P ⊕−R (see Fig. 130(b)).

You might protest that this example is not fair. While it is true that there are many compo-
nents in the Minkowski sum, motion planning takes place within a single connected component
of free space, and therefore the quantity that is really of interest is the (worst-case) combi-
natorial complexity of any single connected component of free space. (In the example above,
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R

P
Work space Configuration space

(a) (b)

Fig. 130: Minkowski sum (simple-simple) of O(n2m2) complexity.

all the components were of constant complexity.) This quantity is complicated to bound for
general shapes, but later we will show that it can be bounded for convex shapes.

As a final observation, notice that the upper bound holds even if P (and R for that matter)
is not a single simple polygon, but any union of n triangles.

Convex Robot and Nonconvex Obstacles: We have seen that the worst-case complexity of
the Minkowski sum might range from O(n+m) to as high as O(n2m2), which is quite a gap.
Let us consider an intermediate but realistic situation. Suppose that we assume that P is an
arbitrary n-sided simple polygon, and R is a convex m-sided polygon. Typically m is much
smaller than n. What is the combinatorial complexity of P ⊕R in the worst case? As before
we can observe that P can be decomposed into the union of n− 2 triangles Ti, implying that

P ⊕R =
n−2⋃
i=1

(Ti ⊕R).

Each Minkowski sum in the union is of complexity m+ 3. So the question is how many sides
might there be in the union of O(n) convex polygons each with O(m) sides? We could derive
a bound on this quantity, but it will give a rather poor bound on the worst-case complexity.
To see why, consider the limiting case of m = 3. We have the union of n convex objects,
each of complexity O(1). This could have complexity as high as Ω(n2), as seen by generating
a criss-crossing pattern of very skinny triangles. But, if you try to construct such a counter
example, you won’t be able to do it.

To see why such a counterexample is impossible, suppose that you start with nonintersecting
triangles, and then take the Minkowski sum with some convex polygon. The claim is that it is
impossible to generate this sort of criss-cross arrangement. So how complex an arrangement
can you construct? We will show the following later in the lecture.

Theorem: Let R be a convex m-gon and P and simple n-gon, then the Minkowski sum
P ⊕R has total complexity O(nm).

Is O(nm) an attainable bound? The idea is to go back to our analogy of “scraping” R around
the boundary of P . Can we arrange P such that most of the edges of R scrape over most of
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the n vertices of P? Suppose that R is a regular convex polygon with m sides, and that P
has a comb-like structure where the teeth of the comb are separated by a distance at least
as large as the diameter of R (see Fig. 131(a)). In this case R will have many sides scrape
across each of the pointy ends of the teeth, implying that the final Minkowski sum will have
total complexity Ω(nm) (see Fig. 131(b)).

(a) (b)

R P P ⊕R

Fig. 131: Minkowski sum (simple-convex) of O(nm) complexity.

The Union of Pseudodisks: Consider a translating robot given as an m-sided convex polygon
and a collection of polygonal obstacles having a total of n vertices. We may assume that the
polygonal obstacles have been triangulated into at most n triangles, and so, without any loss
of generality, let us consider an instance of an m-sided robot translating among a set of n
triangles. As argued earlier, each C-obstacle has O(3+m) = O(m) sides, for a total of O(nm)
line segments. A naive analysis suggests that this many line segments might generate as many
as O(n2m2) intersections, and so the complexity of the free space can be no larger. However,
we assert that the complexity of the space will be much smaller, in fact its complexity will
be O(nm).

oi oj oj \ oi

oi \ oj

Pseudodisks
oi oj

oj \ oi

oi \ oj

Not pseudodisks

Fig. 132: Pseudodisks.

To show that O(nm) is an upper bound, we need some way of extracting the special geometric
structure of the union of Minkowski sums. Recall that we are computing the union of Ti⊕R,
where the Ti’s have disjoint interiors. A set of convex objects {o1, . . . , on} is called a collection
of pseudodisks if for any two distinct objects oi and oj both of the set-theoretic differences
oi\oj and oj\oi are connected (see Fig. 132). If this is violated for any two objects, we say
that these two objects have a crossing intersection. Note that the pseudodisk property is not
a property of a single object, but a property that holds for a set of objects.

Lemma 1: Given a set convex objects T1, . . . , Tn with disjoint interiors, and convex R, then

{Ti ⊕R | 1 ≤ i ≤ n}

is a collection of pseudodisks (see Fig. 133).
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(b)(a)

R

Ti Ti ⊕R

Fig. 133: Lemma 1.

Proof: Consider two polygons T1 and T2 with disjoint interiors. We want to show that T1⊕R
and T2 ⊕ R do not have a crossing intersection. Given any directional unit vector u,
the most extreme point of R in direction u is the point r ∈ R that maximizes the dot
product (u·r). (Recall that we treat the “points” of the polygons as if they were vectors.)
The point of T1 ⊕R that is most extreme in direction u is the sum of the points t and
r that are most extreme for T1 and R, respectively.

Given two convex polygons T1 and T2 with disjoint interiors, they define two outer tan-
gents, as shown in the figure below. Let u1 and u2 be the outward pointing perpendicular
vectors for these tangents. Because these polygons do not intersect, it follows easily that
as the directional vector rotates from u1 to u2, T1 will be the more extreme polygon,
and from u2 to u1 T2 will be the more extreme (see Fig. 134).

u1

u2

T2 extreme

T1 extreme u1

u2

(a) (b)

T1
T2

Fig. 134: Alternation of extremes.

Now, if to the contrary T1 ⊕ R and T2 ⊕ R had a crossing intersection, then observe
that we can find points p1 p2, p3, and p4, in cyclic order around the boundary of the
convex hull of (T1 ⊕R) ∪ (T2 ⊕R) such that p1, p3 ∈ T1 ⊕R and p2, p4 ∈ T2 ⊕R. First
consider p1. Because it is on the convex hull, consider the direction u1 perpendicular
to the supporting line here. Let r, t1, and t2 be the extreme points of R, T1 and T2 in
direction u1, respectively. From our basic fact about Minkowski sums we have

p1 = r + t1 p2 = r + t2.

Since p1 is on the convex hull, it follows that t1 is more extreme than t2 in direction u1,
that is, T1 is more extreme than T2 in direction u1. By applying this same argument, we
find that T1 is more extreme than T2 in directions u1 and u3, but that T2 is more extreme
than T1 in directions u2 and u4. But this is impossible, since from the observation
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above, there can be at most one alternation in extreme points for nonintersecting convex
polygons (see Fig. 135).

(a) (b)

T2 ⊕R
T1 ⊕R

u2

u1
u4

u3

u2

u1u4

u3

T1 extreme

T2 extremeT1 extreme

T2 extreme

Fig. 135: Proof of Lemma 1.

Lemma 2: Given a collection of polygonal pseudodisks, with a total of n vertices, the com-
plexity of their union is O(n).

Proof: This is a rather cute combinatorial lemma. We are given some collection of polygonal
pseudodisks, and told that altogether they have n vertices. We claim that their entire
union has complexity O(n). (Recall that in general the union of n convex polygons
can have complexity O(n2), by criss-crossing.) The proof is based on a clever charging
scheme. Each vertex in the union will be charged to a vertex among the original pseu-
dodisks, such that no vertex is charged more than twice. This will imply that the total
complexity is at most 2n.

There are two types of vertices that may appear on the boundary. The first are vertices
from the original polygons that appear on the union. There can be at most n such
vertices, and each is charged to itself. The more troublesome vertices are those that
arise when two edges of two pseudodisks intersect each other. Suppose that two edges
e1 and e2 of pseudodisks P1 and P2 intersect along the union. Follow edge e1 into the
interior of the pseudodisk e2. Two things might happen. First, we might hit the endpoint
v of this e1 before leaving the interior P2. In this case, charge the intersection to v (see
Fig. 136(a)). Note that v can be assessed at most two such charges, one from either
incident edge. If e1 passes all the way through P2 before coming to the endpoint, then
try to do the same with edge e2. Again, if it hits its endpoint before coming out of P1,
then charge to this endpoint (see Fig. 136(b)).

But what do we do if both e1 shoots straight through P2 and e2 shoots straight through
P1? Now we have no vertex to charge. This is okay, because the pseudodisk property
implies that this cannot happen. If both edges shoot completely through, then the two
polygons must have a crossing intersection (see Fig. 136(c)).

Recall that in our application of this lemma, we have n C-obstacles, each of which has at
most m + 3 vertices, for a total input complexity of O(nm). Since they are all pseudodisks,
it follows from Lemma 2 that the total complexity of the free space is O(nm).
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Fig. 136: Proof of Lemma 2.

Supplemental Lectures
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Lecture 21: Geometric Basics

Geometry Basics: As we go through the semester, we will introduce much of the geometric facts
and computational primitives that we will be needing. For the most part, we will assume that
any geometric primitive involving a constant number of elements of constant complexity can
be computed in O(1) time, and we will not concern ourselves with how this computation is
done. (For example, given three non-collinear points in the plane, compute the unique circle
passing through these points.) Nonetheless, for a bit of completeness, let us begin with a
quick review of the basic elements of affine and Euclidean geometry.

There are a number of different geometric systems that can be used to express geometric
algorithms: affine geometry, Euclidean geometry, and projective geometry, for example. This
semester we will be working almost exclusively with affine and Euclidean geometry. Before
getting to Euclidean geometry we will first define a somewhat more basic geometry called
affine geometry. Later we will add one operation, called an inner product, which extends
affine geometry to Euclidean geometry.

Affine Geometry: An affine geometry consists of a set of scalars (the real numbers), a set of
points, and a set of free vectors (or simply vectors). Points are used to specify position. Free
vectors are used to specify direction and magnitude, but have no fixed position in space.
(This is in contrast to linear algebra where there is no real distinction between points and
vectors. However this distinction is useful, since the two are conceptually quite different.)

The following are the operations that can be performed on scalars, points, and vectors. Vector
operations are just the familiar ones from linear algebra. It is possible to subtract two points.
The difference p− q of two points results in a free vector directed from q to p (see Fig. 137).
It is also possible to add a point to a vector. In point-vector addition p + v results in the
point which is translated by v from p. Letting S denote an generic scalar, V a generic vector
and P a generic point, the following are the legal operations in affine geometry:

S · V → V scalar-vector multiplication

V + V → V vector addition

P − P → V point subtraction

P + V → P point-vector addition

~u
~v

~u + ~v

vector addition point subtraction

q

p

p− q

point subtraction

p

~v

p + ~v

Fig. 137: Affine operations.

A number of operations can be derived from these. For example, we can define the subtraction
of two vectors ~u− ~v as ~u+ (−1) · ~v or scalar-vector division ~v/α as (1/α) · ~v provided α 6= 0.
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There is one special vector, called the zero vector, ~0, which has no magnitude, such that
~v +~0 = ~v.

Note that it is not possible to multiply a point times a scalar or to add two points together.
However there is a special operation that combines these two elements, called an affine com-
bination. Given two points p0 and p1 and two scalars α0 and α1, such that α0 + α1 = 1, we
define the affine combination

aff(p0, p1;α0, α1) = α0p0 + α1p1 = p0 + α1(p1 − p0).

Note that the middle term of the above equation is not legal given our list of operations. But
this is how the affine combination is typically expressed, namely as the weighted average of
two points. The right-hand side (which is easily seen to be algebraically equivalent) is legal.
An important observation is that, if p0 6= p1, then the point aff(p0, p1;α0, α1) lies on the line
joining p0 and p1. As α1 varies from −∞ to +∞ it traces out all the points on this line (see
Fig. 138).

p
r = p + 2

3(q − p)

q

p
1
3p +

2
3q

q

p

q

α < 0

0 < α < 1

α > 1(1− α)p + αq

Fig. 138: Affine combination.

In the special case where 0 ≤ α0, α1 ≤ 1, aff(p0, p1;α0, α1) is a point that subdivides the line
segment p0p1 into two subsegments of relative sizes α1 to α0. The resulting operation is called
a convex combination, and the set of all convex combinations traces out the line segment p0p1.

It is easy to extend both types of combinations to more than two points, by adding the
condition that the sum α0 + α1 + α2 = 1.

aff(p0, p1, p2;α0, α1, α2) = α0p0 + α1p1 + α2p2 = p0 + α1(p1 − p0) + α2(p2 − p0).

The set of all affine combinations of three (non-collinear) points generates a plane. The set
of all convex combinations of three points generates all the points of the triangle defined by
the points. These shapes are called the affine span or affine closure, and convex closure of
the points, respectively.

Euclidean Geometry: In affine geometry we have provided no way to talk about angles or dis-
tances. Euclidean geometry is an extension of affine geometry which includes one additional
operation, called the inner product, which maps two real vectors (not points) into a nonneg-
ative real. One important example of an inner product is the dot product, defined as follows.
Suppose that the d-dimensional vectors ~u and ~v are represented by the (nonhomogeneous)
coordinate vectors (u1, u2, . . . , ud) and (v1, v2, . . . , vd). Define

~u · ~v =

d∑
i=1

uivi,

The dot product is useful in computing the following entities.

Length: of a vector ~v is defined to be ‖~v‖ =
√
~v · ~v.
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Normalization: Given any nonzero vector ~v, define the normalization to be a vector of unit
length that points in the same direction as ~v. We will denote this by v̂:

v̂ =
~v

‖~v‖
.

Distance between points: Denoted either dist(p, q) or ‖pq‖ is the length of the vector
between them, ‖p− q‖.

Angle: between two nonzero vectors ~u and ~v (ranging from 0 to π) is

ang(~u,~v) = cos−1

(
~u · ~v
‖~u‖‖~v‖

)
= cos−1(û · v̂).

This is easy to derive from the law of cosines.

Orientation of Points: In order to make discrete decisions, we would like a geometric operation
that operates on points in a manner that is analogous to the relational operations (<,=, >)
with numbers. There does not seem to be any natural intrinsic way to compare two points in
d-dimensional space, but there is a natural relation between ordered (d+ 1)-tuples of points
in d-space, which extends the notion of binary relations in 1-space, called orientation.

Given an ordered triple of points 〈p, q, r〉 in the plane, we say that they have positive orienta-
tion if they define a counterclockwise oriented triangle, negative orientation if they define a
clockwise oriented triangle, and zero orientation if they are collinear, which includes as well
the case where two or more of the points are identical (see Fig. 139). Note that orientation
depends on the order in which the points are given.

p

q
r

p

q

r

positive negative zero zero

p
q

r

p = r

q

Fig. 139: Orientations of the ordered triple (p, q, r).

Orientation is formally defined as the sign of the determinant of the points given in homoge-
neous coordinates, that is, by prepending a 1 to each coordinate. For example, in the plane,
we define

Orient(p, q, r) = det

 1 px py
1 qx qy
1 rx ry

 .

Observe that in the 1-dimensional case, Orient(p, q) is just q−p. Hence it is positive if p < q,
zero if p = q, and negative if p > q. Thus orientation generalizes <,=, > in 1-dimensional
space. Also note that the sign of the orientation of an ordered triple is unchanged if the points
are translated, rotated, or scaled (by a positive scale factor). A reflection transformation,
e.g., f(x, y) = (−x, y), reverses the sign of the orientation. In general, applying any affine
transformation to the point alters the sign of the orientation according to the sign of the
matrix used in the transformation.
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This generalizes readily to higher dimensions. For example, given an ordered 4-tuple points
in 3-space, we can define their orientation as being either positive (forming a right-handed
screw), negative (a left-handed screw), or zero (coplanar). It can be computed as the sign of
the determinant of an appropriate 4 × 4 generalization of the above determinant. This can
be generalized to any ordered (d+ 1)-tuple of points in d-space.

Areas and Angles: The orientation determinant, together with the Euclidean norm can be used
to compute angles in the plane. This determinant Orient(p, q, r) is equal to twice the signed
area of the triangle 4pqr (positive if CCW and negative otherwise). Thus the area of the
triangle can be determined by dividing this quantity by 2. In general in dimension d the area
of the simplex spanned by d + 1 points can be determined by taking this determinant and
dividing by d! = d · (d− 1) · · · 2 · 1. Given the capability to compute the area of any triangle
(or simplex in higher dimensions), it is possible to compute the volume of any polygon (or
polyhedron), given an appropriate subdivision into these basic elements. (Such a subdivision
does not need to be disjoint. The simplest methods that I know of use a subdivision into
overlapping positively and negatively oriented shapes, such that the signed contribution of
the volumes of regions outside the object cancel each other out.)

Recall that the dot product returns the cosine of an angle. However, this is not helpful for
distinguishing positive from negative angles. The sine of the angle θ = ∠pqr (the signed
angled from vector p− q to vector r − q) can be computed as

sin θ =
Orient(q, p, r)

‖p− q‖ · ‖r − q‖
.

(Notice the order of the parameters.) By knowing both the sine and cosine of an angle we
can unambiguously determine the angle.

Topology Terminology: Although we will not discuss topology with any degree of formalism,
we will need to use some terminology from topology. These terms deserve formal definitions,
but we are going to cheat and rely on intuitive definitions, which will suffice for the simple,
well behaved geometric objects that we will be dealing with. Beware that these definitions
are not fully general, and you are referred to a good text on topology for formal definitions.

For our purposes, for r > 0, define the r-neighborhood of a point p to be the set of points
whose distance to p is strictly less than r, that is, it is the set of points lying within an open
ball of radius r centered about p. Given a set S, a point p is an interior point of S if for some
radius r the neighborhood about p of radius r is contained within S. A point is an exterior
point if it lies in the interior of the complement of S. A points that is neither interior nor
exterior is a boundary point. A set is open if it contains none of its boundary points and
closed if its complement is open. If p is in S but is not an interior point, we will call it a
boundary point.

We say that a geometric set is bounded if it can be enclosed in a ball of finite radius. A set
is compact if it is both closed and bounded.

In general, convex sets may have either straight or curved boundaries and may be bounded
or unbounded. Convex sets may be topologically open or closed. Some examples are shown
in Fig. 140. The convex hull of a finite set of points in the plane is a bounded, closed, convex
polygon.
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neighborhood open closed unbounded

rp interior

exterior
boundary

Fig. 140: Terminology.

Lecture 22: Computing Slope Statistics

Slope Statistics: Imagine that a medical experiment is run, where the therapeutic benefits of a
certain treatment regimen is being studied. A set of n points in real 2-dimensional space, R2,
is given. We denote this set by P = {p1, . . . , pn}, where pi = (ai, bi), where ai indicates the
amount of treatment and bi indicates the therapeutic benefit (see Fig. 141(a)). The hypothesis
is that increasing the amount of treatment by ∆a units results in an increase in therapeutic
benefit of ∆b = s(∆a), where s is an unknown scale factor.

pi

pj

aj − ai

bj − bi

si,j =
bj−bi
aj−ai

maximumminimum

8th smallest slope

slopeslope
minimum

slope
minimum

slope
minimum

slope

(b) (c)(a)

a

b

∆a

∆b

Fig. 141: (a) Slope analysis, (b) the slope si,j , and (c) the slope set S = {si,j | 1 ≤ i < j ≤ n}.

In order to study the properties of s, a statistician considers the set of slopes of the lines
joining pairs of a points (since each slope represents the increase in benefit for a unit increase
in the amount of treatment). For 1 ≤ i < j ≤ n, define

si,j =
bj − bi
aj − ai

,

(see Fig. 141(b)). So that we don’t need to worry about infinite slopes, let us make the
simplifying assumption that the a-coordinates of the points are pairwise distinct, and to
avoid ties, let us assume that the slopes are distinct. Let S = {si,j | 1 ≤ i < j ≤ n}. Clearly
|S| =

(
n
2

)
= n(n−1)/2 = O(n2). Although the set S of slopes is of quadratic size, it is defined

by a set of n points. Thus, a natural question is whether we can answer statistical questions
about the set S in time O(n) or perhaps O(n log n), rather than the obvious O(n2) time.

Here are some natural questions we might ask about the set S (see Fig. 141(c)):

Min/Max: Compute the minimum or maximum slope of S.

k-th Smallest: Compute the k-smallest element of S, given any k, 1 ≤ k ≤
(
n
2

)
.

Average: Compute the average of the elements of S. (This problem has been shown to
be solvable in O(n log2 n) time by D. Ajwani, S. Ray, R. Seidel, H. R. Tiwary, “On
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Computing the Centroid of the Vertices of an Arrangement and Related Problems”,
WADS 2007.)

Range counting: Given a pair of reals s− ≤ s+, return a count of the number of elements
of S that lie in the interval [s−, s+].

Counting Negative Slopes and Inversions: In this lecture we will consider the last problem,
that is, counting the number of slopes that lie within a given interval [s−, s+]. Before con-
sidering the general problem, let us consider a simpler version by considering the case where
s− = 0 and s+ = +∞. In other words, we will count the number of pairs (i, j) where si,j
is nonnegative. This problem is interesting statistically, because it represents the number of
instances in which increasing the amount of treatment results in an increase in the therapeutic
benefit.

Our approach will be to count the number of pairs such that si,j is strictly negative. There
is no loss of generality in doing this, since we can simply subtract the count from

(
n
2

)
to

obtain the number of nonnegative slopes. (The reason for this other formulation is that it
will allow us to introduce the concept of inversion counting, which will be useful for the
general problem.) It will simplify the presentation to make the assumption that the sets of
a-coordinates and b-coordinates are distinct.

Suppose we begin by sorting the points of P in increasing order by their a-coordinates. Let
P = 〈p1, . . . , pn〉 be the resulting ordered sequence, and let B = 〈b1, . . . , bn〉 be the associated
sequence of b-coordinates. Observe that, for 1 ≤ i < j ≤ n, bi > bj if and only if si,j is
negative. For 1 ≤ i < j ≤ n, we say that the pair (i, j) is an inversion for B if bi > bj .
Clearly, our task reduces to counting the number of inversions of B (see Fig. 142(a)).

(a) (b)

7 negative slopes

i j

52143 6

1 2 3 4 5 6

3 inversions
B1[i] (6) induces

B1: B2:

M :

15 slopes6 points

a1 a2 a3 a4

b1
b6

b4
b3

a5 a6

b2

b5 7 inversions

Fig. 142: Inversion counting and application to counting negative slopes.

Inversion Counting: Counting the number of inversions in a sequence of n numbers is a simple
exercise, which can be solved in O(n log n) time. Normally, such exercises will be left for you
to do, but since this is the first time to present an algorithm, let’s do it in full detail.

The algorithm is a simple generalization of the MergeSort algorithm. Recall that MergeSort
is a classical example of divide-and-conquer. The sequence is split (e.g., down the middle)
into a left and right subsequence, denoted B1 and B2, each of size roughly n/2. These two
subsequences are sorted recursively, and then the resulting sorted sequences are then merged
to form the final sorted sequence.

To generalize this to inversion counting, in addition to returning the sorted subsequences, the
recursive calls return the counts I1 and I2 of the inversions within each of the subsequences.
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In the merging process we count the inversions I that occur between the two subsequences.
That is, for each element of B1, we compute the number of smaller elements in B2, and add
these to I. In the end, we return the total number of inversions, I1 + I2 + I.

The algorithm is presented in the code block below. To merge the subsequences, we maintain
two indices i and j, which indicate the current elements of the respective subsequences B1 and
B2. We repeatedly22 copy the smaller of B1[i] and B2[j] to the merged sequence M . Because
both subsequences are sorted, when we copy B1[i] to M , B1[i] is inverted with respect to the
elements B2[1 . . . j− 1], whose values are smaller than it (see Fig. 142(b)). Therefore, we add
j − 1 to the count I of inversions.

The main loop stops either when i or j exceeds the number of elements in its subsequence.
When we exit, one of the two subsequences is exhausted. We append the remaining elements
of the other subsequence to M . In particular, if i ≤ |B1|, we append the remaining |B1|−i+1
elements of B1 to M . Since these elements are all larger than any element of B2, we add
(|B1| − i+ 1)|B2| to the inversion counter. (When copying the remaining elements from B2,
there is no need to modify the inversion counter.) See the code block below for the complete
code.

Inversion Counting

InvCount(B) [Input: a sequence B; Output: sorted sequence M and inversion count I.]

(0) If |B| ≤ 1 then return an inversion count of zero;

(1) Split B into disjoint subsets B1 and B2, each of size at most dn/2e, where n = |B|;
(2) (B1, I1)← InvCount(B1);

(B2, I2)← InvCount(B2);

(3) Let i← j ← 1; I ← 0; M ← ∅;
(4) While (i ≤ |B1| and j ≤ |B2|)

(a) if (B1[i] ≤ B2[j]) append B1[i++] to M and I ← I + (j − 1);

(b) else append B2[j++] to M ;

On exiting the loop, either i > |B1| or j > |B2|.
(5) If i ≤ |B1|, append B1[i . . . ] to M and I ← I + (|B1| − i+ 1)|B2|;
(6) Else (we have j ≤ |B2|), append B2[j . . . ] to M ;

(7) return (M, I1 + I2 + I);

The running time exactly matches that of MergeSort. It obeys the well known recurrence
T (n) = 2T (n/2) + n, which solves to O(n log n).

By combining this with the above reduction from slope range counting over negative slopes,
we obtain an O(n log n) time algorithm for counting nonnegative slopes.

General Slope Range Counting and Duality: Now, let us consider the general range counting
problem. Let [s−, s+] be the range of slopes to be counted. It is possible to adapt the
above inversion-counting approach, subject to an appropriate notion of “order”. In order to
motivate this approach, we will apply a geometric transformation that converts the problem
into a form where this order is more apparent. This transformation, called point-line duality
will find many uses later in the semester.

To motivate duality, observe that a point in R2 is defined by two coordinates, say (a, b). A
nonvertical line line in R2 can also be defined by two parameters, a slope and y-intercept.

22More formally, we maintain the invariant that B1[i] > B2[j′] for 1 ≤ j′ ≤ j−1 and B2[j] ≥ B1[i′] for 1 ≤ i′ ≤ i−1.
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In particular, we associate a point p = (a, b) with the line y = ax − b, whose slope is a and
whose y-intercept is −b. This line is called p’s dual and is denoted by p∗. (The reason for the
negating the intercept will become apparent shortly.) Similarly, given any nonvertical line in
R2, say ` : y = ax− b, we define its dual to be the point `∗ = (a, b). Note that the dual is a
involutory (self-inverse) mapping, in the sense that (p∗)∗ = p and (`∗)∗ = `.

Later in the semester we will discuss the various properties of the dual transformation. For
now, we need only a property. Consider two points pi = (ai, bi) and pj = (aj , bj). The
corresponding dual lines are p∗i : y = aix − bi and p∗j : y = ajx − bj , respectively. Assuming
that ai 6= aj (that is, the lines are not parallel), we can compute the x-coordinate of their
intersection point by equating the right-hand sides of these two equations, which yields

aix− bi = ajx− bj ⇒ x =
bj − bi
aj − ai

.

Interestingly, this is just si,j . In other words, we have the following nice relationship: Given
two points, the x-coordinate of the intersection of their dual lines is the slope of the line
passing through the points (see Fig. 143). (The reason for negating the b coordinate is now
evident. Otherwise, we would get the negation of the slope.)

(a) (b)

ai aj

bi

bj
si,j =

bj−bi
aj−ai

si,j =
bj−bi
aj−ai

p∗j : y = ajx− bj

p∗i : y = aix− bi
pj

pi
x

y

Fig. 143: Point-line duality and the relationship between the slope of a line between two points
and the x-coordinate of the duals of the two points.

Slope Range Counting in the Dual: Based on the above observations, we see that the problem
of counting the slopes of S that lie within the interval [s−, s+] can be reinterpreted in the
following equivalent form. Given a set of n nonvertical lines in R2 and given an interval
[s−, s+], count the pairs of lines whose intersections lie within the vertical slab whose left side
is x = s− and whose right side is s+ (see Fig. 144(a)).

How can we count the number of such intersection points efficiently? Again, this can be done
through inversion counting. To see this, observe that two lines intersect within the slab if
and only if the order of their intersection with the left side of the slab is the inverse of their
intersection with the right side of the slab.

We can reduce the problem to inversion counting, therefore, as follows. First, consider the
order in which the lines intersect the left side of the slab (taken from top to bottom). In
particular, the line y = aix− bi intersects at the point y = ais

−− bi. Sort the lines according
in decreasing order of these y-coordinates, thus obtaining the order from top to bottom, and
renumber them from 1 to n according to this order (see Fig. 144(a)). Next, compute the
order in which the (renumbered) lines intersect the right side of the slab. In particular, line
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Fig. 144: Intersections in the vertical slab [s−, s+] and inversion counting.

i is associated with the value y = ais
+ − bi. Letting Y = 〈y1, . . . , yn〉 denote the resulting

sequence, it is easy to see that the number of inversions in −Y is equal to the number of pairs
of lines that intersect within the slab. The time to compute the intersection along the left
side and sort according to this order is O(n log n), and the time to compute the intersections
with the right side and count the inversions is also O(n log n). Therefore, the total running
time is O(n log n).

Negative Slope Range Counting Revisited: By the way, you might wonder what the earlier
instance of counting negative slopes maps to in this instance. In this case the interval is
[−∞, 0]. Observe that a vertical line at x = −∞ (from top to bottom) intersects the lines in
increasing order of slope, or equivalently, in order of a-coordinates. Thus, sorting the points
from top to bottom order by their intersection with s− = −∞ is equivalent to the sorting by
a-coordinates, which is just what we we did in the case of negative slopes.

The right side of the slab is determined by the top-to-bottom order of intersections of the
lines with vertical line at x = 0. Clearly, line i intersects this vertical at y = −bi. Therefore,
counting the inversions of the sequence −Y = 〈−y1, . . . ,−yn〉 is equivalent to the process of
counting inversions in the sequence B = 〈b1, . . . , bn〉, exactly as we did before. Thus, the case
of counting negative slopes can indeed be seen to be a special case of this algorithm.

Review: In summary, we have seen how an apparently 2-dimensional geometric problem involving
O(n2) (implicitly defined) objects can be solved in O(n log n) time through reduction to
a simple 1-dimensional sorting algorithm. Namely, we showed how to solve the slope range
counting problem in O(n log n) time. The problems of computing the minimum and maximum
slopes can also be solved in O(n log n) time. We will leave this problem as an exercise. The
problem of computing the k-th smallest slope is a considerably harder problem. It is not too
hard to devise a randomized algorithm whose running time is O(n log2 n). Such an algorithm
applies a sort of “randomized binary search” in dual space to locate the intersection point
of the desired rank. Improving the expected running time to O(n log n) time is a nontrivial
exercise, and making the algorithm deterministic is even more challenging. I do not know of
an efficient solution to the problem of computing the average slope.
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Lecture 23: Minimum Enclosing Ball

Minimum Enclosing Ball: Although the vast majority of applications of linear programming are
in relatively high dimensions, there are a number of interesting applications in low dimensions.
We will present one such example, called the Minimum Enclosing Ball Problem (or MEB).
We are given a set P of n points in Rd, and we are asked to find the (closed) Euclidean ball of
minimum radius that encloses all of these points. For the sake of simplicity, we will consider
the problem in the plane, but the method readily generalizes to any (fixed) dimension. The
algorithm is randomized, and the expected case running time (averaged over all random
choices) is O((d+ 1)!n) in Rd. Under our usual assumption that the dimension d is fixed, this
is O(n).

Geometric Background: Let us recall some standard terminology. A circle is the set of points
that are equidistant from some center point. In 3-space this is called a sphere and in general
Rd space it is called a hypersphere. More formally, given a center point c = (c1, . . . , cd) ∈ Rd
and a positive radius r ∈ R, the hypersphere is the set of points p = (p1, . . . , pd) such that

d∑
i=1

(pi − ci)2 = r2.

(Note that because a hypersphere embedded in Rd is a (d − 1)-dimensional surface, the
term “k-dimensional hypersphere” usually refers to a sphere residing in Rk+1.) The (closed)
Euclidean ball is the set of points lying on or within the hypersphere, that is,

d∑
i=1

(pi − ci)2 ≤ r2.

In 2-dimensional space, this is often called a disk. (Note that the terms “ball” and “disk”
refer to the solid object, while “circle,” “sphere,” and “hypersphere” refer to its boundary.)
We will present an algorithm for the MEB problem in R2, and so we will use the terms “disk”
and “ball” to mean the same things.

Before discussing algorithms, we begin with two useful geometric observations. First, three
(noncollinear) points in the plane define a unique circle. We will not prove this, but it follows
from standard results in algebra. The second observation is presented in the following claim.

Claim: Consider a finite set S of points in the plane such that no four points are cocircular.
the minimum enclosing disk either has at least three points on its boundary, or it has
two points, and these points form the diameter of the circle. If there are three points
then they subdivide the circle bounding the disk into arcs of angle at most π.

Proof: Clearly if there are no points on the boundary the disk’s radius can be decreased
about its center until a single point lies on the boundary. If there is only one point
on the boundary then the disk can be shrunken about this point until a second point
is contacted (see Fig. 145(a)). If there are two points contacted, and they are not the
diameter of the disk, then between them there must be arc of length greater than π. It
follows that there is a family of disks whose centers lie on the perpendicular bisector of
these two points. By moving the center closer to the midpoint of these points, we obtain
a disk that is smaller and still contains all the points (see Fig. 145(b)). s
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Fig. 145: Contact points for a minimum enclosing disk.

Thus, none of these configurations could be a candidate for the minimum enclosing disk.
Also observe that if there are three points that define the minimum enclosing disk they
subdivide the circle into three arcs each of angle at most π (see Fig. 145(c)). Because
points are in general position we may assume there cannot be four or more cocircular
points.

This immediately suggests a simple O(n4) time algorithm. In O(n3) time we can enumerate
all triples of points and then for each we generate the resulting circle and test whether it
encloses all the points in O(n) additional time, for an O(n4) time algorithm. You might make
a few observations to improve this a bit (e.g. by using only triples of points on the convex
hull). But even so a reduction from O(n4) to O(n) is quite dramatic.

Linearization: We cannot solve the MEB problem by a direct reduction to LP. In this section we’ll
discuss an approach that “almost” reduces the planar MEB problem to a linear programming
problem in 3-space. This serves to illustrate the similarity between this problem and LP.

Recall that in the MEB problem in R2 we are given a set P = {p1, . . . , pn}, where pi =
(pi,x, pi,y). These points are contained within a circle centered at point c and radius r if and
only if

(pi,x − cx)2 + (pi,y − cy)2 ≤ r2, for 1 ≤ i ≤ n.

We are asked to determine whether there exists cx, cy and r (with r as small as possible)
satisfying these n inequalities. The problem is that these inequalities clearly involve quantities
like c2

x and r2 and so are not linear inequalities in the parameters of interest.

The technique of linearization can be used to fix this. For each inequality, let us expand it
and rearrange the terms, yielding:

p2
i,x − 2pi,xcx + c2

x + p2
i,y − 2pi,ycy + c2

y ≤ r2

2pi,xcx + 2pi,ycy + (r2 − c2
x − c2

y) ≥ p2
i,x + p2

i,y.

Now, by introducing a new variable R = r2 − c2
x − c2

y, we have

(2pi,x)cx + (2pi,y)cy +R ≥ (p2
i,x + p2

i,y).

Observe that we now have n linear inequalities in three variables cx, cy and R. (We have
effectively replaced r with R.)

Great! We can apply linear programming to find the solution—or can we? The problem is
that the previous objective function was to minimize r. But r is no longer a parameter in the
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new version of the problem. Observe that r2 = R + c2
x + c2

y, and minimizing r is equivalent
to minimizing r2, we could say that the objective is to minimize R+ c2

x + c2
y. Unfortunately,

this is a nonlinear function of the variables cx, cy and R. In summary, we have introduced a
change of variables that make the constraints linear, but the objective function is no longer
linear. Thus, this is not an instance of LP, and it would seem that we are back to square-one.

Randomized Incremental Algorithm: Even though the linearized problem is not an instance
of LP, we will show here that Seidel’s randomized incremental algorithm can be adapted to
solve it nonetheless.

To start we randomly permute the points. We select any two points and compute the unique
circle with these points as diameter. (We could have started with three just as easily.) Let
Bi−1 denote the minimum disk after the insertion of the first i − 1 points. For point pi we
determine in constant time whether the point lies within Bi−1. If so, then we set Bi = Bi−1

and go on to the next stage. If not, then we need to update the current disk to contain pi,
letting Bi denote the result. When the last point is inserted we output Bn.

How do we compute this updated disk? It might be tempting at first to say that we just need
to compute the minimum disk that encloses pi, and the three points that define the current
disk. However, it is not hard to construct examples in which doing so will cause previously
interior points to fall outside the current disk. As with the LP problem we need to take all the
existing points into consideration. But as in the LP algorithm we need some way to reduce
the “dimensionality” of the problem.

The important claim is that if pi is not in the minimum disk of the first i− 1 points, then pi
does help constrain the problem, which we establish below.

Claim: If pi /∈ Bi−1 then pi is on the boundary of the minimum enclosing disk for the first i
points, Bi.

Proof: The proof makes use of the following geometric observation. Given two intersecting
disks B1 and B2 of radii r1 and r2, respectively, where r1 < r2, the portion of B2’s
boundary that lies within B1 is an arc of angle less than π. To see why, observe that if
the arc were of angular extent greater than π it would contain two diametrically opposite
points. But these points would be at distance 2r2 from each other, which exceeds B1’s
diameter.

Now, suppose to the contrary that pi is not on the boundary of Bi. Let ri−1 and ri
denote the radii of Bi−1 and Bi, respectively. Because Bi covers a point that is not
covered by Bi−1 it follows that ri−1 < ri. By the above observation, the portion of
Bi’s boundary that lies within Bi−1 is an arc of angle less than π (the heavy curve in
Fig. 146).

pi

Bi?
Bi−1

Fig. 146: The proof of the claim.

Since pi is not on the boundary of Bi, the points defining Bi must be chosen from among
the first i−1 points, from which it follows that they all lie within this arc (the red points
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in Fig. 146). This would imply that between two of the points is an arc of angle greater
than π (the arc not shown with a heavy line) which, by the earlier claim cannot be a
minimum enclosing disk.

Aided with this observation, the we can derive an algorithm is similar in structure to the
LP algorithm. First, we randomly permute the points and insert them one by one. For each
new point pi, if it lies within the current disk then there is nothing to update. Otherwise,
we need to update the disk. We do this by solving the 1-point restricted MEB problem,
namely, we compute the MEB that contains all the points {p1, . . . , pi−1} and is constrained
to have pi on its boundary. (The requirement that pi lies on the boundary is analogous to
the constraint used in linear programming that optimum vertex lie on the line supporting the
current halfplane.) The procedure is called MinDiskWith1Pt(P, q), and is given a point set
P and a constraint point q /∈ P that must be on the boundary of the final answer.

The constrained problem is solved in exactly the same manner, but with the change that when-
ever we detect a point p that lies outside the current disk, we invoke the 2-point restricted MEB
problem, namely, we compute the MEB that contains all the points {p1, . . . , pi−1} and is con-
strained to have both q and pi on its boundary. The procedure is called MinDiskWith2Pt(P, q1, q2).
Note that we do not need to define a 3-point restricted MEB problem, since three points
uniquely determine a circle.

Minimum Enclosing Disk

MinDisk(P ) :

(1) If |P | ≤ 3, then return the disk passing through these points. Otherwise, randomly permute the
points in P yielding the sequence 〈p1, p2, . . . , pn〉.

(2) Let B2 be the minimum disk enclosing {p1, p2}.
(3) for i← 3 to |P | do

(a) if pi ∈ Bi−1 then Bi ← Bi−1.

(a) else Bi ← MinDiskWith1Pt(P [1..i− 1], pi).

MinDiskWith1Pt(P, q) :

(1) Randomly permute the points in P . Let B1 be the minimum disk enclosing {q, p1}.
(2) for i← 2 to |P | do

(a) if pi ∈ Bi−1 then Bi ← Bi−1.

(a) else Bi ← MinDiskWith2Pts(P [1..i− 1], q, pi).

MinDiskWith2Pts(P, q1, q2) :

(1) Randomly permute the points in P . Let B0 be the minimum disk enclosing {q1, q2}.
(2) for i← 1 to |P | do

(a) if pi ∈ Bi−1 then Bi ← Bi−1.

(a) else Bi ← Disk(q1, q2, pi).

LP-Type: The above reduction shows that the MEB problem is closely related to LP. There are
in fact a number of related problems, like MEB, in which the incremental approach can be
applied. This concept was described formally by Sharir and Welzl, in which they introduced
the notion of LP-type problems. The input is given as a finite set S of elements, and there
is an objective function f that maps subsets of S to values from a totally ordered set. (For
example, think of f as the function that maps a set of points to the radius of their minimum
enclosing disk.) The objective function is required to satisfy two key properties:
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Monotonicity: For sets A ⊆ B ⊆ S, f(A) ≤ f(B) ≤ f(S). That is, adding elements
increases the objective function.

Locality: For sets A ⊆ B ⊆ S and every x ∈ S, if f(A) = f(B) = f(A ∪ {x}), then
f(A) = f(B ∪ {x}). Intuitively, if x is redundant for A, it is redundant for every
superset of A. (For example, if x lies within the minimum disk enclosing the points of
A, then it lies in the minimum disk enclosing any superset B of A.)

The randomized incremental LP algorithm (due to Seidel) that we introduced earlier can be
readily generalized to handle LP-type problems.

Lecture 24: Kirkpatrick’s Planar Point Location

Point Location: In point location we are given a polygonal subdivision (formally, a cell complex).
The objective is to preprocess this subdivision into a data structure so that given a query
point q, we can efficiently determine which face of the subdivision contains q. We may assume
that each face has some identifying label, which is to be returned. We also assume that the
subdivision is represented in any “reasonable” form (e.g., as a DCEL). In general q may
coincide with an edge or vertex. To simplify matters, we will assume that q does not lie on
an edge or vertex, but these special cases are not hard to handle.

It is remarkable that although this seems like such a simple and natural problem, it took quite
a long time to discover a method that is optimal with respect to both query time and space.
Let n denote the number of vertices of the subdivision. By Euler’s formula, the number of
edges and faces are O(n). It has long been known that there are data structures that can
perform these searches reasonably well (e.g. quad-trees and kd-trees), but for which no good
theoretical bounds could be proved. There were data structures of with O(log n) query time
but O(n log n) space, and O(n) space but O(log2 n) query time.

The first construction to achieve both O(n) space and O(log n) query time was a remarkably
clever construction due to Kirkpatrick. It turns out that Kirkpatrick’s idea has some large
embedded constant factors that make it less attractive practically, but the idea is so clever
that it is worth discussing, nonetheless.

Kirkpatrick’s Algorithm: Kirkpatrick’s idea starts with the assumption that the planar subdi-
vision is a triangulation, and further that the outer face is a triangle. If this assumption is not
met, then we begin by triangulating all the faces of the subdivision (see Fig. 147). The label
associated with each triangular face is the same as a label for the original face that contained
it. For the outer face is not a triangle, first compute the convex hull of the polygonal sub-
division, triangulate everything inside the convex hull. Then surround this convex polygon
with a large triangle (call the vertices a, b, and c), and then add edges from the convex hull
to the vertices of the convex hull. It may sound like we are adding a lot of new edges to
the subdivision, but recall from earlier in the semester that the number of edges and faces
in any straight-line planar subdivision is proportional to n, the number of vertices. Thus the
addition only increases the size of the structure by a constant factor.

Note that once we find the triangle containing the query point in the augmented graph, then
we will know the original face that contains the query point. The triangulation process can
be performed in O(n log n) time by a plane sweep of the graph, or in O(n) time if you want to
use sophisticated methods like the linear time polygon triangulation algorithm. In practice,
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Fig. 147: Triangulation of a planar subdivision.

many straight-line subdivisions, may already have convex faces and these can be triangulated
easily in O(n) time.

Let T0 denote the initial triangulation. What Kirkpatrick’s method does is to produce a
sequence of triangulations, T0, T1, T2, . . . , Tk, where k = O(log n), such that Tk consists only
of a single triangle (the exterior face of T0), and each triangle in Ti+1 overlaps a constant
number of triangles in Ti.

We will see how to use such a structure for point location queries later, but for now let
us concentrate on how to build such a sequence of triangulations. Assuming that we have
Ti, we wish to compute Ti+1. In order to guarantee that this process will terminate after
O(log n) stages, we will want to make sure that the number of vertices in Ti+1 decreases by
some constant factor from the number of vertices in Ti. In particular, this will be done by
carefully selecting a subset of vertices of Ti and deleting them (and along with them, all the
edges attached to them). After these vertices have been deleted, we need retriangulate the
resulting graph to form Ti+1. The question is: How do we select the vertices of Ti to delete,
so that each triangle of Ti+1 overlaps only a constant number of triangles in Ti?

There are two things that Kirkpatrick observed at this point, that make the whole scheme
work.

Constant degree: We will make sure that each of the vertices that we delete have constant
(≤ d) degree (that is, each is adjacent to at most d edges). Note that the when we
delete such a vertex, the resulting hole will consist of at most d− 2 triangles. When we
retriangulate, each of the new triangles, can overlap at most d triangles in the previous
triangulation.

Independent set: We will make sure that no two of the vertices that are deleted are adjacent
to each other, that is, the vertices to be deleted form an independent set in the current
planar graph Ti. This will make retriangulation easier, because when we remove m
independent vertices (and their incident edges), we create m independent holes (non
triangular faces) in the subdivision, which we will have to retriangulate. However, each
of these holes can be triangulated independently of one another. (Since each hole contains
a constant number of vertices, we can use any triangulation algorithm, even brute force,
since the running time will be O(1) in any case.)

An important question to the success of this idea is whether we can always find a sufficiently
large independent set of vertices with bounded degree. We want the size of this set to be at
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least a constant fraction of the current number of vertices. Fortunately, the answer is “yes,”
and in fact it is quite easy to find such a subset. Part of the trick is to pick the value of d to
be large enough (too small and there may not be enough of them). It turns out that d = 8 is
good enough.

Lemma: Given a planar graph with n vertices, there is an independent set consisting of
vertices of degree at most eight, with at least n/18 vertices. This independent set can
be constructed in O(n) time.

We will present the proof of this lemma later. The number 18 seems rather large. The number
is probably smaller in practice, but this is the best bound that this proof generates. However,
the size of this constant is one of the reasons that Kirkpatrick’s algorithm is not used in
practice. But the construction is quite clever, nonetheless, and once a optimal solution is
known to a problem it is often not long before a practical optimal solution follows.

Kirkpatrick Structure: Assuming the above lemma, let us give the description of how the point
location data structure, the Kirkpatrick structure, is constructed. We start with T0, and
repeatedly select an independent set of vertices of degree at most eight. We never include
the three vertices a, b, and c (forming the outer face) in such an independent set. We delete
the vertices from the independent set from the graph, and retriangulate the resulting holes.
Observe that each triangle in the new triangulation can overlap at most eight triangles in the
previous triangulation. Since we can eliminate a constant fraction of vertices with each stage,
after O(log n) stages, we will be down to the last three vertices.

The constant factors here are not so great. With each stage, the number of vertices falls by
a factor of 17/18. To reduce to the final three vertices, implies that (18/17)k = n or that

k = log18/17 n ≈ 12 lg n.

It can be shown that by always selecting the vertex of smallest degree, this can be reduced
to a more palatable 4.5 lg n.

The data structure is based on this decomposition. The root of the structure corresponds to
the single triangle of Tk. The nodes at the next lower level are the (new) triangles of Tk−1,
followed by Tk−2, until we reach the leaves, which are the triangles of our initial triangulation,
T0 (see Fig. 148).

B

DC

A

T4

T3T2T1T0

F

GHI

K

E

J

a

b

G

d
e

hg

f

c

K

J

a
b

J

dl
i

j
k

m
o

n

e

pg

f

Fig. 148: Decomposing and triangulation by repeatedly removing an independent set and re-
triangulating.

Each node corresponding to a triangle in triangulation Ti+1, stores pointers to all the triangles
it overlaps in Ti. Since there are at most eight of these, the structure has bounded degree.
Note that this structure is a directed acyclic graph (DAG) and not a tree, because one triangle
may have many parents in the data structure (see Fig. 149).
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Fig. 149: Kirkpatrick’s point location structure.

To locate a point, we start with the root, Tk. If the query point does not lie within this single
triangle, then we are done (it lies in the exterior face). Otherwise, we search each of the (at
most eight) triangles in Tk−1 that overlap this triangle. When we find the correct one, we
search each of the triangles in Tk−2 that overlap this triangles, and so forth. Eventually we
will find the triangle containing the query point in the last triangulation, T0, and this is the
desired output.

Construction and Analysis: The structure has O(log n) levels (one for each triangulation), it
takes a constant amount of time to move from one level to the next (at most eight point-in-
triangle tests), thus the total query time is O(log n). The size of the data structure is the sum
of sizes of the triangulations. Since the number of triangles in a triangulation is proportional
to the number of vertices, it follows that the size is proportional to

n(1 + 17/18 + (17/18)2 + (17/18)3 + . . .) ≤ 18n,

(using standard formulas for geometric series). Thus the data structure size is O(n) (again,
with a pretty hefty constant).

The last thing that remains is to show how to construct the independent set of the appropriate
size. We first present the algorithm for finding the independent set, and then prove the bound
on its size.

(1) Mark all nodes of degree ≥ 9.

(2) While there exists an unmarked node do the following:

(a) Choose an unmarked vertex v.

(b) Add v to the independent set.

(c) Mark v and all of its neighbors.

It is easy to see that the algorithm runs in O(n) time (e.g., by keeping unmarked vertices in
a stack and representing the triangulation so that neighbors can be found quickly.)

Intuitively, the argument that there exists a large independent set of low degree is based on
the following simple observations. First, because the average degree in a planar graph is less
than six, there must be a lot of vertices of degree at most eight (otherwise the average would
be unattainable). Second, whenever we add one of these vertices to our independent set, only
eight other vertices become ineligible for inclusion in the independent set.
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Here is the rigorous argument. Recall from Euler’s formula, that if a planar graph is fully
triangulated, then the number of edges e satisfies e = 3n− 6. If we sum the degrees of all the
vertices, then each edge is counted twice. Thus the average degree of the graph is∑

v

deg(v) = 2e = 6n− 12 < 6n.

Next, we claim that there must be at least n/2 vertices of degree eight or less. To see why,
suppose to the contrary that there were more than n/2 vertices of degree nine or greater. The
remaining vertices must have degree at least three (with the possible exception of the three
vertices on the outer face), and thus the sum of all degrees in the graph would have to be at
least as large as

9
n

2
+ 3

n

2
= 6n,

which contradicts the equation above.

Now, when the above algorithm starts execution, at least n/2 vertices are initially unmarked.
Whenever we select such a vertex, because its degree is eight or fewer, we mark at most nine
new vertices (this node and at most eight of its neighbors). Thus, this step can be repeated
at least (n/2)/9 = n/18 times before we run out of unmarked vertices. This completes the
proof.

Lecture 25: Topological Plane Sweep

Topological Plane Sweep: In previous lectures we have introduced arrangements of lines in the
plane and how to construct them. In this lecture we present an efficient algorithm for sweeping
an arrangement of lines. Since an arrangement of n lines has size O(n2), and since there are
O(n2) events to be processed, each involving an O(log n) heap deletion, this typically leads
to algorithms running in O(n2 log n) time, using O(n2) space. It is natural to ask whether we
can dispense with the additional O(log n) factor in running time, and whether we need all of
O(n2) space (since in theory we only need access to the current O(n) contents of the sweep
line).

We discuss a variation of plane sweep called topological plane sweep. This method runs in
O(n2) time, and uses only O(n) space (by essentially constructing only the portion of the
arrangement that we need at any point). Although it may appear to be somewhat sophis-
ticated, it can be implemented quite efficiently, and is claimed to outperform conventional
plane sweep on arrangements of any significant size (e.g. over 20 lines).

Cuts and topological lines: The algorithm is called topological plane sweep because we do not
sweep a straight vertical line through the arrangement, but rather we sweep a curved topo-
logical line that has the essential properties of a vertical sweep line in the sense that this line
intersects each line of the arrangement exactly once. The notion of a topological line is an
intuitive one, but it can be made formal in the form of something called a cut. Recall that the
faces of the arrangement are convex polygons (possibly unbounded). (Assuming no vertical
lines) the edges incident to each face can naturally be partitioned into the edges that are above
the face, and those that are below the face. Define a cut in an arrangement to be a sequence
of edges c1, c2, . . . , cn, in the arrangement, one taken from each line of the arrangement, such
that for 1 ≤ i ≤ n − 1, ci and ci+1 are incident to the same face of the arrangement, and ci
is above the face and ci+1 is below the face (see Fig. 150).
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Fig. 150: Topological line and associated cut.

The topological plane sweep starts at the leftmost cut of the arrangement. This consists of
all the left-unbounded edges of the arrangement. Observe that this cut can be computed in
O(n log n) time, because the lines intersect the cut in inverse order of slope. The topological
sweep line will sweep to the right until we come to the rightmost cut, which consists all of
the right-unbounded edges of the arrangement. The sweep line advances by a series of what
are called elementary steps. In an elementary steps, we find two consecutive edges on the cut
that meet at a vertex of the arrangement (we will discuss later how to determine this), and
push the topological sweep line through this vertex (see Fig. 151). Observe that on doing so
these two lines swap in their order along the sweep line.

Fig. 151: Elementary step.

It is not hard to show that an elementary step is always possible, since for any cut (other than
the rightmost cut) there must be two consecutive edges with a common right endpoint. In
particular, consider the edge of the cut whose right endpoint has the smallest x-coordinate.
It is not hard to show that this endpoint will always allow an elementary step. Unfortunately,
determining this vertex would require at least O(log n) time (if we stored these endpoints in
a heap, sorted by x-coordinate), and we want to perform each elementary step in O(1) time.
Hence, we will need to find some other method for finding elementary steps.

Upper and Lower Horizon Trees: To find elementary steps, we introduce two simple data
structures, the upper horizon tree (UHT) and the lower horizon tree (LHT). To construct
the upper horizon tree, trace each edge of the cut to the right. When two edges meet, keep
only the one with the higher slope, and continue tracing it to the right. The lower horizon
tree is defined symmetrically. There is one little problem in these definitions in the sense that
these trees need not be connected (forming a forest of trees) but this can be fixed conceptually
at least by the addition of a vertical line at x = +∞. For the upper horizon we think of its
slope as being +∞ and for the lower horizon we think of its slope as being −∞. Note that
we consider the left endpoints of the edges of the cut as not belonging to the trees, since
otherwise they would not be trees. It is not hard to show that with these modifications, these
are indeed trees. Each edge of the cut defines exactly one line segment in each tree. An
example is shown below.
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Fig. 152: Upper and lower horizon trees.

The important things about the UHT and LHT is that they give us an easy way to determine
the right endpoints of the edges on the cut. Observe that for each edge in the cut, its right
endpoint results from a line of smaller slope intersecting it from above (as we trace it from
left to right) or from a line of larger slope intersecting it from below. It is easy to verify that
the UHT and LHT determine the first such intersecting line of each type, respectively. It
follows that if we intersect the two trees, then the segments they share in common correspond
exactly to the edges of the cut. Thus, by knowing the UHT and LHT, we know where are the
right endpoints are, and from this we can determine easily which pairs of consecutive edges
share a common right endpoint, and from this we can determine all the elementary steps that
are legal. We store all the legal steps in a stack (or queue, or any list is fine), and extract
them one by one.

The sweep algorithm: Here is an overview of the topological plane sweep.

(1) Input the lines and sort by slope. Let C be the initial (leftmost) cut, a list of lines in
decreasing order of slope.

(2) Create the initial UHT incrementally by inserting lines in decreasing order of slope.
Create the initial LHT incrementally by inserting line in increasing order of slope. (More
on this later.)

(3) By consulting the LHT and UHT, determine the right endpoints of all the edges of
the initial cut, and for all pairs of consecutive lines (`i, `i+1) sharing a common right
endpoint, store this pair in stack S.

(4) Repeat the following elementary step until the stack is empty (implying that we have
arrived at the rightmost cut).

(a) Pop the pair (`i, `i+1) from the top of the stack S.

(b) Swap these lines within C, the cut (we assume that each line keeps track of its
position in the cut).

(c) Update the horizon trees. (More on this later.)

(d) Consulting the changed entries in the horizon tree, determine whether there are any
new cut edges sharing right endpoints, and if so push them on the stack S.

The important unfinished business is to show that we can build the initial UHT and LHT in
O(n) time, and to show that, for each elementary step, we can update these trees and all other
relevant information in O(1) amortized time. By amortized time we mean that, even though
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a single elementary step can take more than O(1) time, the total time needed to perform all
O(n2) elementary steps is O(n2), and hence the average time for each step is O(1).

This is done by an adaptation of the same incremental “face walking” technique we used in
the incremental construction of line arrangements. Let’s consider just the UHT, since the
LHT is symmetric. To create the initial (leftmost) UHT we insert the lines one by one in
decreasing order of slope. Observe that as each new line is inserted it will start above all
of the current lines. The uppermost face of the current UHT consists of a convex polygonal
chain (see Fig. 153(a)). As we trace the newly inserted line from left to right, there will be
some point at which it first hits this upper chain of the current UHT. By walking along the
chain from left to right, we can determine this intersection point. Each segment that is walked
over is never visited again by this initialization process (because it is no longer part of the
upper chain), and since the initial UHT has a total of O(n) segments, this implies that the
total time spent in walking is O(n). Thus, after the O(n log n) time for sorting the segments,
the initial UHT tree can be built in O(n) additional time.

new line

(a) (b)

v v

Fig. 153: Constructing (a) and updating (b) the UHT.

Next we show how to update the UHT after an elementary step. The process is quite similar
(see Fig. 153(b)). Let v be the vertex of the arrangement which is passed over in the sweep
step. As we pass over v, the two edges swap positions along the sweep line. The new lower
edge, call it `, which had been cut off of the UHT by the previous lower edge, now must be
reentered into the tree. We extend ` to the left until it contacts an edge of the UHT. At its
first contact, it will terminate (and this is the only change to be made to the UHT). In order
to find this contact, we start with the edge immediately below ` the current cut. We traverse
the face of the UHT in counterclockwise order, until finding the edge that this line intersects.
Observe that we must eventually find such an edge because ` has a lower slope than the other
edge intersecting at v, and this edge lies in the same face.

Analysis: A careful analysis of the running time can be performed using the same amortization
proof (based on pebble counting) that was used in the analysis of the incremental algorithm.
We will not give the proof in full detail. Observe that because we maintain the set of legal
elementary steps in a stack (as opposed to a heap as would be needed for standard plane
sweep), we can advance to the next elementary step in O(1) time. The only part of the
elementary step that requires more than constant time is the update operations for the UHT
and LHT. However, we claim that the total time spent updating these trees is O(n2). The
argument is that when we are tracing the edges (as shown in the previous figure) we are
“essentially” traversing the edges in the zone for L in the arrangement. (This is not quite
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true, because there are edges above ` in the arrangement, which have been cut out of the upper
tree, but the claim is that their absence cannot increase the complexity of this operation, only
decrease it. However, a careful proof needs to take this into account.) Since the zone of each
line in the arrangement has complexity O(n), all n zones have total complexity O(n2). Thus,
the total time spent in updating the UHT and LHT trees is O(n2).

Lecture 26: Shortest Paths and Visibility Graphs

Shortest paths: We are given a set of n disjoint polygonal obstacles in the plane, and two points
s and t that lie outside of the obstacles. The problem is to determine the shortest path from
s to t that avoids the interiors of the obstacles (see Fig. 154(a) and (b)). (It may travel along
the edges or pass through the vertices of the obstacles.) The complement of the interior of
the obstacles is called free space. We want to find the shortest path that is constrained to lie
entirely in free space.

Today we consider a simple (but perhaps not the most efficient) way to solve this problem.
We assume that we measure lengths in terms of Euclidean distances. How do we measure
paths lengths for curved paths? Luckily, we do not have to, because we claim that the shortest
path will always be a polygonal curve.

s t s ts t

(a) (b) (c)

Fig. 154: Shortest paths and the visibility graph.

Claim: The shortest path between any two points that avoids a set of polygonal obstacles is
a polygonal curve, whose vertices are either vertices of the obstacles or the points s and
t.

Proof: We show that any path π that violates these conditions can be replaced by a slightly
shorter path from s to t. Since the obstacles are polygonal, if the path were not a
polygonal curve, then there must be some point p in the interior of free space, such
that the path passing through p is not locally a line segment. If we consider any small
neighborhood about p (small enough to not contain s or t or any part of any obstacle),
then since the shortest path is not locally straight, we can shorten it slightly by replacing
this curved segment by a straight line segment jointing one end to the other. Thus, π is
not shortest, a contradiction.

Thus π is a polygonal path. Suppose that it contained a vertex v that was not an
obstacle vertex. Again we consider a small neighbor hood about v that contains no part
of any obstacle. We can shorten the path, as above, implying that π is not a shortest
path.

From this it follows that the edges that constitute the shortest path must travel between s
and t and vertices of the obstacles. Each of these edges must have the property that it does
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not intersect the interior of any obstacle, implying that the endpoints must be visible to each
other. More formally, we say that two points p and q are mutually visible if the open line
segment joining them does not intersect the interior of any obstacle. By this definition, the
two endpoints of an obstacle edge are not mutually visible, so we will explicitly allow for this
case in the definition below.

Definition: The visibility graph of s and t and the obstacle set is a graph whose vertices are
s and t the obstacle vertices, and vertices v and w are joined by an edge if v and w are
either mutually visible or if (v, w) is an edge of some obstacle (see Fig. 154(c)).

It follows from the above claim that the shortest path can be computed by first computing
the visibility graph and labeling each edge with its Euclidean length, and then computing
the shortest path by, say, Dijkstra’s algorithm (see CLR). Note that the visibility graph is
not planar, and hence may consist of Ω(n2) edges. Also note that, even if the input points
have integer coordinates, in order to compute distances we need to compute square roots,
and then sums of square roots. This can be approximated by floating point computations. (If
exactness is important, this can really be a problem, because there is no known polynomial
time procedure for performing arithmetic with arbitrary square roots of integers.)

Computing the Visibility Graph: We give an O(n2) procedure for constructing the visibility
graph of n line segments in the plane. The more general task of computing the visibility graph
of an arbitrary set of polygonal obstacles is a very easy generalization. In this context, two
vertices are visible if the line segment joining them does not intersect any of the obstacle line
segments. However, we allow each line segment to contribute itself as an edge in the visibility
graph. We will make the general position assumption that no three vertices are collinear, but
this is not hard to handle with some care. The algorithm is not output sensitive. If k denotes
the number of edges in the visibility graph, then an O(n log n+ k) algorithm does exist, but
it is quite complicated.

The text gives an O(n2 log n) time algorithm. We will give an O(n2) time algorithm. Both
algorithms are based on the same concept, namely that of performing an angular sweep around
each vertex. The text’s algorithm operates by doing this sweep one vertex at a time. Our
algorithm does the sweep for all vertices simultaneously. We use the fact (given in the lecture
on arrangements) that this angular sort can be performed for all vertices in O(n2) time. If we
build the entire arrangement, this sorting algorithm will involve O(n2) space. However it can
be implemented in O(n) space using an algorithm called topological plane sweep. Topological
plane sweep provides a way to sweep an arrangement of lines using a “flexible” sweeping
line. Because events do not need to sorted, we can avoid the O(log n) factor, which would
otherwise be needed to maintain the priority queue.

Here is a high-level intuitive view of the algorithm. First, recall the algorithm for computing
trapezoidal maps. We shoot a bullet up and down from every vertex until it hits its first
line segment. This implicitly gives us the vertical visibility relationships between vertices and
segments (see the leftmost part of Fig. 155). Now, we imagine that angle θ continuously sweeps
out all slopes from −∞ to +∞. Imagine that all the bullet lines attached to all the vertices
begin to turn slowly counterclockwise. If we play the mind experiment of visualizing the
rotation of these bullet paths, the question is what are the significant event points, and what
happens with each event? As the sweep proceeds, we will eventually determine everything
that is visible from every vertex in every direction. Thus, it should be an easy matter to piece
together the edges of the visibility graph as we go.
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Fig. 155: Visibility graph by multiple angular sweep.

Let us consider this “multiple angular sweep” in greater detail.

It is useful to view the problem both in its primal and dual form. For each of the 2n segment
endpoints v = (va, vb), we consider its dual line v∗ : y = vax− vb. Observe that a significant
event occurs whenever a bullet path in the primal plane jumps from one line segment to
another. This occurs when θ reaches the slope of the line joining two visible endpoints v and
w. Unfortunately, it is somewhat complicated to keep track of which endpoints are visible
and which are not (although if we could do so it would lead to a more efficient algorithm).
Instead we will take events to be all angles θ between two endpoints, whether they are visible
or not. By duality, the slope of such an event will correspond to the a-coordinate of the
intersection of dual lines v∗ and w∗ in the dual arrangement. (Convince yourself of this.)
Thus, by sweeping the arrangement of the 2n dual lines from left-to-right, we will enumerate
all the slope events in angular order.

Next let’s consider what happens at each event point. Consider the state of the angular sweep
algorithm for some slope θ. For each vertex v, there are two bullet paths emanating from v
along the line with slope θ. Call one the forward bullet path and the other the backward bullet
path. Let f(v) and b(v) denote the line segments that these bullet paths hit, respectively.
If either path does not hit any segment then we store a special null value. As θ varies the
following events can occur. Assuming (through symbolic perturbation) that each slope is
determined by exactly two lines, whenever we arrive at an events slope θ there are exactly
two vertices v and w that are involved. Here are the possible scenarios:

(a) (b) (c) (d)

Same Invisible Entry Exit

v

w

v

w

v

w

f (v)
f (v) (old)

f (v) (new)

f (v) (old)

f (v) (new)

Fig. 156: Possible events.

Same segment: If v and w are endpoints of the same segment, then they are visible, and
we add the edge (v, w) to the visibility graph (see Fig. 156(a)).

Invisible: Consider the distance from v to w. First, determine whether w lies on the same
side as f(v) or b(v). For the remainder, assume that it is f(v) (see Fig. 156(b)). (The
case of b(v) is symmetrical).

Compute the contact point of the bullet path shot from v in direction θ with segment
f(v). If this path hits f(v) strictly before w, then we know that w is not visible to v,
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and so this is a “non-event”.

Segment entry: Consider the segment that is incident to w. Either the sweep is just about
to enter this segment or is just leaving it. If we are entering the segment, then we set
f(v) to this segment (see Fig. 156(c)).

Segment exit: If we are just leaving this segment, then the bullet path will need to shoot
out and find the next segment that it hits. Normally this would require some searching.
(In particular, this is one of the reasons that the text’s algorithm has the extra O(log n)
factor—to perform this search.) However, we claim that the answer is available to us in
O(1) time (see Fig. 156(d)).

In particular, since we are sweeping over w at the same time that we are sweeping over
v. Thus we know that the bullet extension from w hits f(w). All we need to do is to set
f(v) = f(w).

This is a pretty simple algorithm (although there are a number of cases). The only information
that we need to keep track of is (1) a priority queue for the events, and (2) the f(v) and
b(v) pointers for each vertex v. The priority queue is not stored explicitly. Instead it is
available from the line arrangement of the duals of the line segment vertices. By performing
a topological sweep of the arrangement, we can process all of these events in O(n2) time.
(There a few technical details in the implementation of the topological plane sweep, but we
will ignore them.)

Lecture 27: Planar Graphs, Polygons and Art Galleries

Topological Information: In many applications of segment intersection problems, we are not
interested in just a listing of the segment intersections, but want to know how the segments
are connected together. Typically, the plane has been subdivided into regions, and we want
to store these regions in a way that allows us to reason about their properties efficiently.

This leads to the concept of a planar straight line graph (PSLG) or planar subdivision (or
what might be called a cell complex in topology). A PSLG is a graph embedded in the plane
with straight-line edges so that no two edges intersect, except possibly at their endpoints (see
Fig. 157(a)). Such a graph naturally subdivides the plane into regions. The 0-dimensional
vertices, 1-dimensional edges, and 2-dimensional faces. We consider these three types of
objects to be disjoint, implying each edge is topologically open, that is, it does not include
it endpoints, and that each face is open, that is, it does not include its boundary. There is
always at least one unbounded face, which stretches to infinity. Note that the underlying
planar graph need not be a connected graph. In particular, faces may contain holes (and
these holes may themselves contain holes). A subdivision is called a convex subdivision if all
the faces (except the outer one) are convex (see Fig. 157(b)).

Simple Polygons: Now, let us change directions, and consider some interesting problems involv-
ing polygons in the plane. We begin study of the problem of triangulating polygons. We
introduce this problem by way of a cute example in the field of combinatorial geometry.

We begin with some definitions. A polygonal curve is a finite sequence of line segments, called
edges joined end-to-end (see Fig. 158). The endpoints of the edges are vertices. For example,
let v0, . . . , vn denote the set of n+ 1 vertices, and let e1, . . . , en denote a sequence of n edges,
where ei = vi−1vi. A polygonal curve is closed if the last endpoint equals the first v0 = vn.
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(a) (b)

face

edge

vertex

Planar straight-line graph Convex subdivision

Fig. 157: Planar straight-line subdivision.

A polygonal curve is simple if it is not self-intersecting. More precisely this means that each
edge ei does not intersect any other edge, except for the endpoints it shares with its adjacent
edges.

polygonal curve simple closed (not simple) simple polygon

Fig. 158: Polygonal curves

The famous Jordan curve theorem states that every simple closed plane curve divides the plane
into two regions (the interior and the exterior). (Although the theorem seems intuitively
obvious, it is quite difficult to prove.) We define a simple polygon (or just polygon) to be the
region of the plane bounded by a simple, closed polygonal curve. We will assume that the
vertices are listed in counterclockwise order around the boundary of the polygon.

Art Gallery Problem: We say that two points x and y in a simple polygon can see each other
(or x and y are visible) if the open line segment xy lies entirely within the interior of P . (Note
that such a line segment can start and end on the boundary of the polygon, but it cannot
pass through any vertices or edges.)

If we think of a polygon as the floor plan of an art gallery, consider the problem of where
to place “guards”, and how many guards to place, so that every point of the gallery can be
seen by some guard. Such a set is called a guarding set (see Fig. 159(a)). Victor Klee posed
the following question: Suppose we have an art gallery whose floor plan can be modeled as
a polygon with n vertices. As a function of n, what is the minimum number of guards that
suffice to guard such a gallery? Observe that are you are told about the polygon is the number
of sides, not its actual structure. We want to know the fewest number of guards that suffice
to guard all polygons with n sides.

Before getting into a solution, let’s consider some basic facts. Could there be polygons for
which no finite number of guards suffice? It turns out that the answer is no, but the proof is
not immediately obvious. You might consider placing a guard at each of the vertices. Such
a set of guards will suffice in the plane. But to show how counter-intuitive geometry can be,
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A guarding set A polygon requiring ≥ n/3 guards

(a) (b)

Fig. 159: Guarding sets.

it is interesting to not that there are simple nonconvex polyhedra in 3-space, such that even
if you place a guard at every vertex there would still be points in the polygon that are not
visible to any guard. (As a challenge, try to come up with one with the fewest number of
vertices.)

An interesting question in combinatorial geometry is how does the number of guards needed
to guard any simple polygon with n sides grow as a function of n? If you play around
with the problem for a while (trying polygons with n = 3, 4, 5, 6 . . . sides, for example) you
will eventually come to the conclusion that bn/3c is the right value. Fig. 159(b)) shows
that this bound is tight. Observe given such a polygon of this form with k “teeth”, the
number of vertices is n = 3k, and each guard can see into only one tooth. A cute result
from combinatorial geometry is that this number always suffices. The proof is based on three
concepts: polygon triangulation, dual graphs, and graph coloring. The remarkably clever and
simple proof was discovered by Fisk.

Theorem: (The Art-Gallery Theorem) Given a simple polygon with n vertices, there exists
a guarding set with at most bn/3c guards.

Before giving the proof, we explore some aspects of polygon triangulations. We begin by
introducing a triangulation of P . A triangulation of a simple polygon is a planar subdivision
of (the interior of) P whose vertices are the vertices of P and whose faces are all triangles (see
Fig. 160(a)). An important concept in polygon triangulation is the notion of a diagonal, that
is, a line segment between two vertices of P that are visible to one another. A triangulation
can be viewed as the union of the edges of P and a maximal set of non-crossing diagonals.

(a) (b)
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(c)

an eara diagonal

Fig. 160: (a) A polygon triangulation, (b) the dual tree (with ears shaded), and (c) the resulting
3-coloring.

Lemma: Every simple polygon with n vertices has a triangulation consisting of n− 3 diag-
onals and n− 2 triangles.
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We will leave the details as an exercise, but here is a quick sketch of the proof. We start with
the observation that given any n-vertex polygon, with n ≥ 4 it has at least one diagonal.
(This may seem utterly trivial, but actually takes a little bit of work to prove. In fact it fails
to hold for polyhedra in 3-space.) The addition of the diagonal breaks the polygon into two
polygons, of say m1 and m2 vertices, such that m1 +m2 = n+2 (since both share the vertices
of the diagonal). Thus by induction, there are (m1 − 2) + (m2 − 2) = n + 2 − 4 = n − 2
triangles total. A similar argument holds to determine the number of of diagonals.

It is a well known fact from graph theory that any planar graph can be colored with four
colors. (The famous four-color theorem.) This means that we can assign a color to each of
the vertices of the graph, from a collection of four different colors, so that no two adjacent
vertices have the same color. However we can do even better for the graph we have just
described.

Lemma: Let T be the triangulation graph of a triangulation of a simple polygon. Then T
is 3-colorable.

Proof: For every planar graph G there is another planar graph G∗ called its dual. The dual
G∗ is the graph whose vertices are the faces of G, and two vertices of G∗ are connected
by an edge if the two corresponding faces of G share a common edge (see Fig. 160(b)).

Since a triangulation is a planar graph, it has a dual, shown in the figure below. (We
do not include the external face in the dual.) Because each diagonal of the triangulation
splits the polygon into two, it follows that each edge of the dual graph is a cut edge,
meaning that its deletion would disconnect the graph. As a result it is easy to see that
the dual graph is a free tree (that is, a connected, acyclic graph), and its maximum
degree is three. (This would not be true if the polygon had holes.)

The coloring will be performed inductively. If the polygon consists of a single triangle,
then just assign any three colors to its vertices. An important fact about any free tree
is that it has at least one leaf (in fact it has at least two). Remove this leaf from the
tree. This corresponds to removing a triangle that is connected to the rest triangulation
by a single edge. (Such a triangle is called an ear.) By induction 3-color the remaining
triangulation. When you add back the deleted triangle, two of its vertices have already
been colored, and the remaining vertex is adjacent to only these two vertices. Give it the
remaining color. In this way the entire triangulation will be 3-colored (see Fig. 160(c)).

We can now give the simple proof of the guarding theorem.

Proof: (of the Art-Gallery Theorem:) Consider any 3-coloring of the vertices of the polygon.
At least one color occurs at most bn/3c time. (Otherwise we immediately get there are
more than n vertices, a contradiction.) Place a guard at each vertex with this color.
We use at most bn/3c guards. Observe that every triangle has at least one vertex of
each of the tree colors (since you cannot use the same color twice on a triangle). Thus,
every point in the interior of this triangle is guarded, implying that the interior of P is
guarded. A somewhat messy detail is whether you allow guards placed at a vertex to see
along the wall. However, it is not a difficult matter to move each guard infinitesimally
out from his vertex, and so guard the entire polygon.
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Lecture 28: Divide-and-Conquer Algorithm for Voronoi Diagrams

Planar Voronoi Diagrams: Recall that, given n points P = {p1, p2, . . . , pn} in the plane, the
Voronoi polygon of a point pi, V (pi), is defined to be the set of all points q in the plane for
which pi is among the closest points to q in P . That is,

V (pi) = {q : |pi − q| ≤ |pj − q|,∀j 6= i}.

The union of the boundaries of the Voronoi polygons is called the Voronoi diagram of P ,
denoted V D(P ). The dual of the Voronoi diagram is a triangulation of the point set, called
the Delaunay triangulation. Recall from our discussion of quad-edge data structure, that
given a good representation of any planar graph, the dual is easy to construct. Hence, it
suffices to show how to compute either one of these structures, from which the other can be
derived easily in O(n) time.

There are a number of algorithms for computing Voronoi diagrams and Delaunay triangula-
tions in the plane. These include:

Divide-and-Conquer: (For both VD and DT.) The first O(n log n) algorithm for this prob-
lem. Not widely used because it is somewhat hard to implement. Can be generalized
to higher dimensions with some difficulty. Can be generalized to computing Voronoi
diagrams of line segments with some difficulty.

Randomized Incremental: (For DT.) The simplest. O(n log n) time with high probability.
Can be generalized to higher dimensions as with the randomized algorithm for convex
hulls. Can be generalized to computing Voronoi diagrams of line segments fairly easily.

Fortune’s Plane Sweep: (For VD.) A very clever and fairly simple algorithm. It computes
a “deformed” Voronoi diagram by plane sweep in O(n log n) time, from which the true
diagram can be extracted easily. Can be generalized to computing Voronoi diagrams of
line segments fairly easily.

Reduction to convex hulls: (For DT.) Computing a Delaunay triangulation of n points in
dimension d can be reduced to computing a convex hull of n points in dimension d+ 1.
Use your favorite convex hull algorithm. Unclear how to generalize to compute Voronoi
diagrams of line segments.

We will cover all of these approaches, except Fortune’s algorithm. O’Rourke does not give
detailed explanations of any of these algorithms, but he does discuss the idea behind For-
tune’s algorithm. Today we will discuss the divide-and-conquer algorithm. This algorithm is
presented in Mulmuley, Section 2.8.4.

Divide-and-conquer algorithm: The divide-and-conquer approach works like most standard
geometric divide-and-conquer algorithms. We split the points according to x-coordinates into
two roughly equal sized groups, e.g., by presorting the points by x-coordinate and selecting
medians (see Fig. 161(a)). We compute the Voronoi diagram of the left side, and the Voronoi
diagram of the right side (see Fig. 161(b)). Note that since each diagram alone covers the
entire plane, these two diagrams overlap (see Fig. 161(c)). We then merge the resulting
diagrams into a single diagram.

The merging step is where all the work is done. Observe that every point in the the plane
lies within two Voronoi polygons, one in Vor(L) and one in Vor(R). We need to resolve this
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overlap, by separating overlapping polygons. Let V (l0) be the Voronoi polygon for a point
from the left side, and let V (r0) be the Voronoi polygon for a point on the right side, and
suppose these polygons overlap one another. Observe that if we insert the bisector between
l0 and r0, and through away the portions of the polygons that lie on the “wrong” side of the
bisector, we resolve the overlap. If we do this for every pair of overlapping Voronoi polygons,
we get the final Voronoi diagram.

(a) (b) (c)

L R Vor(L)
Vor(R)

contour

Fig. 161: Voronoi diagrams by divide-and-conquer.

The union of these bisectors that separate the left Voronoi diagram from the right Voronoi
diagram is called the contour. A point is on the contour if and only if it is equidistant from
two points in S, one in L and one in R.

(0) Presort the points by x-coordinate (this is done once).

(1) Split the point set S by a vertical line into two subsets L and R of roughly equal size.

(2) Compute Vor(L) and Vor(R) recursively. (These diagrams overlap one another.)

(3) Merge the two diagrams into a single diagram, by computing the contour and discarding
the portion of the Vor(L) that is to the right of the contour, and the portion of Vor(R)
that is to the left of the contour.

Assuming we can implement step (3) in O(n) time (where n is the size of the remaining point
set) then the running time will be defined by the familiar recurrence

T (n) = 2T (n/2) + n,

which we know solves to O(n log n).

Computing the contour: What makes the divide-and-conquer algorithm somewhat tricky is the
task of computing the contour. Before giving an algorithm to compute the contour, let us
make some observations about its geomtetric structure. Let us make the usual simplifying
assumptions that no four points are cocircular.

Lemma: The contour consists of a single polygonal curve (whose first and last edges are
semi-infinite) which is monotone with respect to the y-axis.

Proof: A detailed proof is a real hassle. Here are the main ideas, though. The contour sepa-
rates the plane into two regions, those points whose nearest neighbor lies in L from those
points whose nearest neighbor lies in R. Because the contour locally consists of points
that are equidistant from two points, it is formed from pieces that are perpendicular
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bisectors, with one point from L and the other point from R. Thus, it is a piecewise
polygonal curve. Because no four points are cocircular, it follows that all vertices in the
Voronoi diagram can have degree at most three. However, because the contour separates
the plane into only two types of regions, it can contain only vertices of degree two. Thus
it can consist only of the disjoint union of closed curves (actually this never happens, as
we will see) and unbounded curves. Observe that if we orient the contour counterclock-
wise with respect to each point in R (clockwise with respect to each point in L), then
each segment must be directed in the −y directions, because L and R are separated by
a vertical line. Thus, the contour contains no horizontal cusps. This implies that the
contour cannot contain any closed curves, and hence contains only vertically monotone
unbounded curves. Also, this orientability also implies that there is only one such curve.

Lemma: The topmost (bottommost) edge of the contour is the perpendicular bisector for
the two points forming the upper (lower) tangent of the left hull and the right hull.

Proof: This follows from the fact that the vertices of the hull correspond to unbounded
Voronoi polygons, and hence upper and lower tangents correspond to unbounded edges
of the contour.

These last two theorem suggest the general approach. We start by computing the upper
tangent, which we know can be done in linear time (once we know the left and right hulls, or
by prune and search). Then, we start tracing the contour from top to bottom. When we are
in Voronoi polygons V (l0) and V (r0) we trace the bisector between l0 and r0 in the negative
y-direction until its first contact with the boundaries of one of these polygons. Suppose that
we hit the boundary of V (l0) first. Assuming that we use a good data structure for the
Voronoi diagram (e.g. quad-edge data structure) we can determine the point l1 lying on the
other side of this edge in the left Voronoi diagram. We continue following the contour by
tracing the bisector of l1 and r0.

However, in order to insure efficiency, we must be careful in how we determine where the
bisector hits the edge of the polygon. We start tracing the contour between l0 and r0 (see
Fig. 162). By walking along the boundary of V (l0) we can determine the edge that the contour
hits first. This can be done in time proportional to the number of edges in V (l0) (which can
be as large as O(n)). However, we discover that before the contour hits the boundary of
V (l0) it hits the boundary of V (r0). We find the new point r1 and now trace the bisector
between l0 and r1. Again we can compute the intersection with the boundary of V (l0) in
time proportional to its size. However the contour hits the boundary of V (r1) first, and so we
go on to r2. As can be seen, if we are not smart, we can rescan the boundary of V (l0) over
and over again, until the contour finally hits the boundary. If we do this O(n) times, and the
boundary of V (l0) is O(n), then we are stuck with O(n2) time to trace the contour.

l0
r0

r1

contour

V (l0)
V (r0)

Fig. 162: Tracing the contour.
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We have to avoid this repeated rescanning. However, there is a way to scan the boundary of
each Voronoi polygon at most once. Observe that as we walk along the contour, each time we
stay in the same polygon V (l0), we are adding another edge onto its Voronoi polygon. Because
the Voronoi polygon is convex, we know that the edges we are creating turn consistently in the
same direction (clockwise for points on the left, and counterclockwise for points on the right).
To test for intersections between the contour and the current Voronoi polygon, we trace the
boundary of the polygon clockwise for polygons on the left side, and counterclockwise for
polygons on the right side. Whenever the contour changes direction, we continue the scan
from the point that we left off. In this way, we know that we will never need to rescan the
same edge of any Voronoi polygon more than once.

Lecture 29: Multidimensional Polytopes and Convex Hulls

Polytopes: In this lecture we present basic facts about convex polytopes in dimensions three and
higher. Although for beings dwelling in 3-dimensional space, spaces of high dimension may
seem rather esoteric, but there are many problems in mathematics that can be reduced to the
analysis of polytopes in dimensions much higher then the familiar three. Unfortunately for
us, our intuitions about space have developed in these lower dimensions, and it requires a bit
of imagination to see how familiar 3-dimensional concepts generalize to higher dimensions.

Before delving into this, let us first present some basic terms. We define a polytope (or
more specifically a d-polytope) to be the convex hull of a finite set of points in Rd. We say
that a set of k points is affinely independent if no one point can be expressed as an affine
combination (that is, a linear combination whose coefficients sum to 1) of the others. For
example, three points are affinely independent if they are not on the same line, four points
are affinely independent if they are not on the same plane, and so on.

A simplex (or k-simplex ) is defined to be the convex hull of k+ 1 affinely independent points.
For example, the line segment joining two points is a 1-simplex, the triangle defined by three
points is a 2-simplex, and the tetrahedron defined by four points is a 3-simplex (see Fig. 163).
Observe that a k-simplex is the smallest (in terms of number of vertices) convex polytope
that is k-dimensional.

0-simplex 1-simplex 2-simplex 3-simplex Supporting hyperplane

P

h

Fig. 163: Simplices and supporting hyperplane.

Faces: The boundary of a polyhedron in 3-space is bounded by vertices, edges, and faces. To
generalize this to higher dimensions, let us first introduce a few definitions. Any (d − 1)-
dimensional hyperplane h in d-dimensional space divides the space into (open) halfspaces,
denoted h− and h+, so that Rd = h− ∪ h ∪ h+. Let us define h− = h− ∪ h and h+ = h+ ∪ h
to be the closures of these halfspaces. We say that a hyperplane supports a polytope P (and
is called a supporting hyperplane of P ) if h ∩ P is nonempty and P is entirely contained
within either h− or h+ (see Fig. 163). The intersection of the polytope and any supporting
hyerplane is called a face of P . Faces are themselves convex polytopes of dimensions ranging
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from 0 to d−1. The 0-dimensional faces are called vertices, the 1-dimensional faces are called
edges, and the (d− 1)-dimensional faces are called facets. (Note: When discussing polytopes
in dimension 3, people often use the term “face” when they mean “facet”. It is usually clear
from context which meaning is intended.)

a

d
b

c

Vertices: a, b, c, d

Edges: ab, ac, ad, bc, bd, cd

Faces: abc, abd, acd, bcd

Fig. 164: A tetrahedron and its proper faces.

The faces of dimensions 0 to d− 1 are called proper faces (see Fig. 164). It will be convenient
to define two additional faces. The empty set is said to be a face of dimension −1 and the
entire polytope is said to be a face of dimension d. We will refer to all the faces, including
these two additional faces as the improper faces of the polytope.

There are a number of facts that follow from these definitions.

� The boundary of a polytope is the union of its proper faces.

� A polytope has a finite number of faces. Each face is a polytope.

� A polytope is the convex hull of its vertices.

� A polytope is the intersection of a finite number of closed halfspaces. (Note that the con-
verse need not be true, since the intersection of halfspaces may generally be unbounded.
Such an unbounded convex body is either called a polyhedron or a unbounded polytope.)

Observe that a d-simplex has a particularly regular face structure. If we let v0, v1, v2, . . . , vd
denote the vertices of the simplex, then for each 2-element set {vi, vj} there is an edge of the
simplex joining these vertices, for each 3-element set {vi, vj , vk} there is a 3-face joining these
these three vertices, and so on. We have the following useful obervation.

Observation: The number of j-dimensional faces on a d-simplex is equal to the number
(j + 1)-element subsets of domain of size d+ 1, that is,(

d+ 1

j + 1

)
=

(d+ 1)!

(j + 1)!(d− j)!
.

Incidence Graph: How can we represent the boundary structure of a polytope? In addition to
the geometric properties of the polytope (e.g., the coordinates of its vertices or the equation
of its faces) it is useful to store discrete connectivity information, which is often referred to as
the topology of the polytope. There are many representations for polytopes. In dimension 2,
a simple circular list of vertices suffices. In dimension 3, we need some sort of graph structure.
There are many data structures that have been proposed. They are evaluated based on the
ease with which the polytope can be traversed and the amount of storage needed. (Examples
include the DCEL, winged-edge, quad-edge, and half-edge data structures.)

A useful structure for polytopes in arbitrary dimensions is called the incidence graph. Each
node of the incidence graph corresponds to an (improper) face of the polytope. We create
an edge between two faces if their dimension differs by 1, and one (of lower dimension) is
contained within the other (of higher dimension). An example is shown in Fig. 165 for a
tetrahedron. Note the similarity between this graph and the lattice of subsets based on
inclusion relation.
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abd

abcd

a dc

bc bd cdacab

acd bcdabc

Fig. 165: The incidence graph for a tetrahedron.

Polarity: There are two natural ways to create polytopes. One is as the convex hull of a set of
points and the other is as the intersection of a collection of closed halfspaces (assuming it is
bounded). As we shall see, these two concepts are essentially identical, and they are connected
through the concept of the polar transformation, which maps points to hyperplanes and vice
versa. (We have seem the projective dual transformation earlier this semester, which maps a
point p = (a, b) to the line y = ax− b. The polar is just another example of duality.)

Fix any point O in d-dimensional space. We may think of O as the origin, and therefore,
any point p ∈ Rd can be viewed as a d-element vector. (If O is not the origin, then p can be
identified with the vector p−O.) Given two vectors p and v, let (p · x) denote the standard
vector dot-product : (p · x) = p1x1 + · · · + pdxd. The polar hyperplane of p, denoted p∗ is
defined to be the set

p∗ = {x ∈ Rd | (p · x) = 1}.

Clearly, this is a linear equation in the coordinates of x, and therefore p∗ is a hyperplane in
Rd. Observe that if p is on the unit sphere centered about O, then p∗ is a hyperplane that

passes through p and is orthogonal to the vector
−→
Op. As we move p away from the origin

along this vector, the dual hyperplane moves closer to the origin, and vice versa, so that the
product of their distances from the origin is always 1.

As with the projective dual, the polar transformation satisfies certain incidence and inclusion
properties involving points and hyperplanes. Now, let h be any hyperplane that does not
contain O. The pole of h, denoted h∗ is the point that satisfies (h∗ · x) = 1, for all x ∈ h (see
Fig. 166(a)).

O

1/c

c
p

p∗
O O

h
p

p∗

h∗

O O

h+p p∗−

h∗

incidence preserving

inclusion reversing

(a) (b)

Polar transformation

Fig. 166: The polar transformation and its properties.

Clearly, the polar transformation is an involution, that is, (p∗)∗ = p and (h∗)∗ = h. The polar
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transformation preserves important geometric relationships. Given a hyperplane h, define

h+ = {x ∈ Rd | (x · h∗) < 1} h− = {x ∈ Rd | (x · h∗) > 1}.

That is, h+ is the open halfspace containing the origin and h− is the other open halfspace for
h.

Claim: Let p be any point in Rd and let h be any hyperplane in Rd. The polar transformation
satisfies the following two properties.

Incidence preserving: The polarity transformation preserves incidence relationships
between points and hyperplanes. That is, p belongs to h if and only if h∗ belongs
to p∗ (see Fig. 166(b)).

Inclusion Reversing: The polarity transformation reverses relative position relation-
ships in the sense that p belongs to h+ if and only if h∗ belongs to (p∗)−, and p
belongs to h− if and only if h∗ belongs to (p∗)+ (see Fig. 166(b)).

(In general, any bijective transformation that preserves incidence relations is called a duality.
The above claim implies that polarity is a duality.)

Convex Hulls and Halfspace Intersection: We can now formalize the aforementioned notion
of polytope equivalence. The idea will be to transform a polytope defined as the convex
hull of a finite set of points to a polytope defined as the intersection of a finite set of closed
halfspaces. To do this, we need a way of mapping a point to a halfspace. Our approach will
be to take the halfspace that contains the origin. For any point p ∈ Rd define the following
closed halfspace based on its polar:

p# = p∗+ = {x ∈ Rd | (x · p) ≤ 1}.

(The notation is ridiculous, but this is easy to parse. First consider the polar hyperplane of p,
and take the closed halfspace containing the origin.) Observe that if a halfspace h+ contains
p, then by the inclusion-reversing property of polarity, the polar point h∗ is contained within
p#.

Now, for any set of points P ⊆ Rd, we define its polar image to be the intersection of these
halfspaces

P# = {x ∈ Rd | (x · p) ≤ 1, ∀p ∈ P}.

Thus P# is the intersection of an (infinite) set of closed halfspaces, one for each point p ∈ P .
A halfspace is convex and the intersect of convex sets is convex, so P# is a convex set.

Our objective is to show that P and P# are effectively equivalent to one another subject to
the mirror of polarity. For example, each vertex (0-face) in P corresponds to a facet ((d− 1)-
face) in P#. Two vertices are joined by an edge (1-face) of P if and only if the corresponding
facets are adjacent to one another in P# (along a (d − 2)-face). Basically, any incidence
assertion involving k-dimensional entities of P should apply equivalently to corresponding
(d− 1− k)-dimensional entities of P#.

To see the connection with convex hulls, let S = {p1, . . . , pn} be a set of points and let
P = conv(S) (see Fig. 167(a)). Let us assume that the origin O is contained within P .
(We can guarantee this in a number of ways, e.g., by translating P so its center of mass
coincides with the origin.) By definition, the convex hull is the intersection of the set of all
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closed halfspaces that contain S. That is, P is the intersection of an infinite set of closed
halfspaces. What are these halfspaces? If h+ is a halfspace that contains all the points of S,
then by the inclusion-reversing property of polarity, the polar point h∗ is contained within

all the hyperplanes p∗+i , which implies that h∗ ∈ P#. This means that, through polarity,
the halfspaces whose intersection is the convex hull of a set of points is essentially equivalent
to the polar points that lie within the polar image of the convex hull. (For example, in
Fig. 167(b) the vertices appearing on convex hull of P correspond to the edges of P#, and
they appear in the same cyclic order. The redundant point d lies inside of P corresponds to
a redundant halfplane d∗ that lies outside of P#. Observe that every edge of P corresponds
to a vertex of P#.)

O

(a) (b)

O

P
a

b c

ef

d
a∗

b∗

c∗

e∗

d∗f∗

P#

Fig. 167: The polar image of a convex hull.

Lemma: Let S = {p1, . . . , pn} be a set of points in Rd and let P = conv(S). Then its polar
image is the intersection of the corresponding polar halfspaces, that is,

P# =
n⋂
i=1

p∗+i .

Furthermore:

(i) A point a ∈ Rd lies on the boundary of P if and only if the polar hyperplane a∗

supports P#.

(ii) Each k-face of P corresponds to a (d − 1 − k)-face of P# and given faces f1, f2 of

P where f1 ⊆ f2, the corresponding faces f#
1 , f#

2 of P# satisfy f#
1 ⊇ f

#
2 . (That is,

inclusion relations are reversed.)

It is not hard to prove that the polar image of a polytope is an involution, that is (P#)# = P .
(See Boissonnat and Yvinec for proofs of all these facts.)

Thus, the polar image P# of a polytope is structurally isomorphic to P and all affine relations
on P map through polarity to P#. From a computational perspective, this means that we
compute the polar of all the points of P , consider the halfspaces that contain the origin, and
take the intersection of these halfspaces. Thus, the problems of computing convex hulls and
computing the intersection of halfspaces are computationally equivalent. (In fact, once you
have computed the incidence graph for one, you just flip it “upside-down” to get the other!)

Simple and Simplicial Polytopes: Our next objective is to investigate the relationship between
the number of vertices and number of facets on a convex polytope. Earlier in the semester
we saw that a 3-dimensional polyhedron with n vertices has O(n) edges and faces. This was
a consequence of Euler’s formula. In order to investigate the generalization of this to higher
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dimensions, we begin with some definitions. A polytope is simplicial if all its proper faces
are simplices (see Fig. 168(a)). Observe that if a polytope is the convex hull of a set of points
in general position, then for 0 ≤ j ≤ d− 1, each j-face is a j-simplex. (For example, in R3 a
face with four vertices would imply that these four points are coplanar, which would violate
general position.)

(b)

Simple polytope

(a)

Simplicial polytope

Fig. 168: Simplicial and simple polytopes.

If we take a dual view, consider a polytope that is the intersection of a set of n halfspaces
in general position. Then each j-face is the intersection of exactly (d − j) hyperplanes. A
polytope is said to be simple if each j-face is the intersection of exactly (d− j)-hyperplanes
(see Fig. 168(b)). In particular, this implies that each vertex is incident to exactly d facets.
Further, each j-face can be uniquely identified with a subset of d − j hyperplanes, whose
intersection defines the face. Following the same logic as in the previous paragraph, it follows
that the number of vertices in such a polytope is naively at most O(nd). (Again, we’ll see
later that the tight bound is O(nbd/2c).) It follows from the results on polarity that a polytope
is simple if any only if its polar is simplicial.

An important observation about simple polytopes is that the local region around each vertex
is equivalent to a vertex of a simplex. In particular, if we cut off a vertex of a simple polytope
by a hyperplane that is arbitrarily close to the vertex, the piece that has been cut off is a
d-simplex.

It easy to show that among all polytopes having a fixed number of vertices, simplicial poly-
topes maximize the number of faces of all higher degrees. (Observe that otherwise there must
be degeneracy among the vertices. Perturbing the points breaks the degeneracy, and will
generally split faces of higher degree into multiple faces of lower degree.) Dually, among all
polytopes having a fixed number of facets, simple polytopes maximize the number of faces of
all lower degrees.

Another observation allows us to provide crude bounds on the number of faces of various
dimensions. Consider first a simplicial polytope having n vertices. Each (j − 1)-face can be
uniquely identified with a subset of j points whose convex hull gives this face. Of course,
unless the polytope is a simplex, not all of these subsets will give rise to a face. Nonetheless
this yields the following naive upper bound on the numbers of faces of various dimensions.
By applying the polar transformation we in fact get two bounds, one for simplicial polytopes
and one for simple polytopes.

Lemma: (Naive bounds)

(i) The number faces of dimension j of a polytope with n vertices is at most
(
n
j+1

)
.

(ii) The number of faces of dimension j of a polytope with n facets is at most
(
n
d−j
)
.
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These naive bounds are not tight. Tight bounds can be derived using more sophisticated
relations on the numbers of faces of various dimensions, called the Dehn-Sommerville relations.
We will not cover these, but see the discussion below of the Upper Bound Theorem.

The Combinatorics of Polytopes: Let P be a d-polytope. For −1 ≤ k ≤ d, let nk(P ) denote
the number of k-faces of P . Clearly n−1(P ) = nd(P ) = 1. The numbers of faces of other
dimensions generally satisfy a number of combinatorial relationships. The simplest of these
is called Euler’s relation:

Theorem: (Euler’s Relation) Given any d-polytope P we have
∑d

k=−1(−1)knk(P ) = 0.

This says that the alternating sum of the numbers of faces sums to 0. For example, a cube
has 8 vertices, 12 edges, 6 facets, and together with the faces of dimension −1 and d we have

−1 + 8− 12 + 6− 1 = 0.

Although the formal proof of Euler’s relation is rather complex, there is a very easy way to
see why its true. First, consider the simplest polytope, namely a d-simplex, as the base case.
(This is easy to see if you recall that for a simplex nj =

(
d+1
j+1

)
. If you take the expression

(1− 1)d+1 and expand it symbolically (as you would for example for (a+ b)2 = a2 + 2ab+ b2)
you will get exactly the sum in Euler’s formula. Clearly (1−1)d+1 = 0. The induction part of
the proof comes by observing that in order making a complex polytope out of a simple one,
essentially involves a series of splitting operation. Every time you split a face of dimension j,
you do so by adding a face of dimension j − 1. Thus, nj−1 and nj each increase by one, and
so the value of the alternating sum is unchanged.

Euler’s relation can be used to prove that the convex hull of a set of n points in 3-space has
O(n) edges and O(n) faces. However, what happens as dimension increases? We will prove
the following theorem. The remarkably simple proof is originally due to Raimund Seidel. We
will state the theorem both in its original and dual form.

The Upper Bound Theorem: A polytope defined by the convex hull of n points in Rd
has O(nbd/2c) facets.

Upper Bound Theorem (Polar Form): A polytope defined by the intersection of n half-
spaces in Rd has O(nbd/2c) vertices.

Proof: It is not hard to show that among all polytopes, simplicial polytopes maximize the
number of faces for a given set of vertices and simple polytopes maximize the number of
vertices for a given set of faces. We will prove just the polar form of the theorem, and
the other will follow by polar equivalence.

Consider a polytope defined by the intersection of n halfspaces in general position. Let
us suppose by convention that the xd axis is the vertical axis. Given a face, its highest
vertex and lowest vertices are defined as those having the maximum and minimum xd
coordinates, respectively. (There are no ties if we assume general position.)

The proof is based on a charging argument. We will place a charge at each vertex. We
will then move the charge at each vertex to a specially chosen incident face, in such a
way that no face receives more than two charges. Finally, we will show that the number
of faces that receive charges is at most O(nbd/2c).

First, we claim that every vertex v is either the highest or lowest vertex for a j-face,
where j ≥ dd/2e. To see this, recall that the for a simple polytope, the neighborhood
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immediately surrounding any vertex is isomorphic to a simplex. Thus, v is incident to
exactly d edges (1-faces). (See Fig. 169 for an example in R5.) Consider a horizontal
(that is, orthogonal to xd) hyperplane passing through v. Since there are d edges in all,
at least dd/2e of these edges must lie on the same side of this hyperplane. (By general
position we may assume that no edge lies exactly on the hyperplane.)

Since the local neighborhood about v is a simplex, there is a face of dimension at least
dd/2e that spans these edges and is incident to v (this is the 3-face lying above v in
Fig. 169). Therefore, v is either the lowest or highest vertex for this face. We assess
v’s charge to this face. Thus, we may charge every vertex of the polytope to face of
dimension at least dd/2e, and every such face will be charged at most twice (once by its
lowest and once by its highest vertex).

v

This 3-face is charged by v
xd

Fig. 169: Proof of the Upper Bound Theorem in R5. In this case the three edges above v span a
3-face whose lowest vertex is v.

All that remains is to count the number of faces that have been charged and multiply by
2. Recalling our earlier lemma on the naive bound on the number of j-faces of a simple
polytope with n facets is

(
n
d−j
)
. (Each j-face is arises from the intersection of d − j

hyperplanes and this is number of (d− j)-element subsets of hyerplanes.) Summing this
up over all the faces of dimension dd/2e and higher we find that the number of vertices
is at most

2
d∑

j=dd/2e

(
n

d− j

)
.

By changing the summation index to k = d− j and making the observation that
(
n
k

)
is

O(nk), we have that the number of vertices is at most

2

bd/2c∑
k=0

(
n

k

)
=

bd/2c∑
k=0

O(nk).

This is a geometric series, and so is dominated asymptotically by its largest term. There-
fore it follows that the number of charges, that is, the number of vertices is at most

O
(
nbd/2c

)
,

and this completes the proof.

Is this bound tight? Yes it is. There is a family of polytopes, called cyclic polytopes, which
match this asymptotic bound. (See Boissonnat and Yvinec for a definition and proof.)
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Lecture 30: Interval Trees

Segment Data: So far we have considered geometric data structures for storing points. However,
there are many others types of geometric data that we may want to store in a data structure.
Today we consider how to store orthogonal (horizontal and vertical) line segments in the
plane. We assume that a line segment is represented by giving its pair of endpoints. The
segments are allowed to intersect one another.

As a basic motivating query, we consider the following window query. We are given a set
of orthogonal line segments S (see Fig. 170(a)), which have been preprocessed. Given an
orthogonal query rectangle W , we wish to count or report all the line segments of S that
intersect W (see Fig. 170(b)). We will assume that W is a closed and solid rectangle, so that
even if a line segment lies entirely inside of W or intersects only the boundary of W , it is still
reported. For example, in Fig. 170(b) the query would report the segments that are shown
with heavy solid lines, and segments with broken lines would not be reported.

W

(a) (b)

S

Fig. 170: Window Query.

Window Queries for Orthogonal Segments: We will present a data structure, called the in-
terval tree, which (combined with a range tree) can answer window counting queries for
orthogonal line segments in O(log2 n) time, where n is the number line segments. It can
report these segments in O(k + log2 n) time, where and k is the total number of segments
reported. The interval tree uses O(n log n) storage and can be built in O(n log n) time.

We will consider the case of range reporting queries. (There are some subtleties in making
this work for counting queries.) We will derive our solution in steps, starting with easier
subproblems and working up to the final solution. To begin with, observe that the set of
segments that intersect the window can be partitioned into three types: those that have no
endpoint in W , those that have one endpoint in W , and those that have two endpoints in W .

We already have a way to report segments of the second and third types. In particular, we
may build a range tree just for the 2n endpoints of the segments. We assume that each
endpoint has a cross-link indicating the line segment with which it is associated. Now, by
applying a range reporting query to W we can report all these endpoints, and follow the cross-
links to report the associated segments. Note that segments that have both endpoints in the
window will be reported twice, which is somewhat unpleasant. We could fix this either by
sorting the segments in some manner and removing duplicates, or by marking each segment
as it is reported and ignoring segments that have already been marked. (If we use marking,
after the query is finished we will need to go back an “unmark” all the reported segments in
preparation for the next query.)
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All that remains is how to report the segments that have no endpoint inside the rectangular
window. We will do this by building two separate data structures, one for horizontal and
one for vertical segments. A horizontal segment that intersects the window but neither of its
endpoints intersects the window must pass entirely through the window. Observe that such
a segment intersects any vertical line passing from the top of the window to the bottom. In
particular, we could simply ask to report all horizontal segments that intersect the left side
of W . This is called a vertical segment stabbing query. In summary, it suffices to solve the
following subproblems (and remove duplicates):

Endpoint inside: Report all the segments of S that have at least one endpoint inside W .
(This can be done using a range query.)

Horizontal through segments: Report all the horizontal segments of S that intersect the
left side of W . (This reduces to a vertical segment stabbing query.)

Vertical through segments: Report all the vertical segments of S that intersect the bot-
tom side of W . (This reduces to a horizontal segment stabbing query.)

We will present a solution to the problem of vertical segment stabbing queries. Before dealing
with this, we will first consider a somewhat simpler problem, and then modify this simple
solution to deal with the general problem.

Vertical Line Stabbing Queries: Let us consider how to answer the following query, which is
interesting in its own right. Suppose that we are given a collection of horizontal line segments
S in the plane and are given an (infinite) vertical query line `q : x = xq. We want to report
all the line segments of S that intersect `q (see Fig. 171(a)). Notice that for the purposes of
this query, the y-coordinates are really irrelevant, and may be ignored. We can think of each
horizontal line segment as being a closed interval along the x-axis.
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Fig. 171: Line Stabbing Query. (We have organized the horizontal segments into groups according
to their y-coordinates, but the y-coordinates can be arbitrary.)

As is true for all our data structures, we want some balanced way to decompose the set of
intervals into subsets. Since it is difficult to define some notion of order on intervals, we instead
will order the endpoints. Sort the interval endpoints along the x-axis. Let 〈x1, x2, . . . , x2n〉
be the resulting sorted sequence. Let xmed be the median of these 2n endpoints. Split the
intervals into three groups, L, those that lie strictly to the left of xmed, R those that lie strictly
to the right of xmed, and M those that contain the point xmed (see Fig. 171(b)). We can then
define a binary tree by putting the intervals of L in the left subtree and recursing, putting
the intervals of R in the right subtree and recursing. Note that if xq < xmed we can eliminate
the right subtree and if xq > xmed we can eliminate the left subtree.
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But how do we handle the intervals of M that contain xmed? We want to know which of these
intervals intersects the vertical line `q. At first it may seem that we have made no progress,
since it appears that we are back to the same problem that we started with. However, we
have gained the information that all these intervals intersect the vertical line x = xmed. How
can we use this to our advantage?

Let us suppose for now that xq ≤ xmed. How can we store the intervals of M to make it easier
to report those that intersect `q. The simple trick is to sort these lines in increasing order of
their left endpoint. Let ML denote the resulting sorted list. Observe that if some interval in
ML does not intersect `q, then its left endpoint must be to the right of xq, and hence none of
the subsequent intervals intersects `q. Thus, to report all the segments of ML that intersect
`q, we simply traverse the sorted list and list elements until we find one that does not intersect
`q, that is, whose left endpoint lies to the right of xq. As soon as this happens we terminate.
If k′ denotes the total number of segments of M that intersect `q, then clearly this can be
done in O(k′ + 1) time.

The case xq > xmed is symmetrical. We simply sort all the segments of M in a sequence, MR,
which is sorted from right to left based on the right endpoint of each segment. Thus each
element of M is stored twice, but this will not affect the size of the final data structure by
more than a constant factor. The resulting data structure is called an interval tree.

Interval Trees: The general structure of the interval tree was derived above. Each node of the
interval tree has a left child, right child, and itself contains the median x-value used to split
the set, xmed, and the two sorted sets ML and MR (represented either as arrays or as linked
lists) of intervals that overlap xmed. We assume that there is a constructor that builds a node
given these three entities. The following code block presents the basic recursive step in the
construction of the interval tree. The initial call is root = IntTree(S), where S is the initial
set of intervals. Unlike most of the data structures we have seen so far, this one is not built
by the successive insertion of intervals (although it would be possible to do so). Rather we
assume that a set of intervals S is given as part of the constructor, and the entire structure
is built all at once. We assume that each interval in S is represented as a pair (xlo, xhi). See
Fig. 172(a)) for an example.

Interval tree construction
IntTreeNode IntTree(IntervalSet S) {

if (|S| == 0) return null // no more

xMed = median endpoint of intervals in S // median endpoint

L = {[xlo, xhi] in S | xhi < xMed} // left of median

R = {[xlo, xhi] in S | xlo > xMed} // right of median

M = {[xlo, xhi] in S | xlo <= xMed <= xhi} // contains median

ML = sort M in increasing order of xlo // sort M

MR = sort M in decreasing order of xhi

t = new IntTreeNode(xMed, ML, MR) // this node

t.left = IntTree(L) // left subtree

t.right = IntTree(R) // right subtree

return t

}
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Fig. 172: Interval Tree.

We assert that the height of the tree is O(log n). To see this observe that there are 2n
endpoints. Each time through the recursion we split this into two subsets L and R of sizes
at most half the original size (minus the elements of M). Thus after at most lg(2n) levels we
will reduce the set sizes to 1, after which the recursion bottoms out. Thus the height of the
tree is O(log n).

Implementing this constructor efficiently is a bit subtle. We need to compute the median of
the set of all endpoints, and we also need to sort intervals by left endpoint and right endpoint.
The fastest way to do this is to presort all these values and store them in three separate lists.
Then as the sets L, R, and M are computed, we simply copy items from these sorted lists to
the appropriate sorted lists, maintaining their order as we go. If we do so, it can be shown
that this procedure builds the entire tree in O(n log n) time.

The algorithm for answering a stabbing query was derived above. We present this algorithm
in the following code block. Let xq denote the x-coordinate of the query line.

Line Stabbing Queries for an Interval Tree
stab(IntTreeNode t, Scalar xq) {

if (t == null) return // fell out of tree

if (xq < t.xMed) { // left of median?

for (i = 0; i < t.ML.length; i++) { // traverse ML

if (t.ML[i].lo <= xq) print(t.ML[i])// ..report if in range

else break // ..else done

}

stab(t.left, xq) // recur on left

}

else { // right of median

for (i = 0; i < t.MR.length; i++) { // traverse MR

if (t.MR[i].hi >= xq) print(t.MR[i])// ..report if in range

else break // ..else done

}

stab(t.right, xq) // recur on right

}

}

This procedure actually has one small source of inefficiency, which was intentionally included
to make code look more symmetric. Can you spot it? Suppose that xq = t.xmed? In this case
we will recursively search the right subtree. However this subtree contains only intervals that
are strictly to the right of xmed and so is a waste of effort. However it does not affect the
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asymptotic running time.

As mentioned earlier, the time spent processing each node is O(1 + k′) where k′ is the total
number of points that were recorded at this node. Summing over all nodes, the total reporting
time is O(k+v), where k is the total number of intervals reported, and v is the total number of
nodes visited. Since at each node we recur on only one child or the other, the total number of
nodes visited v is O(log n), the height of the tree. Thus the total reporting time is O(k+log n).

Vertical Segment Stabbing Queries: Now let us return to the question that brought us here.
Given a set of horizontal line segments in the plane, we want to know how many of these
segments intersect a vertical line segment. Our approach will be exactly the same as in
the interval tree, except for how the elements of M (those that intersect the splitting line
x = xmed) are handled.

Going back to our interval tree solution, let us consider the set M of horizontal line segments
that intersect the splitting line x = xmed and as before let us consider the case where the
query segment q with endpoints (xq, ylo) and (xq, yhi) lies to the left of the splitting line.
The simple trick of sorting the segments of M by their left endpoints is not sufficient here,
because we need to consider the y-coordinates as well. Observe that a segment of M stabs the
query segment q if and only if the left endpoint of a segment lies in the following semi-infinite
rectangular region (see Fig. 173).

{(x, y) | x ≤ xq and ylo ≤ y ≤ yhi}.

Observe that this is just an orthogonal range query. (It is easy to generalize the procedure
given last time to handle semi-infinite rectangles.) The case where q lies to the right of xmed

is symmetrical.

xmed

q

Fig. 173: The segments that stab q lie within the shaded semi-infinite rectangle.

So the solution is that rather than storing ML as a list sorted by the left endpoint, instead
we store the left endpoints in a 2-dimensional range tree (with cross-links to the associated
segments). Similarly, we create a range tree for the right endpoints and represent MR using
this structure.

The segment stabbing queries are answered exactly as above for line stabbing queries, except
that part that searches ML and MR (the for-loops) are replaced by searches to the appropriate
range tree, using the semi-infinite range given above.

We will not discuss construction time for the tree. (It can be done in O(n log n) time, but this
involves some thought as to how to build all the range trees efficiently). The space needed is
O(n log n), dominated primarily from the O(n log n) space needed for the range trees. The
query time is O(k + log3 n), since we need to answer O(log n) range queries and each takes
O(log2 n) time plus the time for reporting. If we use the spiffy version of range trees (which
we mentioned but never discussed) that can answer queries in O(k+ log n) time, then we can
reduce the total time to O(k + log2 n).
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Lecture 31: Hereditary Segment Trees and Red-Blue Intersection

Red-Blue Segment Intersection: We have been talking about the use of geometric data struc-
tures for solving query problems. Often data structures are used as intermediate structures for
solving traditional input/output problems, which do not involve preprocessing and queries.
(Another famous example of this is HeapSort, which introduces the heap data structure for
sorting a list of numbers.) Today we will discuss a variant of a useful data structure, the
segment tree. The particular variant is called a hereditary segment tree. It will be used to
solve the following problem.

Red-Blue Segment Intersection: Given a set B of m pairwise disjoint “blue” segments
in the plane and a set R of n pairwise disjoint “red” segments, count (or report) all
bichromatic pairs of intersecting line segments (that is, intersections between red and
blue segments).

It will make things simpler to think of the segments as being open (not including their end-
points). In this way, the pairwise disjoint segments might be the edges of a planar straight
line graph (PSLG). Indeed, one of the most important application of red-blue segment in-
tersection involves computing the overlay of two PSLG’s (one red and the other blue) This
is also called the map overlay problem, and is often used in geographic information systems.
The most time consuming part of the map overlay problem is determining which pairs of
segments overlap (see Fig. 174).

Fig. 174: Red-blue line segment intersection. The algorithm outputs the white intersection points
between segments of different colors. The segments of each color are pairwise disjoint (except
possibly at their endpoints).

Let N = n+m denote the total input size and let k denote the total number of bichromatic
intersecting pairs. We will present an algorithm for this problem that runs in O(k+N log2N)
time for the reporting problem and O(N log2N) time for the counting problem. Both algo-
rithms use O(N logN) space. Although we will not discuss it (but the original paper does) it
is possible to remove a factor of log n from both the running time and space, using a somewhat
more sophisticated variant of the algorithm that we will present.

Because the set of red segments are each pairwise disjoint as are the blue segments, it follows
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that we could solve the reporting problem by our plane sweep algorithm for segment inter-
section (as discussed in an earlier lecture) in O((N + k) logN) time and O(N) space. Thus,
the more sophisticated algorithm is an improvement on this. However, plane sweep will not
allow us to solve the counting problem.

The Hereditary Segment Tree: Recall that we are given two sets B and R, consisting of, re-
spectively, m and n line segments in the plane, and let N = m+ n. Let us make the general
position assumption that the 2N endpoints of these line segments have distinct x-coordinates.
The x-coordinates of these endpoints subdivide the x-axis into 2N+1 intervals, called atomic
intervals. We construct a balanced binary tree whose leaves are in 1–1 correspondence with
these intervals, ordered from left to right. Each internal node u of this tree is associated with
an interval Iu of the x-axis, consisting of the union of the intervals of its descendent leaves.
We can think of each such interval as a vertical slab Su whose intersection with the x-axis is
Iu (see Fig. 175(a)).

(a) (b)

Iu

Su

u

s

Associated with s

Fig. 175: Hereditary Segment Tree: Intervals, slabs and the nodes associated with a segment.

We associate a segment s with a set of nodes of the tree. A segment is said to span interval
Iu if its projection covers this interval. We associate a segment s with a node u if s spans Iu
but s does not span Ip, where p is u’s parent (see Fig. 175(b)).

Each node (internal or leaf) of this tree is associated with a list, called the blue standard list,
Bu of all blue line segments whose vertical projection contains Iu but does not contain Ip,
where p is the parent of u. Alternately, if we consider the nodes in whose standard list a
segment is stored, the intervals corresponding to these nodes constitute a disjoint cover of the
segment’s vertical projection. The node is also associated with a red standard list, denoted
Ru, which is defined analogously for the red segments. (See the figure below, left.)

Each node u is also associated with a list B∗u, called the blue hereditary list, which is the union
of the Bv for all proper descendents v or u. The red hereditary list R∗u is defined analogously.
(Even though a segment may occur in the standard list for many descendants, there is only
one copy of each segment in the hereditary lists.) The segments of Ru and Bu are called the
long segments, since they span the entire interval. The segments of R∗u and B∗u are called the
short segments, since they do not span the entire interval.

By the way, if we ignored the fact that we have two colors of segments and just considered the
standard lists, the resulting tree is called a segment tree. The addition of the hereditary lists
makes this a hereditary segment tree. Our particular data structure differs from the standard
hereditary segment tree in that we have partitioned the various segment lists according to
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Fig. 176: Hereditary Segment Tree with standard lists (left) and hereditary lists (right).

whether the segment is red or blue.

Time and Space Analysis: We claim that the total size of the hereditary segment tree isO(N logN).
To see this observe that each segment is stored in the standard list of at most 2 logN nodes.
The argument is very similar to the analysis of the 1-dimensional range tree. If you locate the
left and right endpoints of the segment among the atomic intervals, these define two paths in
the tree. In the same manner as canonical sets for the 1-dimensional range tree, the segment
will be stored in all the “inner” nodes between these two paths (see Fig. 177). The segment
will also be stored in the hereditary lists for all the ancestors of these nodes. These ancestors
lie along the two paths to the left and right, and hence there are at most 2 logN of them.
Thus, each segment appears in at most 4 logN lists, for a total size of O(N logN).

s

hereditary lists containing s

standard lists containing s

Fig. 177: Standard and hereditary lists containing a segment s.

The tree can be built in O(N logN) time. In O(N logN) time we can sort the 2N segment
endpoints. Then for each segment, we search for its left and right endpoints and insert the
segment into the standard and hereditary lists for the appropriate nodes and we descend each
path in O(1) time for each node visited. Since each segment appears in O(logN) lists, this
will take O(logN) time per segment and O(N logN) time overall.

Computing Intersections: Let us consider how to use the hereditaray segment tree to count and
report bichromatic intersections. We will do this on a node-by-node basis. Consider any node
u. We classify the intersections into two types, long-long intersections are those between a
segment of Bu and Ru, and long-short intersections are those between a segment of B∗u and
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Ru or between R∗u and Bu. Later we will show that by considering just these intersection
cases, we will consider every intersection exactly once.

Long-long intersections: Our approach follows along the lines of the inversion counting
procedures we have seen earlier in the semester. First, sort each of the lists Bu and Ru
of long segments in ascending order by y-coordinate. (Since the segments of each set are
disjoint, this order is constant throughout the interval for each set.) Let 〈b1, . . . , bmu〉
and 〈r1, . . . , rnu〉 denote these ordered lists. Merge these lists twice, once according to
their order along the left side of the slab and one according to their order along the right
side of the slab.

Observe that for each blue segment b ∈ Bu, this allows us to determine two indices i and
j, such that b lies between ri and ri+1 along the left boundary and between rj and rj+1

along the right boundary. (For convenience, we can think of segment 0 as an imaginary
segment at y = −∞.)

It follows that if i < j then b intersects the red segments ri+1, . . . , rj (see Fig. 178(a)). On
the other hand, if i ≥ j then b intersects the red segments rj+1, . . . , ri (see Fig. 178(b)).
We can count these intersections in O(1) time or report them in time proportional to
the number of intersections.

For example, consider the segment b = b2 in Fig. 178(c). On the left boundary it lies
between r3 and r4, and hence i = 3. On the right boundary it lies between r0 and r1,
and hence j = 0. (Recall that r0 is at y = −∞.) Thus, since i ≥ j it follows that b
intersects the three red segments {r1, r2, r3}.

rj+1
rj

ri+1

ri

rj+1

rj

ri+1

ri

b

b

rj+1
rj

ri+1

ri
rj+1

rj

ri+1

ri
b

b

(a) (b) (c)

r1

b1
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r3
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b2
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b4

r1

b1

r2

r3

r4

b2

b3

b4

Fig. 178: Red-blue intersection counting/reporting. Long-long intersections.

The total time to do this is dominated by the O(mu logmu + nu log nu) time needed to
sort both lists. The merging and counting only requires linear time.

Long-short intersections: There are two types of long-short intersections to consider.
Long red and short blue, and long blue and short red. Let us consider the first one,
since the other one is symmetrical.

As before, sort the long segments of Ru in ascending order according to y-coordinate,
letting 〈r1, r2, . . . , rnu〉 denote this ordered list. These segments naturally subdivide the
slab into nu+ 1 trapezoids. For each short segment b ∈ B∗u, perform two binary searches
among the segments of Ru to find the lowest segment ri and the highest segment rj
that b intersects. (See the figure above, right.) Then b intersects all the red segments
ri, ri+1, . . . , rj .

Thus, after O(log nu) time for the binary searches, the segments of Ru intersecting b can
be counted in O(1) time, for a total time of O(m∗u log nu). Reporting can be done in time
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Fig. 179: Red-blue intersection counting/reporting: Long-short intersections.

proportional to the number of intersections reported. Adding this to the time for the
long blue and short red case, we have a total time complexity of O(m∗u log nu+n∗u logmu).

If we let Nu = mu + nu + m∗u + n∗u, then observe that the total time to process vertex u is
O(Nu logNu) time. Summing this over all nodes of the tree, and recalling that

∑
uNu =

O(N logN) we have a total time complexity of

T (N) =
∑
u

Nu logNu ≤

(∑
u

Nu

)
logN = O(N log2N).

Correctness: To show that the algorithm is correct, we assert that each bichromatic intersection
is counted exactly once. For any bichromatic intersection between bi and rj consider the
leaf associated with the atomic interval containing this intersection point. As we move up to
the ancestors of this leaf, we will encounter bi in the standard list of one of these ancestors,
denoted ui, and will encounter rj at some node, denoted uj . If ui = uj then this intersection
will be detected as a long-long intersection at this node. Otherwise, one is a proper ancestor
of the other, and this will be detected as a long-short intersection (with the ancestor long and
descendent short).

Lecture 32: Ham-Sandwich Cuts

Ham Sandwich Cuts of Linearly Separated Point Sets: In this short lecture, we consider
an application of duality and arrangements, namely computing a Ham-Sandwich cut of two
linearly separable point sets. We are given n red points A, and m blue points B, and we want
to compute a single line that simultaneously bisects both sets. If the cardinality of either
set is odd, then the line passes through one of the points of the set (see Fig. 180(a)). It is a
well-known theorem from mathematics that such a simultaneous bisector exists for any pair
of sets (even for shapes, where bisection is in terms of area).

This problem can be solved in O(n2) time through the use of duality and line arrangements,
but we will consider a restricted version that can be solved much faster. In particular, let us
assume that the two sets can be separated by a line (see Fig. 180(b)). We may assume that
the points have been translated and rotated so the separating line is the y-axis. Thus all the
red points (set A) have positive x-coordinates, and all the blue points (set B) have negative
x-coordinates. As long as we are simplifying things, let’s make one last simplification, that
both sets have an odd number of points. This is not difficult to get around, but makes the
pictures a little easier to understand.
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Fig. 180: Ham sandwich cuts (a) general and (b) linearly-separable.

Ham-Sandwich Cuts in the Dual: Consider one of the sets, say A. Observe that for each slope
there exists one way to bisect the points. In particular, if we start a line with this slope at
positive infinity, so that all the points lie beneath it, and drop in downwards, eventually we
will arrive at a unique placement where there are exactly (n− 1)/2 points above the line, one
point lying on the line, and (n − 1)/2 points below the line (assuming no two points share
this slope). This line is called the median line for this slope.

What is the dual of this median line? Suppose that we dualize the points using the standard
dual transformation, where a point p = (pa, pb) is mapped to the line p∗ : y = pax − pb.
We obtain n lines in the plane. By starting a line with a given slope above the points and
translating it downwards, in the dual plane we moving a point from −∞ upwards in a vertical
line. Each time the line passes a point in the primal plane, the vertically moving point crosses
a line in the dual plane. When the translating line hits the median point (see Fig. 181(a)),
in the dual plane the moving point will hit a dual line such that there are exactly (n− 1)/2
dual lines above this point and (n − 1)/2 dual lines below this point (see Fig. 181(b)). We
define a point to be at level k, Lk, in an arrangement if there are at most k − 1 lines above
this point and at most n − k lines below this point. The median level in an arrangement of
n lines is defined to be the d(n− 1)/2e-th level in the arrangement (see Fig. 181(c)).

(a) (b)

`∗

`

(b)

Fig. 181: The (a) median line, (b) median point, and (c) median level.

Thus, the set of bisecting lines for set A in dual form consists of a polygonal curve. Be-
cause all the points of A have positive x-coordinates, their dual lines have positive slopes (see
Fig. 182(a)). Because this curve is formed from edges of the dual lines in A, and because
all lines in A have positive slope, the median level M(A) is monotonically increasing (see
Fig. 182(b)). Similarly, the median level for B, M(B), is a polygonal curve which is mono-
tonically decreasing. It follows that A and B must intersect at a unique point. The dual of
this point is a line that bisects both sets (see Fig. 182(c)).

Computing the Ham-Sandwich Cut by Prune and Search: We could compute the inter-
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Fig. 182: Ham sandwich: Dual formulation.

section of these two curves in O(n2) time by a simultaneous topological plane sweep of both
arrangements (even if the points were not linearly separable). However because of linear sep-
arability, it is possible to do much better, and in fact the problem can be solved in O(n+m)
time. Since the algorithm is rather complicated, I will not describe the details, but here
are the essential ideas. The algorithm operates by prune and search. In O(n + m) time we
will generate a hypothesis for where the ham sandwich point is in the dual plane, and if
we are wrong, we will succeed in throwing away a constant fraction of the lines from future
consideration.

First observe that for any vertical line in the dual plane, it is possible to determine in O(n+m)
time whether this line lies to the left or the right of the intersection point of the median levels,
M(A) and M(B). This can be done by computing the intersection of the dual lines of A with
this line, and computing their median in O(n) time, and computing the intersection of the
dual lines of B with this line and computing their median in O(m) time. If A’s median lies
below B’s median, then we are to the left of the ham sandwich dual point, and otherwise we
are to the right of the ham sandwich dual point. It turns out that with a little more work, it
is possible to determine in O(n+m) time whether the ham sandwich point lies to the right or
left of a line of arbitrary slope. The trick is to use prune and search. We find two lines L1 and
L2 in the dual plane (by a careful procedure that I will not describe). These two lines define
four quadrants in the plane. By determining which side of each line the ham sandwich point
lies, we know that we can throw away any line that does not intersect this quadrant from
further consideration. It turns out that by a judicious choice of L1 and L2, we can guarantee
that a fraction of at least (n + m)/8 lines can be thrown away by this process. We recurse
on the remaining lines. By the same sort of analysis we made in the Kirkpatrick and Seidel
prune and search algorithm for upper tangents, it follows that in O(n+m) time we will find
the ham sandwich point.

Lecture 33: Introduction to Computational Topology

What is Topology? We are all familiar with Euclidean spaces, especially the plane R2 where we
draw our figures and maps, and the physical space R3 where we actually live and move about.
Our direct experiences with these spaces immediately suggest a natural metric structure which
we can use to make useful measurements such as distances, areas, and volumes. Intuitively,
a metric recognizes which pairs of locations are close or far. In more physical terms, a metric
relates to the amount of energy it takes to move a particle of mass from one location to
another. If we are able to move particles between a pair of locations, we say the locations
are connected, and if the locations are close, we say they are neighbors. In every day life, we
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frequently rely more upon the abstract notions of neighborhoods and connectedness if we are
not immediately concerned with exact measurements. For instance, it is usually not a big
deal if we miss the elevator and opt to take the stairs, or miss an exit on the highway and
take the next one; these pairs of paths are equivalent if we are not too worried about running
late to an important appointment.

How do we develop our understanding of spaces without a metric structure? This brings to
mind the more familiar setting of graph theory, which deals with abstract networks of nodes
connected by edges. While we might picture a certain configuration of the nodes and their
interconnections, we are not too fixated on the exact positions of the nodes nor their relative
distances. Despite the underspecified shape or realization of the graph, we are still aware
of other qualitative properties, such as the adjacency relation and the number of connected
components, which are again easy to describe in terms of neighborhoods and connectedness.
Specifically, those qualitative properties are invariant under arbitrary deformations as long
as they preserve the neighborhood structure, i.e., the adjacency relation, of the graph.

Eulerian Paths. The foundations of graph theory are largely credited to Euler who established
its first result by resolving the well-known Eulerian path problem in 1735. In its original form,
the problem simply asked to find a path that crossed each of seven bridges exactly once; see
Figure 183(left).

⇒

Fig. 183: Seven Bridges of Königsberg, and the origin of graph theory. (Figures from [1, 2])

Euler’s topological insight was to recognize that the subpaths within each land mass are
irrelevant to the solution. This allows one to consider the abstract setting provided by the
usual graph model; see Figure 183(right). Next, observing how the path first enters into
a node through an edge before leaving through a different edge, Euler correctly identified
the issue with vertices of odd degree. In particular, an Eulerian path exists if and only if
the graph has exactly zero or two nodes of odd degree. Euler later published the result
under the title “The solution of a problem relating to the geometry of position,” where the
geometry of position indicates that it is about something more general than measurements
and calculations.

As hinted in the previous example, one of the main uses of topological ideas is to identify an
obstruction to the existence of an object.

Forbidden Graph Characterizations. If we cannot solve a problem on a given graphH, chances
are we cannot solve it on any other graph G whenever G contains something that looks like
H. To formalize this notion, define a contraction as the merging or identification of two
adjacent vertices. We say that H is a minor of G if H can be obtained by a sequence of
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contractions, edge deletions, and deletion of isolated vertices. The equivalent theorems of
Kuratowski (1930) and Wagner (1937) essentially state that a graph G is planar if and only if
its minors include neither K5 nor K3,3, i.e., the complete graph on five nodes and the complete
bipartite graph on six vertices; see Figure 184(a) and (b). Hence, the existence of a K5 or
K3,3 minor is an obstruction to planarity. The Petersen graph shown in Figure 184(c), which
serves as counterexample for many claims in graph theory, contains K5 and K3,3 as minors.
Hence, the Petersen graph is not planar.

(a) K5. (b) K3,3. (c) 3-coloring of the Petersen graph.

Fig. 184: Graph minors and coloring. (Figures from [3, 4, 5])

Another example of obstruction is provided in the context of graph coloring, which has many
applications in scheduling and distributed computing. Recall that a t-coloring of a graph is
an assignment of one of t colors to each vertex such that no two adjacent vertices get the
same color; see Figure 184(c). Clearly, a coloring of Kt requires at least t colors. One of
the deepest unsolved problems in graph theory is the Hadwiger conjecture (1943) postulating
that Kt minors are the only obstruction to the existence of colorings with fewer than t colors.

Beyond the discrete spaces commonly studied in graph theory, a topological space can be any
set endowed with a topology, i.e., a neighborhood structure. The mathematical subject of topology is
the formal study of properties of topological spaces which are invariant under continuous functions.
Such properties are simply referred to as topological invariants.

Genus. Intuitively, the genus of a connected and orientable surface is the number of holes or
handles on it; see Figure 185. It is a traditional joke that a topologist cannot distinguish his
coffee mug from his doughnut; as both have genus one, they may be (continuously) deformed
into one another and are in that sense topologically equivalent. In contrast, the mismatch in
the genus is an obstruction to the existence of continuous mappings from spheres to tori.

(a) g = 0. (b) g = 1. (c) g = 2. (d) g = 3.

Fig. 185: Genus of orientable surfaces. (Figures from [6, 7, 8, 9])
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In relation to the previous examples, the genus of a graph is the smallest g such that the
graph can be drawn without crossing on an orientable surface of genus g. Because the Earth
is (locally) flat, planar graphs can be drawn on the sphere implying they have genus zero.
More generally, the genus is one of the measures of complexity of the graph, and can be
exploited to obtain faster algorithms for graphs with small genus. Alas, deciding whether a
given graph has genus g is NP-complete.

While we may be interested in studying surfaces, or other topological spaces, we need simpler
discrete structures to keep computations easy or at all feasible. This workaround does not allow
us to compute everything we might have wanted, but it does provide very useful information. For
example, the previous example showed how the genus can be used to classify surfaces. It turns out
there is a closely related topological invariant which is more amenable to computation.

Euler’s Polyhedron Formula. The following remarkable formula by Euler is considered, to-
gether with his resolution of the Seven Bridges of Königsberg problem, as the first two theo-
rems in topology. Consider a polyhedron P ⊂ R3, and denote the number of vertices, edges,
and faces of P by V , E, and F , respectively. The Euler characteristic χ is defined as:

χ = V − F + E. (3)

For any convex polyhedron P , we have that χ = 2; see Figure 186. As the Euler characteristic
is a topological invariant, one correctly anticipates that it also evaluates to 2 for the sphere.

(a) 4− 6 + 4. (b) 8− 12 + 6. (c) 6− 12 + 8. (d) 20− 30 + 12. (e) 12− 30 + 20.

Fig. 186: Convex polyhedra with χ = 2. (Figures from [10, 11, 12, 13, 14])

The previous example confirms the intuition that convex polytopes are suitable as discrete
approximations to the sphere. In order to approximate arbitrary surfaces, which may not be
convex, we are going to need more flexible structures.

Simplicial Complexes. You are probably familiar with triangular subdivisions of planar shapes,
and the three-dimensional models suitable for rendering pipelines in computer games. Just a
collection of vertices and connecting edges suffice to define a bare-bones wireframe that still
captures the salient features of a shape; see Figure 187.

(a) Rendering all triangles. (b) Wireframe, edges only.

Fig. 187: The Utah teapot, arguably the most important object in computer graphics history.
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It will prove useful to use a notation that easily generalizes to higher dimensions. We start
with a set of points S ⊂ Rd, for d ≥ 0. We define a p-simplex σ as a subset of p + 1 points
in S, and we say that σ has dimension dimσ = p. For a geometric realization, the simplex
σ is the convex hull of p + 1 affinely-independent points; see Figure 188. We write this as
σ = conv{v0, . . . , vp}. To capture the structure of the simplex, we define a k-face of σ is a
simplex τ with (1) τ ⊆ σ, and (2) dim τ = k for −1 ≤ k ≤ p; we write this as τ � σ and call
σ a coface of τ . We say a (co)face of σ is proper if its dimension is different from dimσ, and
write ∂σ for the proper faces of σ. Finally, the interior of σ is defined as |σ| = σ − ∂σ.

(a) A 3-simplex. (b) Four 2-simplices. (c) Six 1-simplices. (d) Four 0-simplices.

Fig. 188: The simplicial structure of a tetrahedron.

Suppressing realizations for a moment, we define an abstract simplicial complex K as a col-
lection of simplices with the following closure property. Whenever a simplex σ appears in
K, all faces of σ also appear in K. Similarly, we say that K is a p-complex with dimension
dimK = maxσ∈K dimσ and underlying space |K| = ∪σ∈K |σ|. For a geometric realization,
we additionally require that for any two simplices σ, τ ∈ K, we have that σ ∩ τ ∈ K. When
this extra condition holds, we say that K is a simplicial complex. Every abstract simplicial
complex of dimension p has a geometric realization, as a proper simplicial complex, in R2p+1.

Before we can use simplicial complexes as proxies of topological spaces, we also need to ap-
proximate the continuous maps between such spaces through their simplicial proxies. We start by
building some intuition as to how continuous maps act on spaces.

Continuous Maps. Imagine we have two surfaces X and Y , and a mapping f : X → Y . In this
case, f takes a point x ∈ X to the corresponding point y = f(x) ∈ Y . Visually, y is where x
ends up after going through some deformation that takes X to Y ; see Figure 189. When do
we consider such mappings to be continuous? Imagine you label two nearby points x1 and
x2 on X and trace where they end up on Y . Once you identify the point y1 = f(x1), where
would you expect y2 = f(x2) to be? For example, take x1 and x2 to be the the eyes of the
cow.

Fig. 189: A continuous deformation of a cow model (X) into a ball (Y ). (Figure from [15])
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You are probably familiar with the notion of continuous functions from calculus which suggests
we use an ε-neighborhood V ⊆ Y around y and show that there is a corresponding δ = δ(ε)
such that all points in an δ-neighborhood U ⊆ X around x are mapped by f into V , i.e.,
f(U) ⊆ V . In the particularly familiar context of a univariate function g : R → R, the
neighborhoods in question are immediately realized as open intervals of the form (a, b) ⊂ R,
where there is no shortage of intervals in the continuum which is R for us to choose from.
Specifically, we require that limε→0 δ(ε) = 0; see Figure 190(a).

(a) Continuity at x = 2 by ε-δ. (b) Continuity at x ∈ X using neighborhoods.

Fig. 190: Essentially equivalent definitions of continuous functions. (Figures from [16, 17])

It is plausible to conclude that neighborhoods, rather than the ε and δ, are all we need for
continuity. Only that for general spaces, such as the surfaces X and Y , we have to work with
their particular neighborhoods as specified by their respective topologies; see Figure 190(b).
While not all topologies furnish neighborhoods as convenient as the intervals on the real line,
a meaningful version of continuous maps can be defined for spaces with similar topologies.

Given our enhanced understanding of continuity, it is about time to formalize what we mean
by topologically equivalent and simplicial proxy.

Homeomorphisms and Triangulations. A homeomorphism f : X → Y is a continuous func-
tion with a continuous inverse f−1 : Y → X. Whenever such a homeomorphism f exists, we
say that X and Y are homeomorphic, which literally translates to having the same shape.
Applying this precise notion to our simplicial proxies, we say that a simplicial complex X̂ is
a triangulation of X if its underlying space |X̂| is homeomorphic to X.

We can now proceed to approximate a continuous mapping f : X → Y by a discrete mapping
between triangulations f̂ : X̂ → Ŷ . But, what does it mean for such a mapping f̂ to be continuous?

Simplicial Neighborhoods. Take a point x in the underlying space |X̂|. To examine the conti-
nuity of f̂ at x, we need to consider the neighborhood of x on |X̂|. While x may belong to
many simplices of X̂, there is a unique simplex that contains x in its interior ; let us denote
this simplex by σ(x). If another point x′ ∈ X̂ is a neighbor of x, it might be the case that
x′ ∈ |σ(x)|. However, we need to allow x′ to go outside |σ(x)| and reach farther parts of X̂.

Let us consider what lies beyond |σ(x)|. For example, if dim X̂ = 3 and σ(x) is an edge with
dimσ(x) = 1, x′ could start at x in |σ(x)| and wander into a different simplex. Recalling the
geometric realization, we consider an ε-neighborhood around x. We allow this neighborhood
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to expand over nearby interior points of adjacent simplices without crossing any boundaries,
i.e., mimicking open intervals from calculus. For example, we do not connect x to the inte-
rior of an adjacent edge e unless there is a path through the interior of a common face or
tetrahedron, i.e., a coface. As such, the neighborhood of x is contained in the cofaces of σ(x).

X̂ 7→ Ŷ

Fig. 191: One star in each of X̂ and Ŷ . The star condition includes the image of one into the other.

The cofaces of a simplex σ ∈ K constitute its star ; we write this as StK(σ) = {τ ∈ K | σ � τ}.
Taking the union of all interior points, we define the star neighborhood as NK(σ) = ∪τ∈StK(σ)|τ |;
see Figure 191. It will suffice for our purposes to consider the neighborhoods of vertices in X̂ and
Ŷ .

Star Condition. Recalling the definition of continuity, we require our maps f̂ : |X̂| → |Ŷ | to
satisfy f̂(N

X̂
(v)) ⊆ N

Ŷ
(u) for all vertices v ∈ X̂ and some vertex u = φ(v) ∈ Ŷ ; see

Figure 191. This star condition has the following important consequence. Fix a point x ∈ |X̂|,
and let σ ∈ X̂ and τ ∈ Ŷ denote the unique simplices containing x and f̂(x), respectively, in
their interiors. Assuming σ is the p-simplex [v0, . . . , vp], we have by the definition of the star
that x ∈ N

X̂
(σ) ⊆ N

X̂
(vi), for all 0 ≤ i ≤ p; in fact N

X̂
(σ) = ∩pi=0NX̂

(vi). Passing through

f̂ , the star condition implies that f̂(x) ∈ f̂(N
X̂

(σ)) ⊆ ∩pi=0NŶ
(φ(vi)) 6= ∅. By the same

token, we get that [φ(v0), . . . , φ(vp)] is a simplex in Ŷ which must coincide with τ 3 f̂(x),

i.e., f̂(σ) = τ .

Instead of arbitrary continuous maps, there is great appeal to working with piecewise-linear
maps on triangulations. In fact, the star condition was chosen to provide exactly that.

Simplicial Approximations. Assume that f̂ : |X̂| → |Ŷ | satisfies the star condition, and let
φ
f̂

: Vert X̂ → Vert Ŷ be the associated vertex map. Fixing a p-simplex σ = conv{v0, . . . , vp},
we may express any x ∈ |σ| as a linear combination of the vertices. Using the so-called
barycentric coordinates, we write x =

∑p
i=0 λivi, where λi > 0 ∀i. The expression can be

extended to all vertices of K; letting bi(x) = λi for 0 ≤ i ≤ p and bi(x) = 0 otherwise, we may
write x =

∑
i bi(x)vi. Passing through φ

f̂
, we get that

∑
i bi(x)φ

f̂
(vi) ∈ φf̂ (σ), where φ

f̂
(σ) is

a simplex in Ŷ . As such, the vertex map φ
f̂

induces a continuous, piecewise-linear simplicial

map x 7→
∑

i bi(x)φ
f̂
(vi). We will denote the induced simplicial map as f̂∆ : X̂ → Ŷ . As

both f̂(x) and f̂∆(x) belong to the same simplex in Ŷ , we call f̂∆ a simplicial approximation,
i.e., there is a smooth interpolation (or homotopy) to gradually change f̂∆ into f̂ .

While the star condition seems to provide all we need, it is only a convenient assumption we had
to introduce. What about continuous maps from |X̂| to |Ŷ | that the assumption fails to capture?
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Subdivisions. Assume that a continuous map f̂ : |X̂| → |Ŷ | does not satisfy the star condition.
Then, there must be a vertex v ∈ X̂ such that f̂(N

X̂
(v)) is not contained in N

Ŷ
(u) for any

vertex u ∈ Ŷ . Equivalently, N
X̂

(v) is not contained in any f̂−1(N
Ŷ

(u)). In other words,

N
X̂

(v) is relatively too large. Can we make the star of v smaller without changing f̂?

Fig. 192: Barycentric subdivisions of a triangle with an incident edge. New elements are highlighted.

It becomes clear that we need to keep |X̂| intact, so that f̂ remains essentially the same, while
making some stars smaller to satisfy the star condition. As the stars are defined by X̂, we
seek a finer triangulation of |X̂|. One way to achieve that is to subdivide every simplex σ into
smaller ones {σ′i} such that |σ| = ∪σ′i. In particular, we make use of the barycenter of each

simplex in X̂, which is defined as the average of its vertices. For p = 1 to dim X̂, we insert the
barycenter σc of each p-simplex σ as a new vertex, and form new p-simplices σ′i by connecting
σc to each (p − 1)-simplex of the (subdivided) (p − 1)-faces of ∂σ; denote this barycentric
subdivision by Sd. A simple induction shows that every p-simplex is replaced by (p+ 1)! new
p-simplices; see Figure 192. More importantly, for any p-simplex σ, diam(σ′i) ≤

p
p+1diam(σ).

By repeating as needed, the diameters of all simplices are rapidly reduced such that the
star neighborhoods of all vertices in SdkX̂ are covered by the pre-image of some vertex in Ŷ .
Specifically, SdkX̂ satisfies the star condition for a finite k ≥ 0 and a simplicial approximation
can then be defined on SdkX̂; this is known as the simplicial approximation theorem.

Having established triangulations as a viable discrete representation to approximate the topo-
logical spaces we will be studying, we now proceed to the computation of topological invariants.
As in Euler’s polyhedron formula, this computation boils down to a simple counting. However, as
the structure of simplicial complexes is more complicated compared to polyhedra, we make use of
a few tools from algebra to help keep track of our counts.

Simplicial Counting. Take a simplicial complex K, and let σ1 and σ2 be 2-simplices in K. In
computing the Euler characteristic, we would need to count the triangles σ1 and σ2 before
subtracting the number of edges. Now, it might be the case that σ1 and σ2 have an edge in
common. An added difficulty is that a single triangle introduces three edges as its boundary.

To facilitate the counting and representation of boundaries, we will use special sets of simplices
enhanced with two convenient operations.

Chains. We define the p-chains Cp as so-called formal sums of p-simplices: a p-chain c is written
as c =

∑
i aiσi, where σi ranges over all p-simplices in K and ai simply indicates whether σi is

included in c or not. To facilitate the counting of simplices, we define an addition operation.
The sum of two chains c1 + c2 is the chain with all simplices in either c1 or c2, but not both,
i.e., their symmetric difference. In other words, we choose ai as modulo 2 coefficients.
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The algebraic framework we are about to develop will compensate for the lack of geometric
visuals with greater expressive power, as will prove essential to our computations.

Algebra I. A group (A, •) is a set A together with a binary operation • : A × A → A, meaning
that A is closed under the action of •. We further require that • is associative so that for
all α, β, γ ∈ A we have that α • (β • γ) = (α • β) • γ. Finally, we require an identity element
ω ∈ A such that α + ω = α for all α ∈ A. If, in addition, • is commutative, we have that
α • β = β • α for all α, β ∈ A, and we say the group (A, •) is abelian.

Using this new language, we say that (Cp,+) is an abelian group. In particular, if K has np
p-simplices, then (Cp,+) is (isomorphic to) the set of binary vectors of length np with the usual
exclusive-or operation ⊕. Hence, (Cp,+) is not just any group; it is a vector space!

Boundary Maps. By our definition of chains, any p-simplex σ ∈ K also belongs to the chain
group Cp. As the boundary of σ is a collection of (p − 1)-simplices, it will be convenient to
express the boundary in one shot as an element in Cp−1. Letting σ = [v0, . . . , vp] we write:

∂pσ =

p∑
i=0

[v0, . . . , v̂i, . . . , vp], (4)

where v̂i indicates that vi is excluded in the corresponding (p− 1) face. We can also take the
boundary of a collection of p-simplices, i.e., a p-chain, to obtain the sum of their boundaries as
a single (p−1)-chain. We denote this mapping by ∂p : Cp → Cp−1, and write ∂pc =

∑
i ai∂pσi.

Naturally, every chain group Cp gets its own boundary map ∂p, though we often drop the
subscript of ∂p as we have been doing already with addition and summation. The combined action
of those two operators gives rise to a rich algebraic structure essential to our computations.

Algebra II. A mapping δ : (A, •) → (B,�) is called a homomorphism if it commutes with the
group operation, i.e., δ(α • α′) = δα� δα′ for all α, α′ ∈ A. (Note the switch from • to �.)

It is easy to verify that ∂p(c + c′) = ∂pc + ∂pc
′ for all c, c′ ∈ Cp, i.e., ∂p is a homomorphism.

Recalling the simplicial structure depicted in Figure 188, we use the boundary homomorphisms to
arrange our p-chain groups into a chain complex that we write as

. . .
∂p+2−−−→ Cp+1

∂p+1−−−→ Cp
∂p−→ Cp−1

∂p−1−−−→ . . .
∂0−→ 0. (5)

Effectively, we have replaced the simplicial complex with a sequence of algebraic modules,
i.e., the chain complex. The added algebraic structuring of our chains quickly becomes useful
for computation. Building upon the familiar language of vector algebra, we obtain a particularly
convenient expression.

Boundary Matrices. Letting np denote the number of p-simplices, we saw how we can think of
the chain group (Cp,+) as the vector space ({0, 1}np ,⊕). As the mapping ∂p : Cp → Cp−1

is well-defined, we can think of it in turn as a mapping ∂p : {0, 1}np → {0, 1}np−1 between
vectors. Whenever a p-simplex is included in a p-chain c, we know that all (p− 1)-simplices
on its boundary contribute to the (p− 1)-chain ∂pc. Letting {σi}i and {τj}j denote the sets
of p-simplices and (p−1)-simplices, respectively, we write c =

∑
i aiσi and ∂pc =

∑
i ai∂pσi =
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∑
j bjτj . Rearranging, we get that bj =

∑
i ∂

j,i
p ai, where ∂j,ip is 1 if τj ≺ σi and 0 otherwise.

If we think of [∂j,ip ]i as a column vector for each j and the p-chain c as another column vector
[ai]i, we recognize bj as an inner product. Collecting all the vectors [∂j,ip ]i,j into a boundary
matrix, we realize the boundary mapping as a linear transformation between vector spaces.

∂pc =


b1
b2
...

bnp−1

 , ∂p =


∂1,1
p ∂1,2

p · · · ∂
1,np
p

∂2,1
p ∂2,2

p · · · ∂
2,np
p

...
...

. . .
...

∂
np−1,0
p ∂

np−1,2
p · · · ∂

np−1,np
p

 , c =


a1

a2
...
anp

 (6)

With the aid of these algebraic tools, we can now start using chains and see what comes out.

Boundaries and Cycles. Unlike the whole convex polytopes considered in Euler’s equation, the
chains we defined may correspond to an entire simplicial complex or just a subset of its
simplices. While some of the chains carry useful information about the complex, many do not.
Let us examine the 1-chains on triangulations of surfaces like the ones shown in Figure 185.
There are many chains that cannot help us distinguish the sphere from any of the tori, e.g.,
the boundary of a single triangle. In contrast, other types of chains only arise if there is a
handle; they include edges that wrap around one or more handles. We call that latter type
cycles. How do we extract the number of handles from these cycles?

It is easy to see a cycle, but our computations will benefit from an algebraic characterization.
If α is a 1-cycle, it consists of a set of vertices each shared by two edges. It follows that ∂1α
counts each vertex twice modulo 2 yielding 0. But, the same could be said about the boundary
of any set of triangles whether it wraps around a handle or not. Hence, we distinguish two
subsets of p-chains that have no boundary : those that arise as the boundary of some (p+ 1)-
chain under the action of ∂p+1 are the p-boundaries Bp, and the rest are the p-cycles Zp.

As outlined above, the fundamental lemma of homology asserts that ∂p∂p+1c = 0 for every
integer p and all chains c ∈ Cp+1. Furthermore, as ∂p commutes with addition, both Bp and Zp
are subgroups of Cp, where Bp is in turn a subgroup of Zp.

Multiplicity of Representation. There would typically be multiple 1-cycles that wrap around a
single handle. Some of those cycles are minimal, containing only the edges that wrap around
the handle, while others contain extra 1-boundaries that carry no additional information.
Namely, for any α ∈ Zp and β ∈ Bp, we have that α′ = α+ β ∈ Zp.

The above discussion suggests that we need to recognize equivalent cycles while ignoring the
contribution of any boundaries. To formalize this notion, we need a few more tools from algebra.

Algebra III. Given a group (A, •) and a subgroup B, we define an equivalence relation that
identifies a pair of elements α, α′ ∈ A whenever α′ = α • β for some β in B. The equivalence
relation partitions A into equivalence classes or cosets; the coset [α] consists of all the elements
of A identified with α. Then, the collection of cosets, together with the operator •, give rise
to the quotient group A/B of the elements in A modulo the elements in B.

Before we apply quotients, we recall that the order of a group is the total number of elements,
and for abelian groups, like p-chains, the rank is the cardinality of a maximal linearly independent
subset, i.e., the number of p-simplices.
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Homology Groups. We define the p-th homology group Hp as Zp/Bp. Now, to count the number
of p-holes, we seek to compute the rank of Hp; this rank is known as the p-th Betti number

βp = rank Hp = rank Zp − rank Bp. (7)

The computation of the Betti numbers relies on the following fundamental theorem in algebra.

Algebra IV. Let V and W be vector spaces and T : V →W be a linear transformation. We define
the kernel of T as the subspace of V , denoted Ker(T ) of all vectors v such that T (v) = 0.
The remaining elements v ∈ V for which T (v) 6= 0 are mapped to a subspace of W ; the image
of T . The rank-nullity theorem states that dim V = dim Image(T ) + dim Ker(T ).

In the context of p-chains, we get that Zp is the kernel of ∂p, while Bp−1 is its image. Hence,
rank Cp = rank Zp + rank Bp−1. Note that B−1 = 0, and for a d-dimensional complex Zd+1 = 0.

The Euler Characteristic (Redux). Recalling the alternating sum in Euler’s polyhedron for-
mula, we can now use the Betti numbers to derive the generalized Euler-Poincaré formula.

χ =
∑
p≥0

(−1)p rank Cp =
∑
p≥0

(−1)p(rank Zp + rank Bp−1)

= (rank Z0 +�����rank B−1)− (rank Z1 + rank B0) + (rank Z2 + rank B1)− . . .
= (rank Z0 − rank B0)− (rank Z1 − rank B1) + (rank Z2 − rank B2)− . . .

=
∑
p≥0

(−1)p(rank Zp − rank Bp)

=
∑
p≥0

(−1)pβp. (8)

A remarkable fact is that homology groups do not depend on the triangulation used, i.e., they are
indeed topological invariants. Hence, the sequence of Betti numbers reveals important qualitative
features of the underlying space. Now, all that remains is to compute the ranks as in Equation 7.

Matrix Reduction. As discussed above, recognizing Zp as Ker(∂p) we seek to compute the rank
of the matrix ∂p of dimensions rank Cp−1 × rank Cp; see Equation 6. Using essentially the
Gaussian elimination algorithm, we can reduce the matrix ∂p without changing its rank by
a series of transformations, i.e., row and column operations, into the Smith normal form;
see Figure 193. As we work with modulo 2 coefficients, we obtain an initial segment of
the diagonal being 1 and everything else being 0. Namely, the leftmost rank Bp−1 columns
have 1 in the diagonal, and the rightmost rank Zp columns are zero. By processing all
boundary matrices, we can extract the Betti numbers as the differences between the ranks
βp = rank Zp−rank Bp. By keeping track of the reducing transformations, we can also obtain
the bases of the boundary and cycle groups as subspaces of their respective chain groups.
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rank Bp−1

rank Cp−1

rank Cp

rank Zp

Fig. 193: Reducing the boundary matrix ∂p to the Smith normal form.

Beyond the topological invariants of the spaces themselves, topology is also concerned with the
invariants of maps between spaces.

Functoriality. Given two simplicial complexes X̂ and Ŷ , a simplicial map f̂∆ : X̂ → Ŷ induces a
map from the p-chains of X̂ to the p-chains of Ŷ , which we denote by f̂# : Cp(X̂)→ Cp(Ŷ ).

Letting ∂
X̂

and ∂
Ŷ

denote the boundary maps for X̂ and Ŷ , respectively, we get that the

induced map commutes with the boundary maps, i.e., f̂#◦∂X̂ = ∂ŷ◦f̂#. This can be expressed
as a commutative diagram where all directed paths from one node to another are equivalent.

. . . Cp+1(X̂) Cp(X̂) Cp−1(X̂) . . .

. . . Cp+1(Ŷ ) Cp(Ŷ ) Cp−1(Ŷ ) . . .

∂
X̂

∂
X̂

f̂#

∂
X̂

f̂#

∂
X̂

f̂#

∂
Ŷ

∂
Ŷ

∂
Ŷ

∂
Ŷ

(9)

As the induced map f̂# commutes with the boundary maps, it maps boundaries to boundaries

and cycles to cycles. Consequently, f̂# induces a map between homology groups, which we

denote by H(f̂) : Hp(X̂)→ Hp(Ŷ ). This map H(f̂) on homology is an algebraic reflection of

the continuous map f̂ : |X̂| → |Ŷ |; it is a form of functoriality as studied in category theory.

Important applications of functoriality involve a map f : Y1 → Y2 that factors through a map to
X as shown in Figure 194. If the homologies of Y1 and Y2 are known, then we can use the induced
homomorphisms to make inferences about the homology of X.

Y1 Y2

X

f

f1 f2

Fig. 194: f : Y1 → Y2 with f = f2 ◦ f1 where f1 : Y1 → X and f2 : X → Y2.

To demonstrate this powerful proof technique, we present a remarkable and far-reaching result.

Brouwer Fixed-Point Theorem. Consider a self-map of the closed unit disc f : D → D. A
fixed point of f is any point x ∈ D such that f(x) = x. We will show that every continuous
self-map of D must have a fixed point!
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Assume for contradiction that f : D → D is continuous and has no fixed points. It would
follow that for any x ∈ D there is a well-defined line passing through x and f(x) 6= x. Define
r(x) as the intersection of the ray from x towards f(x) and ∂D, i.e., the unit circle bounding
the disk D; see Figure 195. Hence, we implicitly defined r : D → ∂D using the self-map
f . As f is continuous, so is r. In addition, r(x) = x for all x ∈ ∂D, i.e., r is a retraction.
Denoting the inclusion of ∂D into D by ι : ∂D → D, we obtain the diagram in the middle.
Passing through homology, we see that H1(∂D) is isomorphic to F2, i.e., it has rank 1, while
H1(D) = 0. But, as shown to the right, identity on the homology of ∂D maps each element
to itself, while the second map on the bottom is injective, mapping 0 to exactly one element.
Hence, the diagram to the right does not commute, i.e., H1(r) ◦H1(ι)(1) 6= Id, and we obtain
a contradiction.

x

f (x)

r(x)

∂D D ∂Dι

Id

r F2 0 F2
H1(ι)

Id

H1(r)

Fig. 195: Self-maps on the disk D with no fixed points, and a contradiction through functoriality.

The proof above generalizes to higher dimensions; for Dn we use Hn−1. This theorem is closely
related to the hairy ball theorem establishing the impossibility of continuous and everywhere non-
vanishing tangent vector fields on an even-dimensional sphere: you can’t comb the hair on a coconut!

Beyond the surfaces we have been using in our elementary introduction, data analysis appli-
cations frequently deal with sample points assumed to be drawn from an unknown underlying
manifold embedded in high dimensional space Rd. We conclude with a brief discussion of how the
techniques from above can be applied in this context, as has recently been in rapid development in
the computational topology and topological data analysis research communities.

A major thrust in the development of topological approaches to data analysis is to achieve
robustness against errors and imprecision in data measurements, collectively referred to as noise.
As we have seen, topological properties are less sensitive to exact distances, which can be useful in
the derivation of robust qualitative descriptors.

Homotopy Equivalence. An intuitive way to hallucinate the whole of a shape from a collection
of sample points is to grow a ball around each sample and take the union of those balls.
While this seems to work visually, there is a technical complication we need to consider. For
example, if we take a dense sample on a 1-dimensional curve, grow a ball at each sample and
take the union, we obtain a thick version of the curve; a tube of sorts. While the tube can be
deformed continuously into the original curve, it would not be possible to define a continuous
inverse, since many points on the tube will have to be mapped to the same point on the
curve. Still, we would expect the union of balls to capture the topology of the original shape.
This generalized notion of topological equivalence is called homotopy equivalence; while it is
weaker form of equivalence compared to homeomorphism, it can be much more convenient.
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Fig. 196: Noisy samples from a circle, the union of balls and its nerve, and the Cêch complex.

Applying the idea outlined above, we work with the union of balls of a suitable radius. Unsur-
prisingly, we replace the geometric object represented by the union of balls by an algebraic object
amenable to processing, i.e., a (abstract) simplicial complex.

Nerves. Taking the collection of balls centered at each sample point, we associate a vertex with
each ball and a p-simplex with each subset of (p + 1) balls with a non-empty intersection.
This type of complex is known as the nerve of the collection of objects; the balls in this case
as shown in Figure 196. The homotopy-equivalence of this Cêch complex and the union of
balls follows from the nerve lemma, which requires that the intersections of any set of objects
is contractible, i.e., homotopy-equivalent to a point. This turns out to be the case for any
collection of closed convex objects, not only balls, which can be related to Helly’s theorem.

There remains the issue of choosing a suitable radius. In addition, the choice of radius is not
completely separate from the density of the sample and the shape of the manifold. As the choice of
radius impacts the topology type observed through the union of balls, how do we identify the most
likely topology? This type of question motivated the recent development of a rich and exciting
theory that came to be known as persistent homology.

To appreciate the issue of scale, we consider different choices of radii for the example in Fig-
ure 196.

Filtrations. As seen in Figure 197 below, a very small radius results in a disconnected union of
balls, while an overly large radius yields a single blob with the hole filled in. Now, imagine a
continuous process of growing the radii from r = 0 to r =∞, where we think of r as a function
of time t. As this process results in a sequence of nested shapes, it is called a filtration, with
t being the filtration parameter. At some point, say r(t0) = a, we recover the topology of the
circle for the first time. Then, at a later point t1 > t0, with r(t1) = b > a, the hole is filled
in. Along the way, the number of connected components decreases as r goes from 0 to a.
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Fig. 197: Three different scales to estimate the topology from a noisy samples.

While filtrations provide a dynamical model of the evolution of topological features, we still
need a way to extract the salient topological features as they appear and ultimately disappear. In
addition, we would like to discard extraneous features arising due to the sampling and noise.

Persistence. We define the birth and death of a topological feature as the values of the filtration
parameter when it first appears and when it gets filled in, respectively. Then, the persistence
of the feature is the difference between the two. In the example above, the persistence of the
1-cycle is t1−t0. Under reasonable conditions on the sampling, features with larger persistence
are more likely to capture salient aspects of the underlying shape of the data, while features
with small persistence can be disregarded, e.g., the many connected components in Figure 197.

Outlook. For this brief introduction, we did not cover the algorithmic aspects of computational
topology. The matrix reduction algorithm was simply presented as a variant of Gaussian elim-
ination, and we did not discuss the extensions needed to compute persistent homology. Other
important considerations involve more compact complexes than the Cêch complex, e.g., the
Vietoris-Rips complex, or the simplification of simplicial complexes to reduce their sizes with-
out changing their homotopy type, as would be beneficial for efficient computation. Finally,
the extracted persistent homology features can be summarized into convenient topological
signatures, known as persistence diagrams and barcodes, with an associated metric structure
such that it can be used to efficiently compare two data sets using their salient topological
properties. We hope the reader will be excited to further explore these topics, while catching
up on all the technical details that could not be presented here in more depth.
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