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Let P be a set of n points in d-dimensional space, where d is a very large
value. Informally, the goal of dimensionality reduction is to convert P
into a set P’ of points in a k-dimensional space where k < d, such that
P’ loses as little information about P as possible.

Today, we will learn a popular method of dimensionality reduction
called principled component analysis (PCA).

2/17

Dimensionality Reduction with PCA



A vector v is a d x 1 matrix: v = (v[1],...,v[d])".

A point can be represented as vector.

@ A vector v is a unit vector if Z,fl:l v[i]? = 1.

Dot product vy - v = Zle(vl[i]b["])-

If two vectors vy, v are orthogonal, v - vo = 0.

@ Let p be a point and v a unit vector. Then, p - v gives the distance
from the origin to the projection of p on v.
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Let S be a set of real numbers ry, ..., r,,. The mean of S equals:
1 m
mean(S) = - Z;r,-.
i

The variance of S equals:
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Let P be a set of n d-dimensional points py, ..., p,. Its co-variance
between dimensions i and j (where 1 < < j < d) equals

%Z(pk[i] — mean;)(pk[j] — meanj)

k=1

where mean; (resp., mean;) is the mean of the coordinates in P along

dimension i (resp., j).
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The co-variance matrix A of point set P is a d x d matrix whose value

at the i-th row and j-th column (/,j € [1,d]) is the co-variance of P
between dimensions i and j.

Note that A is symmetric, namely, A = AT,
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Let A be a d x d matrix. If
Av = v

for some d x 1 unit vector v and some real value )\, then v is called a
unit eigenvector of A and ) is called an eigenvalue of A.
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Principle Component Analysis (PCA)

algorithm (P, k)
/* input: P is a set of d-dimensional points and k is an integer in [1,d] */
/* output: a subspace defined by k orthogonal vectors */

1.

Gk ownN

shift P such that its geometric mean is at the origin of the data space
A <+ the co-variance matrix of P

compute all the d unit eigenvectors

arrange the eigenvectors in descending order of their eigenvalues
return the first k eigenvectors vq, ..., vy

Each point p is then converted to a k-dimensional point whose i-th
(1 <7 < k) coordinate is v; - p.
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Property of PCA

Here is a key property of PCA.

vy is the direction along which the projections of P have the largest
variance. In general, v; (i > 1) is the direction along which P
has the largest variance, among all directions orthogonal to all of
Vi,...,Vi_1.

Next we will prove the above for vy and v,. Then, the cases with
v3, ..., v; follow the same idea.
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Formally, redefine P be a set of n d-dimensional points with zero mean
on all dimensions. Let w be a unit vector. We can project P onto w to
obtain a set of 1d values: S ={p-w | p € P}. Define the quality of w

be var(S).

The first eigenvector output by PCA has the highest quality.
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Proof of Theorem 1

Let X be the n X d matrix where each row lists the coordinates of a
point in P. Thus, we can view S as a vector Xw. Thus:

() = %(XW)T(XW)

+XTX
n
= w'Aw

= w w

where A is the covariance matrix of P. Hence, we want to maximize the
above subject to the constraint that w’w = 1.
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Proof of Theorem 1 (Cont.)

Now we apply the method of Lagrange multipliers to find the maximum.
Introduce a real value A, and now consider the objective function

fw,)) = wAw - A\(w'w —1)=
or = 2Aw —2\w
ow

Equating the above 0 gives Aw = Aw. In other words, w needs to be an
eigenvector, and \ the corresponding eigenvalue.
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Proof of Theorem 1 (Cont.)

Now it remains to check which eigenvector gives the largest variance.
Observe that:

var(S) = w'Aw
w’w

A

In other words, when we choose eigenvector w as our solution, its quality
is exactly the eigenvalue \. Hence, the eigenvector with the maximum
eigenvalue is what we are looking for. O

V
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The second eigenvector output by PCA has the highest quality, among all
the vectors w orthogonal to the first eigenvector v.
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Proof of Theorem 2
Let A be the covariance matrix of P. As shown in the proof of
Theorem 1, we proved that

var(S) = w'Aw.

Hence, we want to maximize the above subject to the constraints
ww=1and w'vy; =0.

Now we apply the method of Lagrange multipliers to find the maximum.
Introduce real values A\ and ¢, and now consider the objective function

fw,\,o) = wAw - A\w'w—1)—¢w'v; =
of
w 2Aw — 2 \w — ¢vy. )
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Proof of Theorem 2 (Cont.)

The optimal w needs to satisfy g—:, =0, namely:
2Aw — 2w —¢vy = 0. (1)

Next we prove that ¢ must be 0. To see this, multiplying both sides of
(1) by i 7, we get:

nmTAW — 22w w+on vy = 0. (2)
We know that vy "w = 0, and vy "vy = 1. Furthermore,

i Aw=w'ATvy =w'Ay = wT(Avl) =w'wy =0.

Hence, from (2), we get ¢ = 0.
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Proof of Theorem 2 (Cont.)

Therefore, from (1), we know:

2Aw —2\w = 0

namely, w must also be an eigenvector.

From the proof of Theorem 1, we know that var(S) equals the eigenvalue
corresponding to w. This thus indicates that w is the eigenvector of A
with the second largest eigenvalue. O

V
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