Minimum Spanning Trees

OProblem

- Given a connected undirected weighted graph (G, w) with $G = (V, E)$, the goal of the minimum spanning tree (MST) problem is to find a spanning tree of the smallest cost.
- \bullet How to implement Prim's algorithm in $O((|V| + |E|) \cdot log|V|)$ time?

Let $G = (V, E)$ be a connected undirected graph. Let w be a function that maps each edge e of G to a positive integer $w(e)$ called the weight of e.

A spanning tree T is a tree satisfying the following conditions:

- \bullet The vertex set of T is V.
- Every edge of T is an edge in G .

The cost of T is the sum of the weights of all the edges in T .

The second row shows three spanning trees. The cost of the first two trees is 37, and that of the right tree is 48.

- The set S of vertices that are already in T_{mst} .
- \bullet The set of other vertices: $V \setminus S$.

At the end of the algorithm, $S = V$.

- \bullet The set S of vertices that are already in T_{mst} .
- \bullet The set of other vertices: $V \setminus S$.

At the end of the algorithm, $S = V$.

- \bullet The set S of vertices that are already in T_{mst} .
- \bullet The set of other vertices: $V \setminus S$.

At the end of the algorithm, $S = V$.

- \bullet The set S of vertices that are already in T_{mst} .
- \bullet The set of other vertices: $V \setminus S$.

At the end of the algorithm, $S = V$.

- \bullet The set S of vertices that are already in T_{mst} .
- \bullet The set of other vertices: $V \setminus S$.

At the end of the algorithm, $S = V$.

Implementing Prim's algorithm

To implement the algorithm efficiently, we will enforce the following invariant:

• For every vertex $v \in V \setminus S$, remember which cross edge of v between the algorithm efficiently, we will enforce the
wing **invariant**:
For every vertex $v \in V \setminus S$, remember which cross edge of v
has the smallest weight — refer to the edge as the lightest
cross edge of v and deno cross edge of ν and denote it as *best-cross(v)*.

Implementing Prim's algorithm

- 1. $\{u, v\}$ = an edge with the smallest weight among all edges.
- 2. Set $S = \{u, v\}$. Initialize a tree T_{mst} with only one edge $\{u, v\}$.
- 3. Enforce our invariant:
	- \bullet For every vertex z of $V \setminus S$
		- \bullet best-cross(z) = the lighter edge between {z, u} and {z, v}
		- If an edge does not exist, treat its weight as infinity.

Edge $\{a, b\}$ is the lightest of all. So, in the beginning $S = \{a, b\}$. The MST now has one edge $\{a, b\}$.

Implementing Prim's algorithm

- 4. Repeat the following until $S = V$:
- 5. Find a cross edge $\{u, v\}$ with the smallest weight Iowing until $S = V$:

ross edge $\{u, v\}$ with the smallest weight

ut loss of generality, suppose $u \in S$ and $v \notin S^*$ /

to S, and add edge $\{u, v\}$ into T_{mst}

restore the invariant. */
 $v \in S$ then
 $\{v, z\}$ of v :
	- /* Without loss of generality, suppose $u \in S$ and $v \notin S^*$ /
	- 6. Add v into S, and add edge $\{u, v\}$ into T_{mst}
		- /* Next, restore the invariant. */
	- 7. for every edge $\{v, z\}$ of v :

If $z \notin S$ then

Set *best-cross* (z) = edge $\{v, z\}$

Edge $\{c, a\}$ is a lightest cross edge. So, we add c to S, which is now $S = \{a, b, c\}$. Add edge $\{c, a\}$ into the MST.

Restore the invariant.

Edge $\{c, f\}$ is the lightest cross edge. So, we add f to S, which is now $S = \{a, b, c, f\}$. Add edge $\{c, f\}$ into the MST.

Restore the invariant.

Edge $\{e, f\}$ is the lightest cross edge. So, we add e to S, which is now $S = \{a, b, c, f, e\}$. Add edge $\{e, f\}$ into the MST.

Restore the invariant.

Edge $\{c, h\}$ is the lightest cross edge. So, we add h to S, which is now $S = \{a, b, c, f, e, h\}$. Add edge $\{c, h\}$ into the MST.

Restore the invariant.

Edge $\{g, h\}$ is the lightest cross edge. So, we add g to S, which is now $S = \{a, b, c, f, e, h, g\}$. Add edge $\{g, h\}$ into the MST.

Restore the invariant.

Finally, edge $\{d, g\}$ is the lightest cross edge. So, we add d to S, which is now $S = \{a, b, c, f, e, h, g, d\}$. Add edge $\{d, g\}$ into the MST.

We have obtained our final MST.

For a fast implementation, we need a good data structure.

Let P be a set of n tuples of the form $(id, weight, data)$. Design a data structure to support the following operations:

- \checkmark Find: given an integer t, find the tuple *(id, weight, data)* from P where $t = id$; return nothing if the tuple does not exist.
- \checkmark Insert: add a new tuple (*id*, *weight*, *data*) to P.
- \checkmark Delete: given an integer t, delete the tuple (id, weight, data) from P where $t = id$.
- \checkmark DeleteMin: remove from P the tuple with the smallest weight.

We can obtain a structure of $O(n)$ space that supports all operations in ind: given an integer *t*, find the tuple (*id*, *weight*, *data*) from $= id$; return nothing if the tuple does not exist.
sert: add a new tuple (*id*, *weight*, *data*) to *P*.
elete: given an integer *t*, delete the tupl

6 (id, weight, data) insertions into P.

In general, $|V|$ – 2 insertions in $O(|V| \cdot log|V|)$ time.

Edge $\{c, a\}$ is the lightest cross edge. So, we add c to S, which is now $S = \{a, b, c\}$. Add edge $\{c, a\}$ into the MST.

Restore the invariant.

As $\begin{pmatrix} 8 & 8 \ 10 & 10 \ 11 & 12 \ 12 & 13 \ 13 & 13 \ 14 & 12 \ 15 & 16 \end{pmatrix}$ for cdge {c, b}, perform a find op. using the id of $b \Rightarrow b$ has no tuple in P.
For cdge {c, d}, perform a find op. using the id of $b \Rightarrow b$ has no tuple For edge $\{c, h\}$, perform a find op. $\Rightarrow h$ has a tuple with weight 8. As $\begin{cases}\na & \text{if } t = 7 \Rightarrow 5 \\
b & \text{if } t = 6 \text{ and }$

Time: $O(d_c \log |V|)$ time where d_c is the degree of c.

Edge $\{c, f\}$ is the lightest cross edge. So, we add f to S, which is now $S = \{a, b, c, f\}$. Add edge $\{c, f\}$ into the MST.

Restore the invariant.

For edge {f, a}, perform a find op. \Rightarrow e has no tuple in P.
For edge {f, a}, perform a find op. using the id of $a \Rightarrow a$ has no tuple in P.
For edge {f, c}, perform a find op. \Rightarrow c has no tuple in P.
For edge {f, e}, pe As $\begin{pmatrix} 8 & 3 \ 10 & 10 \ 1 \end{pmatrix}$ for edge $\{f, a\}$, perform a find op. using the id of $a \ge a$ has no tuple in P.
For edge $\{f, c\}$, perform a find op. using the id of $a \ge a$ has no tuple in P.
For edge $\{f, c\}$, perfo

Time: $O(d_f \log |V|)$ time where d_f is the degree of f.

Edge $\{e, f\}$ is the lightest cross edge. So, we add e to S, which is now $S = \{a, b, c, f, e\}$. Add edge $\{e, f\}$ into the MST.

Restore the invariant.

For edge {e, f}, perform a find op. using the id of ^f => ^f has no tuple in P. For edge {e, b}, perform a find op. => ^b has no tuple in P. For edge {e, d}, perform a find op. => ^d has a tuple with weight . As {e, d} is lighter, delete (d, , Nil) from ^P and insert (d, 12, {e, d}).

Time: $O(d_e \log |V|)$ time where d_e is the degree of e.

Edge $\{c, h\}$ is the lightest cross edge. So, we add h to S, which is now $S = \{a, b, c, f, e, h\}$. Add edge $\{c, h\}$ into the MST.

Restore the invariant.

For edge {h, a}, perform a find op. using the id of ^a => ^a has no tuple in P. For edge {h, c}, perform a find op. => ^c has no tuple in P. For edge {h, g}, perform a find op. => ^g has a tuple with weight . As {h, g} is lighter, delete (g, , {g, b}) from ^P and insert (g, 9, {g, h}).

Time: $O(d_h \log |V|)$ time where d_h is the degree of h.

Edge $\{g, h\}$ is the lightest cross edge. So, we add g to S, which is now $S = \{a, b, c, f, e, h, g\}$. Add edge $\{g, h\}$ into the MST.

Restore the invariant.

For edge $\{g, h\}$, perform a find op. using the id of $b \rightarrow b$ has no tuple in P .

For edge $\{g, h\}$, perform a find op. using the id of $b \rightarrow b$ has no tuple in P .

For edge $\{g, h\}$, perform a find op. $\rightarrow h$ has no t

Time: $O(d_g \log |V|)$ time where d_g is the degree of g.

Finally, edge $\{g, d\}$ is the lightest cross edge. So, we add d to S, which is now $S = \{a, b, c, f, e, h, g, d\}$. Add edge $\{g, d\}$ into the MST.

We have obtained our final MST.

Total time:

 $= O((|V| + |E|) \cdot log|V|)$ $\sum_{v \in V} d_v \log |V|$ $_{10}$ = $O((2|V| + 2|E|) \cdot log|V|)$ $O(|V| \cdot \log|V| + \sum_{v \in V} \log|V| +$