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Given 2D points p and g, we use dist(p, q) to represent their Euclidean
distance.

dist(p,q)

p

In this lecture, we will make the assumption that dist(p, g) can be
computed in polynomial time.
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P = a set of n points in 2D space.

Given a point p € P, define its distance to a subset C C P as

distc(p) = rcnelgd/st(p,c).

The penality of C is

pen(C) = rpeag distc(p).

The k-Center Problem: Find a subset C C P with size |C| = k
that has the smallest penalty.
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Example:

P = the set of black points
k=3

C = {Cl, @2y C3}
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The problem is NP-hard.

@ No one has found an algorithm solving the problem in time
polynomial in n and k.

@ Such algorithms cannot exist if P # NP.
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A = an algorithm that, given any legal input P, returns a subset of P
with size k.

Denote by OPT p the smallest penalty of all subsets C C P satisfying
|C| = k.

A is a p-approximate algorithm for the k-center problem if, for
any legal input P, A can return a set C with penalty at most

The value p is the approximation ratio.
We say that .4 achieves an approximation ratio of p.
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Consider the following algorithm:

Input: P

1. C+ 0

2. add to C an arbitrary point in P

3. fori=2to k do

4. p < a point in P with the maximum distc(p)
5 add pto C

6. return C

The algorithm can be easily implemented in polynomial time.
Later, we will prove that the algorithm is 2-approximate.

7/15

Yufei Tao Set Cover



Example: k=3

Initially, C = {1}
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Example: k=3

After a round, C = {c1, o}

Set Cover
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Example: k=3

[ ]
C1

After another round, C = {c1, &, c3}

Set Cover
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Theorem: The algorithm returns a set C with pen(C) < 2-OPT p.
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Proof: Let C* = {cf,c},...,c; } be an optimal solution, i.e.,
pen(C*) = OPTp.

For each i € [1, k], define P/ as the set of points p € P satisfying

dist(p, ') < dist(p, c;’)

for any j # i.

Observation:
For any point p € P#, dist(p, c*) = distc-(p) < pen(C*).

Let Cours = {1, 2, ..., Ck } be the output of our algorithm, where ¢;
(i € [1, k]) is the i-th point added to Coyys.
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Case 1: Cours has a point in each of P, P53, ..., P},

Consider any point p € P. Suppose that o € P for some i € [1, k].
Let ¢ be a point in C N P;. It holds that:

distc,,.(p) < dist(c,p)
< dist(c, c*) + dist(c*, p)
< 2-pen(C*).

Therefore:

pen(Cours) = max distc,,.(p) <2 - pen(C*).
pe
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Case 2: C,urs has no point in at least one of PJ, ..., P;. Hence, one of
P, ..., P} must cover at least two points — say ¢; and ¢ — of Coyps. It
thus follows that

dist(cy, ¢2) < dist(cy, ¢) + dist(c2, ¢i') < 2 - pen(C™).

Next, we prove:

Lemma: For any point p € P, distc,,.(p) < dist(c1, ).

The claim implies pen(Cours) < 2 - pen(C*).
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Proof of the Lemma:

W.l.o.g., assume that ¢, was picked after ¢; by our algorithm. Consider
the moment right before ¢, was picked. At that moment, the set C
maintained by our algorithm was a proper subset of Cyyys.

From the fact that ¢, was the next point picked, we know
distc(p) < distc(ca).

Because ¢; € C, it holds that distc(c,) < dist(cy, ).

The lemma then follows because

distc,

ours

(p) < distc(p) < distc(cr) < dist(cy, ).
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