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• massive MIMO downlink: problem set-up & the challenge

• one-bit MIMO downlink via spatial Σ∆ modulation

• our work: spatial Σ∆ modulation for data-modulating RIS

• summary, acknowledgement, & conclusions
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Massive MIMO Downlink



Massive MIMO

Source: P. Harris et al., ”An overview of massive MIMO research at the University of Bristol,” Radio
Propagation and Technologies for 5G (2016), Durham, UK, 2016, pp. 1-5.

• massive MIMO promises many nice things for future gen. comm. sys.

• more antenna allows faster transmission, wider coverage and better QoS.
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Classical MIMO Downlink Precoding
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• a simple MU-MISO downlink system

yk = h⊤
k x+ noise, k = 1, . . . ,K,

is the received symbol; hk is the channel gain vector

• precoding: given hk and tx. symbol sk at the BS, design a signal vector x ∈ CN
such that the rx. symbol yk ≈ ck · sk (well studied)

• hidden assumption: both DACs and PAs are assumed to be ideal
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Massive MIMO Downlink: Challenges
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• number of DACs and PAs increases as we go massive

• high res. DACs are not cheap to build

• PAs are power-hungry if they have a wide dynamic input range

• soln.: one-bit (or few-bit) MIMO precoding
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One-Bit Massive MIMO Downlink
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• rx. signal model: yk = h⊤
k x+ noise

• one-bit precoding: given hk and a tx. symbol sk at the BS, design a binary signal
vector x ∈ XN = {±1± j}N such that the rx. symbol yk ≈ ck · sk
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One-Bit Massive MIMO Downlink: Existing Solutions

Precode-then-quantize

• put a conventional precoder in CN (e.g. zero-forcing) through a one-bit quantizer

• results in heavy quantization error that causes performance loss

• easy to understand, fast in implementation

Direct Signal Design

• designs the one-bit signal by opt., needs to solve for large-scale binary problem

• typically requires higher computation complexity

• performance generally outperforms precode-then-quantize

Spatial Σ∆ mod.: a precode-then-quantize approach which, under some assump-
tions, gives a reasonable performance with limited complexity
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Assumption: Uniform Linear Array
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normal line

 

• assumption: uniform linear array (ULA)

hk = αk ak, ak = (0, e−jωk , . . . , e−jωk(N−1)), ωk = 2πd
λ sin(θk)

where αk is the channel gain, θk is the AoD; d is the antenna dist. and λ is the
wavelength used

• observation: the noiseless rx signal model turns into a DTFT-like form

yk = αk · a⊤
k x = αk

∑N−1
n=0 xne

−jωkn
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Spatial Sigma Delta Modulation



Temporal Sigma Delta Modulation

  

  

• we first study a classical DAC: Σ∆ modulator1

• principle: given continuous-valued sequence x̄n, generate one-bit sequence xn by

xn = sgn(x̄n − qn−1) = x̄n − qn−1 + qn

where qn is the quant. error incurred by the one-bit quantizer sgn(·)

• observation: the DTFT of xn follows:

X(ω)︸ ︷︷ ︸
one-bit output

= X̄(ω)︸ ︷︷ ︸
full res. input

+(1− e−jω)︸ ︷︷ ︸
HPF

Q(ω)︸ ︷︷ ︸
quant. error

1PM Aziz, HV Sorensen, and JVD Spiegel, An overview of Sigma-Delta converters: How a
1-bit ADC achieves more than 16-bit resolution, IEEE Sig. Proc. Mag. 13 (1996), no. 1, 61–84.
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Σ∆ Principle: A Spectrum Illustration

X(ω)︸ ︷︷ ︸
one-bit output

= X̄(ω)︸ ︷︷ ︸
full res. input

+ (1− e−jω)︸ ︷︷ ︸
HPF

Q(ω)︸ ︷︷ ︸
quant. error

• assumptions: i) X̄(ω) is low-pass and ii) Q(ω) is bounded and flat

• observation: quant. noise is shaped toward the high-pass region

• implication: apply LPF to recover the full res. x̄n from the one-bit signal xn
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Spatial Σ∆ Modulator in MIMO Downlink2
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• putting Σ∆ to MIMO precoding we observe the following duality

– signal at the time index n = tx. signal at the n-th antenna element

– error feedback in temp. Σ∆ = passing q. error to the next antenna element

– LPF in temp. Σ∆ = restrict users to lie in low angular region

2Mingjie Shao, Wing-Kin Ma, Qiang Li, and A Lee Swindlehurst, One-bit Sigma-Delta MIMO precoding,
IEEE J. Sel. Topics Sig. Proc. 13 (2019), no. 5, 1046–1061.
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Proof of Concept: Angular Power Spectrum
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Proof of Concept: Angular Power Spectrum
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Spatial Σ∆ Modulator in MIMO Precoding
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• rx signal model (when αk = 1 and noiseless):

yk =
∑N−1
n=0 (x̄n + qn − qn−1)e

−jωkn

= [
∑N−1
n=0 x̄ne

−jωkn] + [
∑N−1
n=0 (qn − qn−1)e

−jωkn]

≈ X̄(ωk) + (1− e−jωk)Q(ωk) (holds when N is large)

• recall ωk = 2πd
λ sin(θk), this means the red term zeros out when θk = 0◦
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Simulation: Scatter Plot
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• settings: N = 512 Tx antenna; K = 12 users with θk ∈ [−30◦, 30◦]; the antenna
spacing is set as d = λ/8; the background SNR is fixed to 20dB
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Simulation: Bit Error Rate Performance
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• settings: N = 512 Tx antenna; K = 12 users with θk ∈ [−30◦, 30◦]; the antenna
spacing is set as d = λ/8.
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Some Technical Remarks

• we made two assumptions: i) X̄(ω) is low-pass and ii) Q(ω) is bounded and flat

• i) is done by restricting |θk| in a small angular region, so that ωk = 2πd
λ sin(θk)

will also be small

• as for ii), we use —

– no-overload condition: avoid qn → ∞ by limiting |x̄n| ≤ 1; we have
|qn| ≤ 1, i.e. Q(ω) is bounded

– assumption: assume qn is uniformly i.i.d. over [−1, 1] and is independent of
x̄n, i.e. Q(ω) is flat
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Data-Modulating RIS w/ Σ∆ Modulation



Reconfigurable Intelligent Surface

Source: M. Cui, Z. Wu, Y. Chen, S. Xu, F. Yang, and L. Dai, “Demo: Low-power communications based on

RIS and AI for 6G,” in Proc. IEEE ICC, Dec. 2022.

• metasurface that reflects EM wave; expected to play a role in future comm. sys.

• no RF process (incl. DAC & PA) needed when used as a pure reflector

• cheap!
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Reconfigurable Intelligent Surface

Source: https://spectrum.ieee.org/metamaterials-could-solve-one-of-6gs-big-problems
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Data-Modulating RIS for MIMO Downlink

• recent researches suggest RIS can be used as info. source

• one antenna BS + RIS = MIMO downlink BS
– requires only one PA + one DAC to implement massive MIMO

• SOTA: a SLP soln. has been done, but the computation cost is too high3;

3H. V. Cheng and W. Yu, “Modulating Data Using Reconfigurable Intelligent Surface by Symbol Level
Precoding,” Proc. ISWCS2022, Hangzhou, China, 2022, pp. 1-6
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Data-Modulating RIS for MIMO Downlink

Credit: Victor’s designer friend, who drew this picture for a pint.

24/37



Data-Modulating RIS for MIMO Downlink

• rx signal model:

yk =
∑N−1
n=0 e

−jωinn ejψn+1︸ ︷︷ ︸
:=xn,the phase shifts of the RIS

e−jωkn + noise

= (a(ωin)⊙ a(ωk))
⊤x+ noise

where x = (e−jψ1 , e−jψ2 , . . . , e−jψN )
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Data-Modulating RIS for MIMO Downlink

• rx signal model: yk = [a(ωin)⊙ a(ωk)]
⊤x+ noise

• aim: manipulate the phases (ψ1, . . . , ψN ) at the RIS to convey info. to users
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Spatial Σ∆ Approach for Data-Modulating RIS
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• recall the basic spatial Σ∆ modulation that sends one-bit data

• RIS reflects phases only, we need to replace the sgn by a phase quant.

• no need to take care of the PAs, as there is no PA at the RIS (unlike a relay)
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Spatial Σ∆ Approach for Data-Modulating RIS
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• now we have the Σ∆ modulated output xn being discrete-phased only

• but users maybe beyond broadside of the RIS
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Spatial Σ∆ Approach for Data-Modulating RIS
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• angle-steering: use phasors at the spatial feedback loop

• the corresponding DTFT: X(ω) = X̄(ω) + (1− ej(ω−ω0))︸ ︷︷ ︸
band-pass

Q(ω)
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Simulation: Bit Error Rate Performance
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Some Technical Remarks

• no-overload condition: modulator input amplitude should be bounded by

A ≤ sin(2π/L)

sin(π/L)
− 1

where L is no. of discrete phases4

– conservative guarantee; overloading might be able to help

• white q. noise assumption: does not hold on phase quant. empirically...

– we try to use subtractive dithers to “whiten” the q. noise5

4W.-Y. Keung, H. V. Cheng, and W.-K. Ma, “Transmitting data through reconfigurable
intelligent surface: A spatial Sigma-Delta modulation approach,” arXiv preprint,
arXiv:2310.16347, Oct 2023, https://arxiv.org/abs/2310.16347.

5Wannamaker, R.A., “Subtractive and Non-Subtractive Dithering: A Comparative Analysis,”
J. Audio Eng. Soc., vol. 52 (Dec. 2004), 1211–27.
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BER w/ Overloading and Subtractive Dither
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Summary, Acknowledgement and Conclusions



Quick Summary of My Journey So Far...

• publications/pre-prints:

– 1x ICASSP23’ workshop paper on ISAC

– 1x GlobeCom23’ workshop paper on one-bit MIMO detection

– 2x ICASSP24’ submissions (one is this talk; another on robust SLP)

– 1x OJSP submission (another Σ∆ paper)
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Take-home Points

• spatial Σ∆ mod. is a classical technology that has been applied on one-bit massive
MIMO downlink (reduced cost for DACs/PAs)

• we use it for RIS-assisted phase-only MIMO downlink, wherein the BS can have
only one active antenna (negligible cost for DACs/PAs)

• the presented work demonstrates a good potential as an alternative physical layer
scheme for massive MIMO downlink

• thank you!

Questions?
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