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Massive MIMO Downlink



Massive MIMO

Source: P. Harris et al., " An overview of massive MIMO research at the University of Bristol,” Radio
Propagation and Technologies for 5G (2016), Durham, UK, 2016, pp. 1-5.

® massive MIMO promises many nice things for future gen. comm. sys.

® more antenna allows faster transmission, wider coverage and better QoS.
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Classical MIMO Downlink Precoding

linear mixing
channel

Y

DAC

dec(:) —>

DAC

\ 4

Base Statrion

dec(:) —

\ 4

DAC

® a simple MU-MISO downlink system

yk:h,jw—knoise, Ek=1,..., K,

is the received symbol; hg is the channel gain vector

® precoding: given hy and tx. symbol s at the BS, design a signal vector € CV
such that the rx. symbol yx = ¢ - si (well studied)

® hidden assumption: both DACs and PAs are assumed to be ideal
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Massive MIMO Downlink: Challenges
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number of DACs and PAs increases as we go massive

high res. DACs are not cheap to build

PAs are power-hungry if they have a wide dynamic input range

soln.: one-bit (or few-bit) MIMO precoding
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One-Bit Massive MIMO Downlink
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® rx. signal model: y, = h, = + noise

® one-bit precoding: given h; and a tx. symbol s; at the BS, design a binary signal
vector & € XV = {£1 4+j}" such that the rx. symbol y. =~ ci - s
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One-Bit Massive MIMO Downlink: Existing Solutions

Precode-then-quantize

® put a conventional precoder in C%V (e.g. zero-forcing) through a one-bit quantizer
® results in heavy quantization error that causes performance loss

® casy to understand, fast in implementation

Direct Signal Design

® designs the one-bit signal by opt., needs to solve for large-scale binary problem

® typically requires higher computation complexity

® performance generally outperforms precode-then-quantize

Spatial XA mod.: a precode-then-quantize approach which, under some assump-
tions, gives a reasonable performance with limited complexity

8/37



Assumption: Uniform Linear Array
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® assumption: uniform linear array (ULA)

_ _ —Jjw —jwr (N—1 _ 2md
h, = o a, a, = (0,e9F ... e ki ( )), wy, = == sin(0y)

where ay. is the channel gain, 6 is the AoD; d is the antenna dist. and A is the
wavelength used

® observation: the noiseless rx signal model turns into a DTFT-like form

—jWwEn

-
Y = O, - aka:—ozkz 0 T €
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Spatial Sigma Delta Modulation



Temporal Sigma Delta Modulation
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® we first study a classical DAC: ¥A modulator!

® principle: given continuous-valued sequence z,,, generate one-bit sequence z,, by

Ln = Sgn(i'n — Qn—l) =Tp — qn—-1 1+ qn

where ¢, is the quant. error incurred by the one-bit quantizer sgn(-)

® observation: the DTFT of x,, follows:

Xw) = Xw +(0-¢) QW)
——" N——" N —~ v N——
one-bit output  full res. input HPF  quant. error

1PM Aziz, HV Sorensen, and JVD Spiegel, An overview of Sigma-Delta converters: How a
1-bit ADC achieves more than 16-bit resolution, |IEEE Sig. Proc. Mag. 13 (1996), no. 1, 61-84.
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>:A Principle: A Spectrum lllustration

Xw) = Xw +0-¢) Q)
N—— N—— N ~ % ——
one-bit output  full res. input HPF  quant. error

A X(w)

W

® assumptions: i) X (w) is low-pass and ii) Q(w) is bounded and flat
® observation: quant. noise is shaped toward the high-pass region

® implication: apply LPF to recover the full res. z,, from the one-bit signal z,,
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Spatial XA Modulator in MIMO Downlink?
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® putting XA to MIMO precoding we observe the following duality

Base Statrion

— signal at the time index n = tx. signal at the n-th antenna element
— error feedback in temp. XA = passing g. error to the next antenna element

— LPF in temp. XA = restrict users to lie in low angular region

2Mingjie Shao, Wing-Kin Ma, Qiang Li, and A Lee Swindlehurst, One-bit Sigma-Delta MIMOQO precoding,
IEEE J. Sel. Topics Sig. Proc. 13 (2019), no. 5, 1046-1061.
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Proof of Concept: Angular Power Spectrum
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Proof of Concept: Angular Power Spectrum
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Spatial XA Modulator in MIMO Precoding
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® rx signal model (when aj = 1 and noiseless):

Yk = ij:_()l (a_jn + qn — Qn—l)e_jwkn
= [0 0 Fne R 4 [0 (o — Gne1)e RN

~ X(wg) + (1 —e%)Q(wy) (holds when N is large)
® recall wy = ZZ%sin(fy), this means the red term zeros out when 65, = 0°
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Simulation: Scatter Plot
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settings: N = 512 Tx antenna; K = 12 users with 0, € [—30°,30°]; the antenna
spacing is set as d = \/8; the background SNR is fixed to 20dB
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Simulation: Bit Error Rate Performance
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® settings: N = 512 Tx antenna; K = 12 users with 0, € [—30°,30°]; the antenna
spacing is set as d = \/8.
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Some Technical Remarks

® we made two assumptions: i) X (w) is low-pass and ii) Q(w) is bounded and flat

® i) is done by restricting |0 in a small angular region, so that wy, = 23% sin(fy,)
will also be small

® as for ii), we use —

— no-overload condition: avoid ¢, — oo by limiting |Z,| < 1; we have
gn| < 1, i.e. Q(w) is bounded

— assumption: assume ¢, is uniformly i.i.d. over |[—1,1] and is independent of
Tp, ie. Qw) is flat
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Data-Modulating RIS w/ XA Maodulation



Reconfigurable Intelligent Surface

T FEEEEEILE’
EEEEEEEEE
EEEEEEEETE

Source: M. Cui, Z. Wu, Y. Chen, S. Xu, F. Yang, and L. Dai, “Demo: Low-power communications based on

RIS and Al for 6G,” in Proc. IEEE ICC, Dec. 2022.
® metasurface that reflects EM wave; expected to play a role in future comm. sys.
® no RF process (incl. DAC & PA) needed when used as a pure reflector

® cheap!
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Reconfigurable Intelligent Surface
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Source: https://spectrum.ieee.org/metamaterials-could-solve-one-of-6gs-big-problems
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Data-Modulating RIS for MIMO Downlink

illuminant

® recent researches suggest RIS can be used as info. source

® one antenna BS + RIS = MIMO downlink BS
— requires only one PA + one DAC to implement massive MIMO

® SOTA: a SLP soln. has been done, but the computation cost is too high?;

3H. V. Cheng and W. Yu, “Modulating Data Using Reconfigurable Intelligent Surface by Symbol Level
Precoding,” Proc. ISWCS2022, Hangzhou, China, 2022, pp. 1-6
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Data-Modulating RIS for MIMO Downlink

illuminant/ BS

Credit: Victor's designer friend, who drew this picture for a pint.
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Data-ModuIating RIS for MIMO Downlink

illuminant

® rx signal model:

N—1 _ j — ] .

— jwinn IWVn1 JWE N

k E & & e - -+ noise
:=x,, ,the phase shifts of the RIS

= (a(wiy) ® alwy)) " x + noise

where & = (e71¥1 e %2, ... e I¥N)
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Data-Modulating RIS for MIMO Downlink

illuminant

® rx signal model: vy, = [a(win) ® a(wg)] ' T + noise

® aim: manipulate the phases (¢1,...,%y) at the RIS to convey info. to users
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Spatial XA Approach for Data-Modulating RIS
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® recall the basic spatial XA modulation that sends one-bit data
® RIS reflects phases only, we need to replace the sgn by a phase quant.

® no need to take care of the PAs, as there is no PA at the RIS (unlike a relay)

27/37



Spatial XA Approach for Data-Modulating RIS
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® now we have the XA modulated output z,, being discrete-phased only

® but users maybe beyond broadside of the RIS
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Spatial XA Approach for Data-Modulating RIS

symbol s

o [
‘%’—»

o 0]

o )
—>

([ J o)

symbol s g

RIS

ri = ejwl

1 oo |i noisy region )
: ISy ' k
> P >» . ,,/ Duser
,/
e]¢q1 6]45 ,/
332 5%, .732 = € | : ,’ ——————
o >» ! S i a==T
+ o o | ' 2 0&_ - -
ej¢q2r el
i ,
_ €ranN—1 — e? 4 ) illuminant
wN oT e wN — 6]¢N | 1
e 1 o > B noisy region

® angle-steering: use phasors at the spatial feedback loop

® the corresponding DTFT: X (w) = X(w) + (1 — &“790)) Q(w)

A\ J/
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Simulation: Bit Error Rate Performance
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(N, K) = (512,8), d = \/8, 6;, = —60°, 0, € [20°,40°], 16-QAM; L is the
number of discrete phases used
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Some Technical Remarks

® no-overload condition: modulator input amplitude should be bounded by

sin(27 /L)
sin(mw/L)

A< —1

where L is no. of discrete phases®

— conservative guarantee; overloading might be able to help
® white q. noise assumption: does not hold on phase quant. empirically...

— we try to use subtractive dithers to “whiten” the q. noise®

*W.-Y. Keung, H. V. Cheng, and W.-K. Ma, “Transmitting data through reconfigurable
intelligent surface: A spatial Sigma-Delta modulation approach,” arXiv preprint,
arXiv:2310.16347, Oct 2023, https://arxiv.org/abs/2310.16347.

®>Wannamaker, R.A., “Subtractive and Non-Subtractive Dithering: A Comparative Analysis,”
J. Audio Eng. Soc., vol. 52 (Dec. 2004), 1211-27.
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BER w/ Overloading and Subtractive Dither
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Summary, Acknowledgement and Conclusions



Quick Summary of My Journey So Far...
® publications/pre-prints:
— 1x ICASSP23" workshop paper on ISAC
— 1x GlobeCom23" workshop paper on one-bit MIMO detection
— 2x ICASSP24’ submissions (one is this talk; another on robust SLP)

— 1x OJSP submission (another XA paper)
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Take-home Points

spatial XA mod. is a classical technology that has been applied on one-bit massive
MIMO downlink (reduced cost for DACs/PAs)

we use it for RIS-assisted phase-only MIMO downlink, wherein the BS can have
only one active antenna (negligible cost for DACs/PAs)

the presented work demonstrates a good potential as an alternative physical layer
scheme for massive MIMO downlink

thank you!

Questions?
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