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Today’s Agenda

• Motivation

• Preliminaries

– Derivatives

– Matrix Algebra

• Mathematical Optimization

• A.I. Applications

– Pattern Classification

– Blind Source Separation

Disclaimer: In this talk, I will try to bring in as less math./eqn. as possible. Conse-
quently, some descriptions may not be as accurate as you may see in the literature.
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Have you used them before?

Sourced from the respective company’s official websites.

• you won’t be surprised if I tell you they all rely on A.I. technologies

• but what if I say they all rely on maths.?
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The Job Market

Source: https://cs230.stanford.edu/

• go to Google and search for jobs relevant to machine learning/data science

• the job market is going wild on the A.I. industries
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Skill Set Requirement for Different A.I. Positions

Source: https://skills.workera.ai/resource_downloads/ai_career_pathways

• let’s also look at the basic requirements of different positions

• data = math!
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Motivation: Admission Requirement

Source: https://www.cse.cuhk.edu.hk/wp-content/uploads/admission/InfoDay_
AIST2022-23.pdf

• some statistics of the JUPAS admission scores of the A.I. programme offered in CUHK

• almost all our freshmen have strong mathematics background
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Preliminary: Differentiation



Functions of Interests

• we start by recalling the geometry of one dimensional linear and quadratic functions

• roughly speaking, a function f is a map that leads a domain X to another Y; a domain
is simply a collection of numerical objects

• example: let X = R be an input domain, the linear function

f(x) = A︸︷︷︸
slope

x+ B︸︷︷︸
intercept

leads to the output domain of Y = R as well; often we will use the form y = f(x) to
describe the above relationship

• example: same settings as above but replace

f(x) = A2︸︷︷︸
quad. term

x2 + A1︸︷︷︸
lin. term

x+ B︸︷︷︸
intercept

;

it also has the output set Y = R
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Function Types of Interests
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Univariate Differentiation

• (with mild assumptions) let f(x) be a function that maps R to R, define

ϕ(t) =
f(t)− f(x)

t− x
, t ∈ R, t ̸= x,

the derivative of f(x) is defined as f ′(x) = lim
t→x

ϕ(t)

• example: f(x) = Ax+B is a linear function; following the above:

f ′(x) = lim
t→x

ϕ(t) = lim
t→x

(At+B)− (Ax+B)

t− x
= lim

t→x

A(t− x)

(t− x)
= lim

t→x
A = A

• physical interpretation: f ′(x) captures the slope of f(x)
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Example: f ′(x) is the slope of f(x)
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Univariate Differentiation

• example: f(x) = A2x
2 +A1x+B is quadratic, it’s derivative is

f ′(x) = lim
t→x

(A2t
2 +A1t+B)− (A2x

2 +A1x+B)

t− x

= lim
t→x

A2(t
2 − x2) +A1(t− x)

t− x

= lim
t→x

A1 +A2
(t+ x)(t− x)

t− x

= A1 + 2A2 · x

• observation: f ′(x) is a function in x too!

• implication: the slope of a function can change with respect to x!

• think: suppose a function is bounded, what is the slope of a functional extremer for
quad.?

W.-Y. Keung, Dept. Comp. Sci. & Eng., CUHK 12/58



Example: f ′(x) is the slope of f(x), but also varies with x
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Functional Extrema

• observe that f ′(x0) = f ′(x1) = 0

• implication: if we search for min/max value of f(x), we can look for points x⋆ ∈ R that
has f ′(x⋆) = 0

• but we don’t know whether it is min or max if no further assumptions on f(x) is made
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Functional Extrema

• formally: if f(x) has a min/max point at x⋆, then f ′(x⋆) = 0

• but the converse is not true; e.g. f ′(x2) = 0 does not imply f(x2) is a min/max point
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Preliminary: Matrix Algebra



Matrix, Vector and Scalar

• x ∈ R is called a scalar; it contains one value only

• x = (x1, x2, . . . xn) =


x1

x2

...
xn

 ∈ Rn is called a vector, which contains multiple scalars

• X =


x⊤

1

x⊤
2

...
x⊤

m

 =


x1,1 x1,2 . . . x1,n

x2,1 x2,2 . . . x2,n

...
...

. . .
...

xm,1 xm,2 . . . xm,n

 ∈ Rm×n is a matrix

– the transposition (·)⊤ is to horizontalize a vector

– see: X is a collection of vectors x1,x2, . . . ,xm

• observe: vector is a special case of matrix
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Vector as Data

x = (x1, x2, . . . , xn) =


x1

x2

...
xn



• numbers stored inside a vector x may contain different physical meaning

• physicist’s point of view: two dimensional displacement

• programmer’s point of view: just an ordered linear list

• computer vision point of view: color coding such as RGB

• word count: xi is the number of times word i appears in a document
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Example: Word Count Vector

Word count vectors are used in computer based document anal-
ysis. Each entry of the word count vector is the number of times
the associated dictionary word appears in the document.

• word count: xi is the number of times word i appears in a document

• a small dictionary leads to a word count vector to represent the above passage:

word
in
number
horse
the
document


3
2
1
0
4
2

 = x

• btw this is one of the foundations of how conversational A.I.’s got trained!
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Basic Operators for Matrices

• Addition/subtraction: Given A ∈ Rm×n and B ∈ Rm×n,

A+B =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

+


b11 b12 . . . b1n
b21 b22 . . . b2n
...

...
. . .

...
bm1 bm2 . . . bmn



=


a11 + b11 a12 + b12 . . . a1n + b1n
a21 + b21 a22 + b22 . . . a2n + b2n

...
...

. . .
...

am1 + bm1 am2 + bm2 . . . amn + bmn


whereas A−B = A+ (−B) is defined in a similar manner.

• Scalar multiplication: Given a scalar term c ∈ R,

cA = c


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

 =


ca11 ca12 . . . ca1n

ca21 ca22 . . . ca2n

...
...

. . .
...

cam1 cam2 . . . camn


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Basic Operators for Matrices

• Inverse matrix: For A ∈ Rn×n, if there exists B ∈ Rn×n such that

AB = BA = I

then B = A−1 is said to be the inverse matrix of A. Some remarks:

– only square matrices are eligible to have an inverse, but not all square matrices have

one; e.g. one can show that

[
1 2
2 4

]
has no inverse

– computationally we assume programmes (such as MATLAB) is capable of computing
an inverse of a given matrix

– for non-square data matrices one may consider using the Penrose-Moore inverse
(details skipped)
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Basic Operators for Matrices

• Matrix multiplication: The product between 2 matrices is defined more strictly —it
may not always exists. Let C ∈ Rn×m , then the product

AC = m rows

{
a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn


︸ ︷︷ ︸

n columns


c11 c12 . . . c1m
c21 c22 . . . c2m
...

...
. . .

...
cn1 cn2 . . . cnm


︸ ︷︷ ︸

m columns

}
n rows

and the (i, j)th element of AC is defined as

[AC]ij =
n∑

k=1

aikckj

Note that even if A,C ∈ Rn×n, AC ̸= CA in general.

• Alternatively, I found this statement easier to interpret: [AC]ij = a⊤
i cj .
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Numerical Examples

Suppose there are three matrices

A =

[−8 −4 −1
2 −6 6
−3 5 −1
0 4 3

]
, B =

[
7 −2
1 −5
7 2

]
, C =

[−2 −2 2
−1 −1 −2
1 1 −1
1 0 0

]

It is straight forward to see that

A−C =

[−6 −2 −3
3 −5 8
−4 4 0
−1 4 3

]
, A+C =

[−10 −6 1
1 −7 4
−2 6 −2
1 4 3

]
, 0.3A+0.6C =

[−3.6 −2.4 0.9
0 −2.4 0.6

−0.3 2.1 −0.9
0.6 1.2 0.9

]

Also, it is clear that the sum A+B or C +B do not exists due to dimensional mismatch.
The same goes for all the difference.

The matrix products

AB =

[−67 34
50 38
−23 −21
25 −14

]
, CB =

[ −2 18
−22 3
1 −9
7 −2

]

follows from the definition of matrix multiplication. Other products AC, CA, BC and
BA do not exists due to, again, mismatch in dimensionality.
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Application: Solving For System of Linear Equations

Consider the following system of linear equality:

8x1 + 3x2 + 0x3 = 30

0x1 − 3x2 + 6x3 = 0

−2x1 + 2x2 + 2x3 = 10

This can be rewritten into a matrix-vector product form: 8 3 0
0 −3 6
−2 2 2


︸ ︷︷ ︸

A

 x1

x2

x3


︸ ︷︷ ︸

x

=

 30
0
10


︸ ︷︷ ︸

b

where A, b are known data; x is a vector storing all the variables; this can be solved easily
by matrix inverse (see my MATLAB demo):

x = A−1b = (2, 14/3, 7/3)
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Mathematical Optimization



The Remainder (and basically the spirit) of This Talk

• will be focusing on mathematical optimization

• motivate the usage of optimization model to handle problems arising in A.I. (pattern
classification, signal and image source separation)

• go through a demonstration of how to use software tools (MATLAB + CVX) in solving
opt.
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Mathematical Optimization

• General Formulation of Opt.:

minimize
x∈Rn

f(x)

subject to gi(x) ≤ bi, i = 1, . . . ,M

– x is the optimization variable (vector)

– f(x) is the objective function, and is scalar-valued

– gi(x) are the constraint functions, also scalar-valued

• goal: find a vector x⋆ that minimizes f whilst satisfying all the constraints gi’s

• observation: variable, objective and constraints are the key elements in optimization
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High Level Examples

• investment strategy: let x be the portion of money you spend on buying n different
stock products, we can formulate:

minimize
x∈Rn

investment risk

subject to total investment ≤ total budget

investment on each product ≤ max spending on each product

expectected return ≥ total budget

the core issue rests in how to quantify risk and expected return (need finance knowledge)

• desktop assembling: let x be the budget you spend on buying n different parts of a
desktop computer, and you have some specifications on the parts...

minimize
x∈Rn

total budget = x1 + x2 + · · ·+ xn

subject to CPU ≥ i5-12th gen,RAM ≥ 16GB,motherboard ≥ ... etc.

compatability constraints

the constraints on parts can be translated into xi ≥ Ci where Ci = price of the least
acceptable component; whereas the compatibility constraints require hardware knowledge
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Solution to Optimization Problems

• general optimization problems are uneasy to solve

• exceptions: unconstrained least square, linear programmes, convex optimization

– least square: min
x
∥Ax− b∥ is just solving for sys. of lin. eqn. (seen earlier)

– linear programme: given data A, b, ci, di, find x according to:

min
x

∥Ax− b∥

s.t. c⊤i x ≤ di, i = 1, . . . ,M

is a well studied problem; but sometimes hard to recognise the problem as LP

– convex programme: given functions f and gi’s are convex in x, find:

min
x

f(x)

s.t. gi(x) ≤ di, i = 1, . . . ,M

is a generalization of both LS and LP above; also well studied and almost considered
as a mature tech.
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Convexity
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• formally speaking, a function f is said to be convex if

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2)

for any vector x1,x2 ∈ Rn & 0 ≤ α ≤ 1

• key feature: convex function f has unique minimum value

• but there can be multiple minimizers achieving the same min. value
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Merits of Convex Optimization

min
x

f(x)

s.t. gi(x) ≤ di, i = 1, . . . ,M

• once solved, it provides a globally optimal solution

• (recall that min. value locates at where f ′(x) = 0!)

• luckily, there are many efficient solvers for convex programmes are available

• realistic problems can often be formulated into convex opt.!
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CVX: A General Purpose Convex Optimization Solver

• CVX is a MATLAB-based modeling system for convex optimization problems

• assuming you have MATLAB licences, you may install the cvx package freely as instructed
on its official website: http://cvxr.com/cvx/

• easy to use and can be applied to many optimization problems; prototyping without
requiring a lot of coding/math skills

• allows us to directly write an optimization problem and solve it immediately

W.-Y. Keung, Dept. Comp. Sci. & Eng., CUHK 32/58

http://cvxr.com/cvx/


Numerical Example
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• suppose we want to minimize f(x) = x2 − 2x+ 3
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Numerical Example
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• suppose we want to minimize f(x) = x2 − 2x+ 3

• we constraint x such that 3x− 1 ≤ −7, or equivalently, g(x) = x ≤ −2

• the min. value should be to the LHS of the red dash line

• by inspection: x⋆ = −2 and f(x⋆) = 11
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Numerical Example

• let us formulate the above example into standard opt. form:

min
x

x2 − 2x+ 3

s.t. 3x− 1 ≤ −7

which can be easily solved via CVX and MATLAB:

cvx begin

variable x(1)

minimize x^ 2 - 2*x + 3

subject to

3*x - 1 <= -7

cvx end

• on-screen demonstration will show you the optimal value is fmin = 11, and is acheived
when x = −2, which agrees with our discussion above

• imaginably, additional constraints are easily insert-able below ‘subject to’
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Applications in Artificial Intelligence



Application 1: Pattern Classification

Rose
Sunflower Flower’s Structure

• suppose you are given a large amount of flowers, some of which are roses and the rest are
sunflowers; and you have measured and recorded the sepal’s length and width respectively

• from the data collected, we learnt how does the sepal of rose/sunflower look like

• can we teach a machine to classify a new subject base on these data?
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Pattern Classification

Pattern Recognition/
Machine Learning

Algorithms

Apple?
Boy?
Cat?
Dog?
Elephant?
Fish?
Girl?

original data vector
representation label

• the term pattern recognition/classification and machine learning are generally used in-
terchangeably; although “machine learning” is actually more popular in this era of A.I.

• the basic idea is to train/learn a hypothesis function h(x) that gives an estimation on
the likelihood of the data belong to a certain class

• the function h(x) achieves better performance if we could give a better design process
that involves domain knowledge

W.-Y. Keung, Dept. Comp. Sci. & Eng., CUHK 38/58



Pattern Classification
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• the data we collected can be symbolised by a vector x = (x1, x2)

• we can also assign a numeric value to the class y of rose (y = +1)/ sunflowers (y = −1)

• we have a total of 100 data above and we call them {x(i), y(i)}100i=1

• goal: find a good function h(x(i)) ≈ y(i)
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Linear Classifier

• consider a simple yet powerful decision model: linear classifier

h(x;w, b) = sgn(w⊤x+ b)

where w ∈ Rn and b ∈ R are model parameters to be learnt

• we can translate the problem as finding (w, b) such that

sgn(w⊤x(i) + b) = y(i) for all i = 1, 2, . . . , 100.

• steering at the above equality allows us to cast the optimization problem as:

min
w,b

0

s.t. y(i) · (w⊤x(i) + b) > 0, i = 1, . . . , 100

(I will show the derivation in class if we have time)
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Linear Classifier by Convex Optimization

min
w,b

0

s.t. y(i) · (w⊤x(i) + b) > 0, i = 1, . . . , 100

• it is straightforward to implement the above opt. in cvx:

cvx begin

variables w(2) b(1)

minimize 0

subject to

for i = 1:100

y(i) * (X(i, :)*w + b) > 0;

end

cvx end

• let us visualize what is given by cvx on the next slide
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Linear Classifier by Convex Optimization
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classifier by opt.
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Extension: Non-linear Classifier

• it is clear that machines can use the pink line to serve as a decision next time in deter-
mining whether a subject is rose or sunflower

• the same applies to many other applications: handwritten digit recognition, image clas-
sification and even credit card transaction fraud detection

• however, most tasks in practice are non-linearly separable...

implying that a “straight line” cannot classify the data accurately
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Artificial Neural Network

• recall the decision model h(x) = sgn(w⊤x+ b) is linear inside the signum function

• the linear function does not exist for the dataset in the previous slide; we thus aim at
using a nonlinear function, e.g., an artificial neural network (ANN)

which considers a non-linear decision model

h(x) = sgn[w⊤
2 sgn(w⊤

1 x+ b1) + b2]
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Artificial Neural Network

• we can train the ANN by the optimization formulation

min
w1,b1,w2,b2

∑m
i=1 |y

(i) − h(x(i))|2

s.t. h(x(i)) = sgn[w⊤
2 sgn(w⊤

1 x(i) + b1) + b2], i = 1, . . . ,m

which means a minimization over the sum-of-squared error

• it is however a non-convex optimization problem, which is much harder than the linear
case discussed before
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Real-Life Application: Spam Mail Filtering

Old email data word count
vectors label

Optimization/
Model Training

classifier

Spam Filter

New email
SPAM

HAM

• a daily-life example of classification is spam mail detector

• existing emails are converted into word count vectors x, and Google will label them as
either spam (y = −1), or ham (y = +1)

• the classifier h(x) can then be trained according to out previous discussions
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Application 2: Blind Source Separation

• in many data retrieval tasks sources are mixed upon arrival of sensor’s observation

• blind source separation (BSS) is a method to unmix those data

• example: the classical cocktail party problem

in which we would like to take back an estimation of the sources given mixed observations

x1 = a1,1s1 + a2,1s2

x2 = a1,2s1 + a2,2s2

without knowing the mixing coefficients a1,1, a1,2, a2,1, a2,2
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Blind Source Separation: Problem Set-up

• the observation signal model can be rewritten compactly as[
x⊤

1

x⊤
2

]
︸ ︷︷ ︸

X

=

[
a1,1 a2,1

a1,2 a2,2

]
︸ ︷︷ ︸

A

[
s⊤
1

s⊤
2

]
︸ ︷︷ ︸

S

where {si,xi}i=1,2 are length T vectors (imagine a fragment of audio)

• question: given X, can we take back both A and S? (seems pretty handy...)

• strategy: what about we solve for one unknown at a time?
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One At A Time...?

X = AS

• suppose we have some initial guesses on the mixture matrix A, e.g.

Aest =

[
1/2 1/2
1/2 1/2

]
which means the signal sources are uniformly mixed

• we can then formulate an optimization problem

Sest ← min
S
∥X −AestS∥

which will give the best estimate of S when A = Aest, i.e. the guess is accurate

• we then use Sest to optimize the estimation of A

Aest ← min
A
∥X −ASest∥

which will give an update for the poor guess above
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The One-At-A-Time Method

Algorithm.

1. Given input observations X. Initialize a guess on the mixing matrix Aest.
2. repeat, alternatingly:

• Sest ← min
S
∥X −AestS∥

• Aest ← min
A
∥X −ASest∥

until some convergence criterion is met, or you have waited too long
3. return: Sest,Aest

• we have successfully built an algorithm using basic optimization idea

• we should also mention that both update steps are convex, i.e. solvable by cvx

• let’s test the methodology by the cocktail party problem
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BSS with Additional Constraints

• the same BSS method can be further modified to suit a different application

• consider mixture of multiple images this time, that is, in our model,

X = AS

both X and S are visual or image data

• we should stress the fact that image data contains non-negative values only; in other
words, the model should satisfy

X ≥ 0, 1 ≥ A ≥ 0, S ≥ 0

• the problem has numerous more applications, e.g. medical imaging, hyperspectral un-
mixing and video de-ghosting

W.-Y. Keung, Dept. Comp. Sci. & Eng., CUHK 52/58



Example: X-ray Image Unmixing

Source: https://www.researchgate.net/publication/323434106_Big_Data_Blind_
Separation/link/5a963e05aca2721405695aca/download
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Example: Mineral Identification via Hyperspectral Unmixing

Source: https://www.usgs.gov/labs/spectroscopy-lab/maps
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The One-At-A-Time Method, Modified

Modified Algorithm.

1. Given input observations X. Initialize a guess on the mixing matrix Aest.
2. repeat, alternatingly:

• Sest ← min
S
∥X −AestS∥, s.t. S ≥ 0

• Aest ← min
A
∥X −ASest∥, s.t. A ≥ 0,A1 = 1

until some convergence criterion is met, or you have waited too long
3. return: Sest,Aest

• we simply assert the non-negative constraints on the updating lines

• then we can play with a toy demo as shown the next slide

• FYI: this is called “non-negative matrix factorization” in the literature
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(a) The source images

(b) The mixed observations

(c) The separated images
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Take Home Points

• we have introduced the role of calculus and algebra in A.I., and have seen their respec-
tive applications in action

• A.I. is a cool subject to study, probably will be a hot topic for the coming decade; but
mathematics is even more attractive

• do not underestimate the beauty of traditional wisdom!
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Take Home Points

• we have introduced the role of calculus and algebra in A.I., and have seen their respec-
tive applications in action

• A.I. is a cool subject to study, probably will be a hot topic for the coming decade; but
mathematics is even more attractive

• do not underestimate the beauty of traditional wisdom!

That’s it! Questions?
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