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Today’s Agenda

Motivation
Preliminaries

— Derivatives

— Matrix Algebra
Mathematical Optimization
A.l. Applications

— Pattern Classification

— Blind Source Separation

Disclaimer: In this talk, | will try to bring in as less math./eqn. as possible. Conse-
quently, some descriptions may not be as accurate as you may see in the literature.
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Have you used them before?

OMO

& Spotify , (11| Tube

Sourced from the respective company's official websites.

® you won't be surprised if | tell you they all rely on A.l. technologies

® but what if | say they all rely on maths.?
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Machine Learning Engineer

Snorke)  Snorkel Al
Palo Alto, CA
via Lever

Machine Learning Scientist
el Amazon
Sunnyvale, CA

via LinkedIn

Machine Learning
S Researcher
Samsung Research America

Mountain View, CA (+1 other)

via Greenhouse

Data Scientist
Waymo

Mountain View, CA

via Glassdoor

SnowFlake
San Mateo, CA

W
«J |» Data Analyst
oS

via Snowflake Careers

Software Engineer

Electronic Arts Inc.
Redwood City, CA
via Glassdoor

The Job Market

Data Science Engineering,
Machine Learning
Salesforce

Palo Alto, CA

via Glassdoor

Data Science Engineer,
Recent Graduate

eBay

San Jose, CA

via EBay - EBay Inc.

Machine Learning Research
Scientist

Capital One

San Francisco, CA

via Capital One Careers

Senior Machine Learning
Analyst

Google

Sunnyvale, CA

via Google Careers

Research Data Analyst
Stanford University
Stanford, CA (+1 other)

via Inside Higher Ed Careers

Machine Learning Research
Engineer

Embark Trucks, Inc.

San Francisco, CA

via ZipRecruiter

Software Engineer, Machine
Learning, Research

MO Waymo

Mountain View, CA
via Waymo

bill

Ve
~7

infuit

Data Scientist / Machine
Learning Specialist

Genuent Global, LLC

London, CA (+1 other)

via Dice

Senior Product Data Scientist
Bill.com

Palo Alto, CA

via Lever

Product Analyst, Data
Science

Google

Mountain View, CA

via Google Careers

Senior Business Data Analyst
Intuit Corp

Mountain View, CA

via Intuit Jobs

Source: https://cs230.stanford.edu/

SN -

(& square

Full Stack Data Engineer
Flexion

San Ramon, CA

via WFH Jobs

Full Stack Data Scientist,
Supply DS

Wish

San Francisco, CA

via SmartRecruiters Jobs

Al/ML Full Stack Engineer
(Quality Engineering)
Apple

Cupertino, CA

via WDTN Jobs

Software Engineer / Data
Scientist, Fleet Analytics
Tesla

Palo Alto, CA

via LinkedIn

Al Deep Learning Software
Engineer

Intel

Santa Clara, CA

via TOPBOTS

Machine Learning Modeler,
Cash App

Square

San Francisco, CA

via SmartRecruiters Jobs

® oo to Google and search for jobs relevant to machine learning/data science

® the job market is going wild on the A.l. industries
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Skill Set Requirement for Different A.l. Positions

Data Engineering Modeling Deployment Business Analysis Al Infrastructure
o I

Scientist

Machine

Engineer

Data
Analyst

Software
Engineer-ML

Machine
Learning
Researcher

Software
Engineer

I|I

Source: https://skills.workera.ai/resource_downloads/ai_career_pathways
® |et's also look at the basic requirements of different positions

® data = math!

W.-Y. Keung, Dept. Comp. Sci. & Eng., CUHK 5/58


https://skills.workera.ai/resource_downloads/ai_career_pathways

Motivation: Admission Requirement

Total
Percentile Reference
Score N
5* 5* 5y

Quartile 4 > > 4 > 32
Median 3 5 Syt 3 R** 5 5 5 30
QL:’;’:te”re 3 5 \5xx/ g4 5 5 * 5 * 5 29

Source: https://www.cse.cuhk.edu.hk/wp-content/uploads/admission/InfoDay_
AIST2022-23.pdf

® some statistics of the JUPAS admission scores of the A.l. programme offered in CUHK

® almost all our freshmen have strong mathematics background
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Preliminary: Differentiation



Functions of Interests

we start by recalling the geometry of one dimensional linear and quadratic functions

roughly speaking, a function f is a map that leads a domain X to another )); a domain
is simply a collection of numerical objects

® example: let X = R be an input domain, the linear function
rx)= A z+ B
slope intercept
leads to the output domain of ) = R as well; often we will use the form y = f(x) to
describe the above relationship
® example: same settings as above but replace
2
x) = A x A x B
f(x) 2 + 1 + | ,
quad. term lin. term Intercept
it also has the output set ) = R
W.-Y.
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Function Types of Interests

40 [ [ [ [ [ [ [ [ [

30

20

10

f(x) =2x+3
f(z) =0.32° — 0.2z + 1

| |

-10 -8 -6 -4 -2 0 2 /L 6 8 10
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Univariate Differentiation

® (with mild assumptions) let f(x) be a function that maps R to R, define

f(t) — f(=)

t—x

P(t) = ., teRt#ux,
the derivative of f(z) is defined as f'(z) = 21im o(1)
—x

® example: f(x) = Ax + B is a linear function; following the above:

£(z) = lim ¢(t) = lim ALEB) = Az +B) Al = 2)

t—x t—x t — t—x (t — x) t—x

® physical interpretation: f’(x) captures the slope of f(x)

=limA=A4
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Example: f/'(x) is the slope of f(x)

281

2671

24

227

1.8

1.6

1.4}

1.2

-10 -5 0 5 10
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Univariate Differentiation

example: f(x) = Asx® + A1z + B is quadratic, it's derivative is
f,(LE) — lim (A2t2 4+ At + B) — (AzLL“Q + Ajx + B)
o t—x t —
— lim Ax(t? — ) + AL (t — 7)
- t—x t —
= lim A; + A (t—I—CE)(t _ ZC)
t—x t—x
= A1 +2A45 - x

observation: f’(x) is a function in z too!
implication: the slope of a function can change with respect to «!

think: suppose a function is bounded, what is the slope of a functional extremer for
quad.?

W.-Y.
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Example: f/'(x) is the slope of f(x), but also varies with z

35

f(x) — 0.32% — 0.2z +1 —f’(a:) = 0.6z _ 0.2
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Functional Extrema

Y
8
N—"

f max

f min

\/
8

L0 351
observe that f'(xz0) = f'(z1) =0

implication: if we search for min/max value of f(x), we can look for points x* € R that
has f'(z*) =0

but we don’t know whether it is min or max if no further assumptions on f(x) is made

W.-Y.
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Functional Extrema

f max

f min

\/
8

L0 2 1
e formally: if f(x) has a min/max point at x*, then f'(z*) =0

® but the converse is not true; e.g. f'(x2) = 0 does not imply f(x2) is a min/max point

W.-Y. Keung, Dept. Comp. Sci. & Eng., CUHK 15/58



Preliminary: Matrix Algebra



Matrix, Vector and Scalar

® r € R is called a scalar; it contains one value only

L1
L2
® x = (r1,T2,...Tpn) = _ € R" is called a vector, which contains multiple scalars
— T — — —
1 T1,1 T1,2 L1,n
L
o 2,1  T2,2 L2,n _
o X = _ = _ _ _ _ e R™*™ is a matrix
T
L mm - L :'Emal xm,Q xman -

.. T . . .
— the transposition (-) ' is to horizontalize a vector
— see: X is a collection of vectors @1, @2, ..., xm

® observe: vector is a special case of matrix

W.-Y. Keung, Dept. Comp. Sci. & Eng., CUHK 17/58



Vector as Data

Z1

L2
&r — (CCl,CUQ,...,ZUn) =

® numbers stored inside a vector x may contain different physical meaning
® physicist’'s point of view: two dimensional displacement

® programmer’s point of view: just an ordered linear list

® computer vision point of view: color coding such as RGB

® word count: x; is the number of times word ¢ appears in a document

W.-Y. Keung, Dept. Comp. Sci. & Eng., CUHK 18/58



Example: Word Count Vector

Word count vectors are used in computer based document anal-
ysis. Each entry of word count vector is number of times
associated dictionary word appears in document.

® word count: x; is the number of times word ¢ appears in a document

® a3 small dictionary leads to a word count vector to represent the above passage:

word 3

In 2
number 1 B
horse o | x
document | 2

® btw this is one of the foundations of how conversational A.l.'s got trained!

W.-Y. Keung, Dept. Comp. Sci. & Eng., CUHK 19/58



Basic Operators for Matrices

® Addition/subtraction: Given A € R™*" and B € R™”*",

A+ B

a1l a12
a21 a22

Am?2

[ a11 + b11
a21 + ba1

| Am1 + bml

Alin
a2n

amn

ai2 + bia
a22 + bao

aAm?2 + bm2

bm2

1n + bin |
a2n ‘|‘ b2n

Amn T+ bmn_

whereas A — B = A + (—B) is defined in a similar manner.

® Scalar multiplication: Given a scalar term c € R,

cA =c

aii ai2
aai a2
aAm1 Am?2

A1n
aan

[cai1  caio
ca21 Ccas2
| CAm1 Cam?2

Cain
Ca2n

Clmn_

W.-Y. Keung, Dept. Comp. Sci. & Eng., CUHK
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Basic Operators for Matrices

® |nverse matrix: For A € R™*"™, if there exists B € R™*" such that
AB=BA=1
then B = A~ is said to be the inverse matrix of A. Some remarks:

— only square matrices are eligible to have an inverse, but not all square matrices have
2

9 4} has no inverse

one; e.g. one can show that [

— computationally we assume programmes (such as MATLAB) is capable of computing
an inverse of a given matrix

— for non-square data matrices one may consider using the Penrose-Moore inverse
(details skipped)

W.-Y. Keung, Dept. Comp. Sci. & Eng., CUHK 21/58



Basic Operators for Matrices

® Matrix multiplication: The product between 2 matrices is defined more strictly —it

may not always exists. Let C € R™"*"™ | then the product

aii ai2 .« . A1n C11 C12 Cim
aai a2 .. a2n, C21 C22 Com
AC = m rows
| Am1 Am?2 <o AGmn| |Cni Cn?2 Cnm
N _J
WV NV
n columns m columns

and the (i, j)th element of AC is defined as

[AC]ZJ — Z AikCkj
k=1

Note that even if A,C € R"*", AC # C A in general.

® Alternatively, | found this statement easier to interpret: [ACY;; = a

T

ZCJ

n rows

W.-Y. Keung, Dept. Comp. Sci. & Eng., CUHK
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Numerical Examples

Suppose there are three matrices

—28 —461 —61 o, O
_ 1 -1 -2
Azls 5 1]»32[; 251703[1 1 1]

0 2z 3 1 0 0

It is straight forward to see that

-6 —2 -3
3 -5 8
A-C = [4 4 0
3

—1 4

~10 -6 1 ~36 —2.4 0.9
1 —7 4 0 —2.4 0.6
, A+C = [2 6 2] , 0.3A+0.6C = [0.3 2.1 0.9]
1.2

1 4 3 0.6

Also, it is clear that the sum A 4+ B or C + B do not exists due to dimensional mismatch.
The same goes for all the difference.

The matrix products
—67 34 —2 18
50 38 —22 3
AB = [23 21] , CB = [ 1 —9
25  —14 7 —2

follows from the definition of matrix multiplication. Other products AC, C A, BC and
B A do not exists due to, again, mismatch in dimensionality.

W.-Y. Keung, Dept. Comp. Sci. & Eng., CUHK 23/58



Application: Solving For System of Linear Equations

Consider the following system of linear equality:

8xr1 + 3x9 + 0x3 = 30
Ox1 — 3x9 + 623 =0
—2x1 + 222 + 223 = 10

This can be rewritten into a matrix-vector product form:

8 3 0 x1 30
0 -3 6 T2 | = 0
-2 2 2 3 10
N g e N ,
A L b

where A, b are known data; x is a vector storing all the variables; this can be solved easily
by matrix inverse (see my MATLAB demo):

r=A"b=(2,14/3,7/3)

W.-Y. Keung, Dept. Comp. Sci. & Eng., CUHK 24/58



Mathematical Optimization



The Remainder (and basically the spirit) of This Talk

® will be focusing on mathematical optimization

® motivate the usage of optimization model to handle problems arising in A.l. (pattern
classification, signal and image source separation)

® go through a demonstration of how to use software tools (MATLAB + CVX) in solving
opt.

W.-Y. Keung, Dept. Comp. Sci. & Eng., CUHK 26/58



Mathematical Optimization

® General Formulation of Opt.:
m?ei%gze f(x)
subject to gi(x) <b;y, i=1,.... M
— @ is the optimization variable (vector)
— f(=x) is the objective function, and is scalar-valued
— gi(ax) are the constraint functions, also scalar-valued

® ogoal: find a vector * that minimizes f whilst satisfying all the constraints g;'s

® observation: variable, objective and constraints are the key elements in optimization

W.-Y. Keung, Dept. Comp. Sci. & Eng., CUHK 27/58



High Level Examples

® investment strategy: let « be the portion of money you spend on buying n different
stock products, we can formulate:

minimize iInvestment risk
xceR™
subject to total investment < total budget

investment on each product < max spending on each product

expectected return > total budget

the core issue rests in how to quantify risk and expected return (need finance knowledge)

® desktop assembling: let & be the budget you spend on buying n different parts of a
desktop computer, and you have some specifications on the parts...

mini%ﬂze total budget =21 + 22+ - - + xn,
xcR™

subject to CPU > i5-12th gen, RAM > 16GB, motherboard > ... etc.

compatability constraints

the constraints on parts can be translated into x; > C; where C; = price of the least
acceptable component; whereas the compatibility constraints require hardware knowledge

W.-Y. Keung, Dept. Comp. Sci. & Eng., CUHK 28/58



Solution to Optimization Problems
® general optimization problems are uneasy to solve
® exceptions: unconstrained least square, linear programmes, convex optimization

— least square: min||Ax — b|| is just solving for sys. of lin. eqn. (seen earlier)
€T

— linear programme: given data A, b, c;, d;, find x according to:
min ||Ax — b||
€T
T )
st. c,e<d;, 1=1,....M
is a well studied problem; but sometimes hard to recognise the problem as LP

— convex programme: given functions f and g;'s are convex in @, find:

min  f(x)

X

s.t. gz(w) <d;, +=1,....M

is a generalization of both LS and LP above; also well studied and almost considered
as a mature tech.

W.-Y. Keung, Dept. Comp. Sci. & Eng., CUHK 29/58



strictly convex

60

50

40 1

30

20 -

10

® formally speaking, a function f is said to be convex if

flazr + (1 — a)z2) < af(z1) + (1 — o) f(x2)

60

50

40 1

30

20 1

Convexity

convex

for any vector 1,2 e R" & 0 < a <1

® key feature: convex function f has unique minimum value

® but there can be multiple minimizers achieving the same min. value

60

50

40 1

30

20 -

10

non-convex

W.-Y. Keung, Dept. Comp. Sci. & Eng., CUHK
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Merits of Convex Optimization

min  f(ax)

€T

st. gi(x)<d;, i=1,...,M

® once solved, it provides a globally optimal solution
® (recall that min. value locates at where f'(x) = 0!)
® |uckily, there are many efficient solvers for convex programmes are available

® realistic problems can often be formulated into convex opt.!

W.-Y. Keung, Dept. Comp. Sci. & Eng., CUHK 31/58



CVX: A General Purpose Convex Optimization Solver

W

CVvX

RESEARCH

® CVXis a MATLAB-based modeling system for convex optimization problems

® assuming you have MATLAB licences, you may install the cvx package freely as instructed
on its official website: http://cvxr.com/cvx/

® casy to use and can be applied to many optimization problems; prototyping without
requiring a lot of coding/math skills

® allows us to directly write an optimization problem and solve it immediately

W.-Y. Keung, Dept. Comp. Sci. & Eng., CUHK 32/58
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Numerical Example

140 x x x I I I I 1 I

120

100

80

60

40

20

® suppose we want to minimize f(z) = z° — 2z + 3
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Numerical Example

140 I I x x x I I I

120

T

|

|

100 :
|

80 '
|

60 |
|

40 I

|

20

suppose we want to minimize f(z) = 2 — 2z + 3
we constraint x such that 3x — 1 < —7, or equivalently, g(x) =z < —2
the min. value should be to the LHS of the red dash line

by inspection: z* = —2 and f(z*) = 11

W.-Y. Keung, Dept. Comp. Sci. & Eng., CUHK
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Numerical Example

let us formulate the above example into standard opt. form:

min az2—2x—|—3

st. 3xr—1< -7

which can be easily solved via CVX and MATLAB:

cvx_begin
variable x(1)
minimize x~ 2 - 2%xx + 3
subject to
3xx - 1 <= -7
cvx_end

on-screen demonstration will show you the optimal value is fmin = 11, and is acheived

when x = —2, which agrees with our discussion above

imaginably, additional constraints are easily insert-able below ‘subject to’

W.-Y.
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Applications in Artificial Intelligence



Application 1: Pattern Classification

Rose
Sunflower Flower's Structure

® suppose you are given a large amount of flowers, some of which are roses and the rest are
sunflowers; and you have measured and recorded the sepal’s length and width respectively

® from the data collected, we learnt how does the sepal of rose/sunflower look like

® can we teach a machine to classify a new subject base on these data?
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Pattern Classification

0.01 | Apple?
0.01 | Boy?
Pattern Recognition/ 0.91 | Cat?
& ——>» Machine Learning ——> | 0.03 | Dog?
Algorithms 0.01 | Elephant?
0.01 | Fish?
0.02 | Girl?
h() co
Y
original data vector .
representation label

® the term pattern recognition/classification and machine learning are generally used in-
terchangeably; although “machine learning” is actually more popular in this era of A.l

® the basic idea is to train/learn a hypothesis function h(x) that gives an estimation on
the likelihood of the data belong to a certain class

® the function h(x) achieves better performance if we could give a better design process
that involves domain knowledge
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Pattern Classification

45 r
¢ ® roses
® Vv sunflowers
°
4 ) L
o ° °
° e © o
x 35 og® G o
= ° o, v
S ° ()
= o ¢ 0‘... v V v’ v v
© @ ) 4 v
§. 3L .o ® o0 v vv v v vY
v ‘yv'v Vv
Vv; v
v
v vVwv
25+ v vvY M
v v
) v v v
v v
v
2 1 1 1
4 4.5 5 5.5 6 6.5 7

sepal length (x1)

® the data we collected can be symbolised by a vector x = (x1, x2)

® we can also assign a numeric value to the class y of rose (y = +1)/ sunflowers (y = —1)

100

=1

® we have a total of 100 data above and we call them {m(i),y(i)}

® goal: find a good function h(w(i)) ~ y(i)

W.-Y. Keung, Dept. Comp. Sci. & Eng., CUHK 39/58



Linear Classifier
consider a simple yet powerful decision model: linear classifier
h(x; w,b) = sgn(w '« + b)

where w € R™ and b € R are model parameters to be learnt

we can translate the problem as finding (w, b) such that

sgn(wTa:(i) +b) :y(i) for all 1 =1,2,...,100.

steering at the above equality allows us to cast the optimization problem as:
min 0
w,b

st. y (w2 +b) >0 i=1,...,100

(I will show the derivation in class if we have time)

W.-Y.
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Linear Classifier by Convex Optimization

sty (w2 +b) >0 i=1,...,100

® it is straightforward to implement the above opt. in cvx:

cvx_begin
variables w(2) b(1)
minimize O
subject to
for 1 = 1:100
y(i) * (X(i, :)*w + b) > 0;
end
cvx_end

® |et us visualize what is given by cvx on the next slide

W.-Y. Keung, Dept. Comp. Sci. & Eng., CUHK 41/58



Linear Classifier by Convex Optimization

5 _
® roses
V¥ sunflowers ’
45k == == classifier by opt. /7
o V4
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¢ /
(] 7
N )
—~, 4 ® /
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S 3571 ¢ , 8% > °
_ () V4
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o o® o V4 v
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3r ¢ O ® o0 Y ¢V v vy vV
s voJ v v Vv
7 v ‘;"; v
/7 \ A A 4
25 Y v vvY v
7 Vv v v
'3 v
7 v v
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sepal length (x1)
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Extension: Non-linear Classifier

® it is clear that machines can use the pink line to serve as a decision next time in deter-
mining whether a subject is rose or sunflower

® the same applies to many other applications: handwritten digit recognition, image clas-
sification and even credit card transaction fraud detection

® however, most tasks in practice are non-linearly separable...

A L9
’-
o o v, .
o o 'v w 1
[ VV,
* . v 7 ,
o Vv - @
(] |vvvv/.
® Y,
o @ 1 °
o vv v, ®
oo, _--0
_ - /00 © ©
‘ v Ve o o
! v ’ o
I Vs
v ® ® ®
v oy L1
>

implying that a “straight line” cannot classify the data accurately
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Artificial Neural Network

® recall the decision model h(x) = sgn(w '« + b) is linear inside the signum function

® the linear function does not exist for the dataset in the previous slide; we thus aim at
using a nonlinear function, e.g., an artificial neural network (ANN)

X, X, X3 X, Xg
Input i
Layer Input Neuron i Output
ly w
i1
W\A Activation
l, —2 Sl, functon (). — O,
Hidden Wi~ g(s,)
Layer 15 T
Output Training ANN means learning
Layer

the weights of the neurons

y

which considers a non-linear decision model

h(x) = sgn[w, sgn(w; @ + by) + bs]
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Artificial Neural Network

Input
Layer Input Neuron i Output
I1 Wi
}A Activation
l, —2 » §  function (). —» O,
Hidden W - ogs)
Layer ly T
u threshold, t
Output Training ANN means learning
Layer the weights of the neurons
y
® we can train the ANN by the optimization formulation
: m (1) (1) 2
min Zi:1 [y — h(x'")]
wi,by,w2,ba
' T T (i :
st. h(x™) = sgnfws sgn(w] P + b)) + 0], i=1,...,m
which means a minimization over the sum-of-squared error
® it is however a non-convex optimization problem, which is much harder than the linear
case discussed before
W.-Y. Keung, Dept. Comp. Sci. & Eng., CUHK
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Real-Life Application: Spam Mail Filtering

20 O

m m

5 ),y( )

Old email data word count ||
vectors

Optimization/
Model Training

h(x)
—»{ Spam Filter
classifier T
New email

® a3 daily-life example of classification is spam mail detector

+1

—1

HAM

SPAM

® existing emails are converted into word count vectors x, and Google will label them as
either spam (y = —1), or ham (y = +1)

® the classifier h(x) can then be trained according to out previous discussions

W.-Y. Keung, Dept. Comp. Sci. & Eng., CUHK
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Application 2: Blind Source Separation
® in many data retrieval tasks sources are mixed upon arrival of sensor’'s observation
® blind source separation (BSS) is a method to unmix those data

® example: the classical cocktail party problem

I 31 mixed obs.
Q) o o2 ;
R :CII > > 81

source 1 el BSS

~ .- ,_:' ______ :C{ > > 8 9

\ o w 2
1Y S» estimation of sources

source 2

in which we would like to take back an estimation of the sources given mixed observations

r1 = a1,181 + a2,182

T2 = 41,281 + A2,282

without knowing the mixing coefficients a1 1,a1,2, a2.1,a22
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Blind Source Separation: Problem Set-up

~ s mixed obs.
~ :\‘\‘\ ~~~~~~~ a: 1 ~
R :Cl] > > 81

source 1 “sel BSS

© e - :d g > 89

\ T a3 2
‘] So estimation of sources

source 2

® the observation signal model can be rewritten compactly as

T T
I o ar1 a2 S1
T | — T
o ai2 0422 So

\ 7 \ 7 \\ 7
Ve N~ Ve

X A S

where {s;, x;}i=12 are length T vectors (imagine a fragment of audio)
® question: given X, can we take back both A and S7 (seems pretty handy...)

® strategy: what about we solve for one unknown at a time?
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One At A Time...?

X =AS

suppose we have some initial guesses on the mixture matrix A, e.g.

A= [ 13 13

which means the signal sources are uniformly mixed
we can then formulate an optimization problem
Sest msin | X — Aest S||
which will give the best estimate of § when A = A, i.e. the guess is accurate
we then use Sest to optimize the estimation of A

Aest < mAin ||X — ASeSt“

which will give an update for the poor guess above

W.-Y.
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The One-At-A-Time Method

Algorithm.

1. Given input observations X. Initialize a guess on the mixing matrix Aest.
2. repeat, alternatingly:

o A . — m}i‘n | X — AScst|

until some convergence criterion is met, or you have waited too long
3. return: Sest, Acst

® we have successfully built an algorithm using basic optimization idea
® we should also mention that both update steps are convex, i.e. solvable by cvx

® |et's test the methodology by the cocktail party problem
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BSS with Additional Constraints

® the same BSS method can be further modified to suit a different application

® consider mixture of multiple images this time, that is, in our model,
X =AS8

both X and S are visual or image data

® we should stress the fact that image data contains non-negative values only; in other
words, the model should satisfy

X >0, 1>A>0, S >0

® the problem has numerous more applications, e.g. medical imaging, hyperspectral un-
mixing and video de-ghosting

W.-Y. Keung, Dept. Comp. Sci. & Eng., CUHK 52/58



Example: X-ray Image Unmixing

(a) (b) (c)

Figure 5. Mixing and unmixing of chest X-rays. (a) Original; (b) Mixture; (c) Recovered.

Source: https://www.researchgate.net/publication/323434106_Big_Data_Blind_
Separation/link/5a963e05aca2721405695aca/download
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Example: Mineral Identification via Hyperspectral Unmixing

| Cuprite, Nevada

AVIRIS 1995 Data
USGS
Clark & Swayze

Tetracorder 3.3 product
Sulfates

Cuprite, Nevada
AVIRIS 1995 data

Synthesized TM Bands
Approximate True Color

™ 3 K-Alunite 150c
(0.67 nm) K-Alunite 250c
K-Alunite 450c
Nag2-Alunite 100c
T™ 2 Na40-Alunite 400¢
(0.56 nm) Jarosite
Alunite+Kaolinite
and/or Muscovite
™1 Kaolinite group clays
(048 ym) Kaolinite, wxI|
Kaolinite, pxI

Kaolinite+smectite
or muscovite

Halloysite

l Dickite

Carbonates

I Calcite

Calcite +Kaolinite
Clays

Calcite +
montmorillonite

P Na-Montmorillonite

Nontronite (Fe clay)
other minerals

low-Al muscovite

med-Al muscovite
- high—Al muscovite

Chlorite+Musc,Mont
Chlorite

Buddingtonite
[ ] Chalcedony: OH Qtz
Pyrophyllite +Alunite

2km "‘N

T 2km

Source: https://www.usgs.gov/labs/spectroscopy-lab/maps
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The One-At-A-Time Method, Modified

Modified Algorithm.

1. Given input observations X . Initialize a guess on the mixing matrix Aest.
2. repeat, alternatingly:

o Seot mSin | X — Aest S|, sit. S >0

o A — mAin | X — ASeet||, sit. A>0,A1=1

until some convergence criterion is met, or you have waited too long
3. return: Sest, Acst

® we simply assert the non-negative constraints on the updating lines
® then we can play with a toy demo as shown the next slide

® FYI: this is called “non-negative matrix factorization” in the literature
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(a) The source images
(b) The mixed observations

56/58

(c) The separated images
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Take Home Points

® we have introduced the role of calculus and algebra in A.l., and have seen their respec-
tive applications in action

® Al is a cool subject to study, probably will be a hot topic for the coming decade; but
mathematics is even more attractive

® do not underestimate the beauty of traditional wisdom!
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Take Home Points

® we have introduced the role of calculus and algebra in A.l., and have seen their respec-
tive applications in action

® Al is a cool subject to study, probably will be a hot topic for the coming decade; but
mathematics is even more attractive

® do not underestimate the beauty of traditional wisdom!

That’s it! Questions?
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