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Abstract

A decomposition model is described to model linear features sampled by manual digitization or field survey. The
model consists of three components, original data, systematic pattern, and random error. Least squares and
moving least squares techniques are introduced for polynomial curve fitting. Polynomial functions are proposed
to represent linear features. The position deviation between sampled points and the polynomial function is used
as an approximation of the random error. Experimental results are presented to show the effectiveness of the
decomposition model. Potential applications of the model have been discussed including estimation of errors
associated with points sampled along linear features, digital representation and mapping of linear features.
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I. INTRODUCTION

In a vector-based GIS, digital representation of
curve features is done through the use of a series of
point coordinates sampled along the curves.
Manually digitizing paper maps is a predominant
method of point sampling. This has been recognized
as a significant source of error of spatial data
(Chrisman, 1982). Perhaps a more precise method
is to use global positioning systems (GPS) units in
the field. The high precision of GPS receivers,
however, does not offer much help for curve features
because such features are approximated by and
handled as a series of straight line segments joining
the consecutively sampled points. The facts that
use of discrete points to represent curve features is
prone to errors and that such errors are not
quantified are fundamental problems, some yet
unsolved tasks, in vector-based GIS (Brunsdon and
Openshaw, 1993).

To exactly calculate position errors of discrete points,
we need to compare the sampled points with their
true position along a curve. In most cases, however,

the true curve is not known. We must first
approximate the true curve from sampled points and
then derive position uncertainties by comparing the
sampled points with the estimated curve. To do so,
we must (1) develop a mathematical model that can
approximate and represent the true curve features
in a map or in reality based on the sampled points,
and (2) provide a procedure to estimate the errors
or uncertainties associated with the curve model.
Splines function used for curve fitting and
interpolation is not suitable for those purposes
because it forces the fitted curve to go through the
sampled points. In time series analysis, some
prediction models such as the autoregressive model,
the Autoregressive Integrated Moving Average
(ARIMA) model and adaptive filtering based on
Wiener-Levinson and Kalman Filter theories may
be useful, but they use data observed in the past to
predict the future behavior of the modeled
phenomenon (Janacek and Swift, 1993, Graupe,
1984). In spatial data modeling, it is desirable to
use both the “past” and “future” points. Some shape
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analysis methods (e.g., Lin and Hwang, 1987;
Gunther and Wong, 1990; Grogan et al., 1992)
including strip tree, curve fitting method using
Bezier curves, arc tree, and Fourier descriptors may
only be useful for curve representation not for
estimation of errors or uncertainties.

Polynomials can be used for the two purposes
mentioned above, particularly for intuitively smooth
curves that are continuously differentiable. In
reality, not all linear features have this
mathematical property. Many linear features
resulting from human activities may not be
continuously differentiable. Examples are roads,
utility lines, cadastral and administration lines. On
the other hand, most linear features delineating
natural phenomena can be considered as
continuously differentiable. These include contours,
streams, and natural resource boundaries (e.g., soil,
climate, vegetation, wetland, etc.). Because of the
increased amount of human abstraction realized by
map generalization, on smaller scale maps we
observe a larger proportion of differentiable curves.
It is possible to store polynomial coefficients and use
polynomial functions to represent curve features
particularly if lower order polynomial functions can
fit curves with sufficiently high accuracy. It may
require less space to store polynomial coefficients
than to store sampled point coordinates. In addition,
it is effective to use polynomial coefficients to
represent curve shapes. Curve shape analysis may
be made based on polynomial functions for
subsequent curve generalization, curve matching for
object registration or recognition. Thus, curve
representation with polynomial coefficients may
have some advantages in data storage and curve
shape analysis over the traditional curve
representation method involving consecutive
straight lines.

The objective of this paper is to develop a
decomposition model for curve fitting by employing
polynomial functions. The model consists of three
components, original data, systematic error, and
random error. It is used to simulate differentiable
curve features from sampled points and to
approximate sampling errors or uncertainties.
Without loss of generality, we concentrate on the
development of the model and its application to
digitized curve features. Sampled points through
GPS units can be processed in the same manner. In
the next section, we introduce a framework for
spatial data modeling particularly curve modeling
based on the decomposition model. In section 3, we

introduce an epsilon band model for the estimation
of errors or uncertainties of sampled points that
constitute a stationary random data series. For
estimation of polynomial coefficients, we describe
least squares and moving least squares methods in
sections 4 and 5, respectively. The two methods are
used to implement the curve models. Some
experiment results with digitized data from
simulated curves are presented in section 6 followed
by some conclusions.

I1. SPATIAL DATA MODELING

There are two kinds of natural or social phenomenon
that can be described with a mathematical model.
One is deterministic physical process or signal,
which is entirely known and can be represented
exactly with a mathematical function. The other is
random event, which can only be described using a
stochastic model based on random samples.

Spatial data digitization is a stochastic process
(Keefer et al, 1988). The random error is introduced
during the generation, analysis and processing of
the digitized spatial data. To model a digitized line,
its uncertainty and random error, three steps are
needed. These are model selection, model
estimation, and model evaluation.

Model Selection

A sgpatial series model describing a curve or a linear
feature should be capable of (1) representing the
original data with a deterministic mathematical
function that can simulate or account for the
sampled data series, and (2) estimating the random
error distribution for evaluating the accuracy of the
fitting, interpolation and prediction of the linear
feature. Selecting an appropriate model is one of
the most crucial steps in spatial data modeling.
Model selection criteria depend on the objective of
data simulation. To describe the behavior of a
physical phenomenon, we may derive a model based
on physical laws so that we can precisely represent
or predict the value of a physical parameter in a
given time or space. To estimate the trend of a
random phenomenon affected by many unknown
factors, stochastic process models can be chosen. It
is helpful to plot the data first for understanding
the type, pattern and trend of the random data sets.
The knowledge on the physical process of data
acquisition is also useful in mathematical model
selection.
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For a discrete series represented by digitized points
{P,t=1,2,..,n], the series can be expressed with
a general stochastic decomposition model
P=F+E+R, (1)
where
P, is the digitized point;
t is a number index for a particular point;
F, is the component that represents the original,
undistorted part of the data series;
E, contains the systematic pattern or systematic
error that can be removed if known.
R, is the random component, which can only be
estimated using some a priori knowledge
about its distribution.

A digitized-point series consists of a sequence of X
and Y coordinates, which can generally be
represented as:
{P=(X,Y,), t=12,-- (2)
Because sample points are a discrete series with
unequal intervals, it is more practical to write the
point set in a parametric form

F=(X,Y)
X, = X(s,)
Y, = ¥(s,)
t =1,2,--n (3)

where s, is a distance parameter between the origin
and point t. Both X, and Y, are the functions of
parameters, . X, and Y, can be fitted by using the
same mathematical form with different coefficients.
We only focus on the discussion of data modeling
with the series of {X,, f=1,2, --,n}in this paper.
The decomposition model can be written as

X =f +e +r, (4)

The component of e, largely depends on the physical
process of data acquisition and the digitizer used.
It is difficult to use a mathematical expression to
describe the systematic pattern without a complete
knowledge of a specific data series to be modeled.
One of the common systematic errors is linear shift.
To remove the systematic effect of a linear shift, a
linear parametric function can be used to rectify the
error. Some systematic patterns or errors may be
modeled separately through visual analysis of the
digitized data. Visualizing the sample points may
allow systematic errors to be detected and corrected

through manual editing. To simplify the discussion,
we assume that there is no systematic pattern and
error in a digitized data series, that is, the
component of ¢, is zero. We have

X =f+r (5)
Generally, any data series can be decomposed into
a deterministic and a random part and can be
represented by equation (5) (Janacek and Swift,
1993). Model selection includes the determination
of the mathematical expression for the parametric
equation f, and the definition of the distribution of
the random component 7.

Model Estimation

A mathematical model for describing a random event
contains some unknown parameters, which should
be estimated with the available sample data. Least
squares is an important statistical technique for
estimating model parameters based on some
specified standard and criteria.

Suppose a model for a spatial data series takes the
form

X =fi+n=[f10)+r
where@isthe
8=(6,,0,,...6,)"

(6)

parameter vector and

Let ¥ _ (t,0) be an estimation of the original data
set X,. Then the deviation of the estimation for the
t-th data point is

r=X-X, t=12,..,n (7)

The sum of squared deviations is

R=Yr=Y(x,-X) (8)
=1 =1

The criterion for calculating parameter 6, is that
the parameter can minimize the sum of the squares.
Let

R

—=0, =12k
26, '

(9)
Since JE', is a linear function of the parameter vector
g> we can draw a set of k linear equations from (9).
Solving the linear equation set, we can obtain the
parameters, 6, (i=1, 2, ..., k; k<n), which minimize
the sum of squared deviations in (8).
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Model Evaluation

When a model is estimated based on the available
data sets, it is necessary to diagnostically check the
goodness of fit between the estimated and the
digitized data. We need to ascertain if the model is
appropriate for the data set, and evaluate the
estimated characteristic parameters.

III. STATIONARY RANDOM DISTRIBUTION
AND EPSILON MODEL

Suppose there is a random data series {X,|r =12, }
If its statistical characteristics do not change with
variable t, that is, the characteristics is independent
of the origin of variable t, we call the random data
series stationary (Janacek and Swift, 1993).

A stationary data series have a constant mean

H,=E[X,]|=u (10)

and, for any two points t and s in time series, its
autocovariance function satisfies

R(s—1)=E[(X, - u)(X, - )] (11)
Let m=s-t , and we have
R(m) = E[(X“,,‘ - p)(X, - ,u)] (12)

Specially, if m=0, the autocovariance becomes the
squared deviation

R(0) = E[(X, = ,u)z] (13)

A stationary random series is completely
characterized by its mean and autocovariance. The
exact values of these parameters can be calculated
if the ensemble of all possible realizations is known.

Probability

area

Uncertainty

The position of
reference line

Otherwise, they can be estimated if multiple
independent realizations are available. However,
in most applications, it is difficult or impossible to
obtain multiple realizations. Most available spatial
data series constitute only a single realization. This
makes it impossible to calculate the ensemble
average. For a stationary data series, we have a
natural alternative of replacing the ensemble
average by the average along the time or distance
axle if the stationary process is ergodic (Zhong and
Hu, 1990).

The process of digitization can be considered as a
stationary random sampling process when the
cursor is used to trace a curve which can be modeled
by a normal distribution (Keefer et al, 1988; Maffini
et al 1989; Gong and Chen, 1992). This implies that
the probability of the sampled points located at both
sides of the curve are about the same and the sum
of all the errors cancels out. However, for a random
sample point, it is impossible to predict its position
along the curve. Moreover, the true curve is usually
unknown. It has been suggested that the epsilon
band model proposed by Perkal (1966) be used to
represent an uncertain zone centered at the
continuous representation of the digitized curve
(e.g., Blakemore, 1984). The position deviation,
epsilon, times a certain number is used as the width
of the uncertain zone (Figure 1).

In practice, the problem with applying the epsilon
band model to indicate curve uncertainty is how to
estimate the position deviation - the epsilon value.
Distances between the representation of the curve
and the digitized points (Bolstad et al, 1990; Gong
and Chen, 1992) may be used to estimate the width
of the epsilon band. Provided that the true curve
can be simulated with a mathematical function, the
digitizing error can be estimated from the sample

reference line

Figure 1. The distribution of digitizing points along a true boundary line and Epsilon band.
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standard deviation of the stationary random process
based on a series of digitized points.

1| =

(14)

== [y 5
=) =[;):(x, ~1) }
=1
where f is supposed to be the points on the true
curve, which is consistent with equation (5). Because
f, is unknown, a polynomial function can be used to
represent f, based on the available sample points.

IV. UNCERTAINTY MODELING WITH
POLYNOMIAL CURVE FITTING

From equation (5), we have

X, =fi+n

where f, represent the undistorted curve, and , is
the random component with a normal stationary
distribution.

There are two approaches to estimating the random
error 7, filtering and curve fitting.

The first approach is to use a filter to remove
from X, , thatis

F, = F{X,}

If the original curve is continuous and smooth, f,
should be a low frequency signal, which can be fitted
by using a polynomial function. The component of
1, is mainly a high frequency signal, which usually
has a normal distribution. To remove f,, filtering
can be applied in spatial or frequency domain.

(15)

In spatial domain, a high-pass filter is equivalent
to taking the derivatives. If f can be represented
by a K-th order polynomial function, a (K+1)th-order
differential operator can remove f, fromX, . The
standard deviation of the differentiated result can
be used as an estimation of the random error. The
problem is that, for a discrete spatial data series, a
difference operator has to be used to replace the
differential operation. Difference operation is not
invertible, and the operation will enhance the
random component when removing the low
frequency signal, which will change the magnitude
of the error and affect the estimation of the
parameters. High-pass filtering in frequency
domain seems to be more reasonable for removing
[, and estimating the random error if a filter can
be designed to remove the low-frequency part and
keep the high-frequency part unchanged.

The second approach is to use a mathematical
function to simulate f, and then subtract the
estimated f, from X,, thatis

P=X-f (16)
We use polynomials to fit a series of digitized points

as a simulation of the true curve. The general form
of a polynomial function is defined as

K
X=X(s)=) a,s* =a, +as+a,s* +.....+a,s"

k=0

(17)

where K is a non-negative integer, the degree of the
function, and a,,a,, -+, a, are fixed real numbers, s
is the distance between point s and the origin which
can be defined as the first digitizing point. The
coefficients a,,a,,"-,a,can be calculated using the
least squares technique based on the available
sampled points.

Suppose that there are n digitized points for a curve.
For the t-th point, the fitting equation is

i
v k 2 k
X, =X(s)= Z“;--Y. =da, + a5, + a8, +....taqs,,

k=0

t=1,2,...,n (18)
The residue is
R=Yr'=Y(X,~X) (19)
=1 =1
Let
IR _
—=0, i=0,1,...k(k<n) (20)
da,

we have a set of k linear equations forq,,a,, -+, a, .
Solving these equations we can obtain the unique
solution for all the coefficients. In practice, the shape
of a curve to be fitted needs to be smooth and
continuous and the order of the polynomials cannot
be infinitely high. These are further elaborated
below.

(1). Curve continuity

A curve is mathematically continuous and smooth
if its various order of derivatives exist. If a curve is
discontinuous or there exist sharp turning points,
it should be divided into continuous and smooth
segments at the broken points, and piecewise
polynomial functions may be constructed segment
by segment. Practically, polynomial functions are
less effective for linear features that are intrinsically
non-smooth or mathematically discontinuous
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because more sample points may be required and a
curve may have to be broken into too many
segments.

(2). The order of the polynomial function
Theoretically, a polynomial function can fit any
continuous and smooth curve so long as the order is
sufficiently high. Usually, better results can be
obtained when a higher order of polynomial function
is used to fit a curve if there is a sufficient number
of sample points. Practically, there is a
computational problem related to the limited
precision and magnitude of a computer. An
exceedingly high order will cause the fitted curve
vibrating around the curve because of the intrinsic
ill-condition of the Vandermonde problem and the
roundoff errors, which may introduce rather
substantial coefficients in the leading terms of the
polynomial. A reasonable order for fitting a specific
curve needs to be determined.

If a k-th order polynomial function can completely
represent a curve, then (k+1)th derivative operation
will result in zero. This fact can be used to construct
a method to determine the order of a polynomial
function.

For discrete sample points, the backward difference
operator can be defined as (Wei, 1990):

VX, =X, - X, =(1-B)X, (21)
and
VX, =(1-B)'X, (22)

where V =1-B and B is a backward shift operator
BX =X

T ="
After the k-th order difference operation, we need
to test the assumption of random stationary
distribution for the residue (Janacek and Swift,
1993). If the assumption is true, we take k as the
appropriate order for the polynomial function. If a
curve can be completely represented with a K-th
order polynomial function, for any P-th order
polynomial function (P>K), all the coefficients a; = 0
(K < j< P), and the accuracy of the fitting should
be the same as the K-th order polynomial function.
There is a more practical method to determine the
order of a polynomial curve. When k is smaller than
K, the fitting error or residual R, monotonically
decreases as the order increases. When k increases
to K+1 and if R, equals R, or even is less than
R, because of the intrinsic ill-condition of the

Vandermonde problem and the roundoff errors, K
should be taken as the order of the polynomials.

V. MOVING LEAST SQUARES FOR CURVE
FITTING

If a continuous curve changes sharply in some parts
and changes gently in some other parts, it requires
a high order polynomial function to fit the curve.
On the other hand, because the precision limitation
of a computer, a sufficiently high order of polynomial
function will cause vibration of the fitted curve and
hence introduce a large fitting error. To solve this
problem, moving least squares can be used.

The basic idea of moving least squares is that if X is
the function associated with the fitted curve, then
the value of X at a point s should be most strongly
influenced by the values at those points 5, that are
close to s. In other words, the influence of a value
at 5, on X at point s should decrease as the distance
between s and s, increases. Therefore, we can
modify equation (19) to a weighted sum of squared
deviations and minimize

"

R, =Y w,(5)[X(s)- X, I’

1=l

" K B
B Zw,[s)[Zak k- X,:l (23)
=1 k=0

where w,(s) is the weight function of s at point t.
Choose the following function

w,(s) =exp(~Cls - s,)) (24)

which is a monotonically decreasing function, and
C is a constant for adjusting weights of neighboring
points. The greater C is, the smaller is the size of
the neighborhood points that have significant effect
on the fitted value at position s.

To obtain the optimal coefficients according to the
minimum squares of deviation, let

% =0, k=0,1,.., K (25)
da,

Then, the normal equations are
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n " n
0 I K
ay, Z w,S, ] +a, [Z w, S, J +eeetdy, {Z WS, )
=1 =1 =1
H
= Z w X,
1=l
" " n
1 2 K+l
ay, z WS, ] +a, (z WS, J +eeetay {Z WS, ]
=1 =1 =1
n I
= Z w,s, X,
=1

n n n
K K+1 i 2K
au{g w,s, J+a,(z w,s, )+- +ax[2 w, s, ]
=1 =1

=1
n i
= Swstx,
=l

(26)

For polynomial curve fitting based on least squares,
the coefficients of the polynomial function is identical
for any fitted point s. Therefore, a high order
polynomial function may be required. With moving
least squares, the solution for the coefficients
ay,a,, - a,depends on s through the weight
function w,(s). For each s, we have to solve a set of
normal equations. Therefore, it is computationally
prohibitive to use high order polynomials.

VI. EXPERIMENTAL RESULTS AND
DISCUSSION

Experiments were conducted to evaluate the
accuracy and uncertainty of digitization and curve
fitting for linear features using polynomial functions
based on least squares and moving least squares.
The original curves were generated with some
mathematical functions. The exact position error
of each point can be calculated by comparing the
digitized point, the fitted curve value with the
original mathematical function.

Experimental procedures are as following:

Step 1. Design a kind of mathematical function to
generate a curve.

Step 2. Print out the curve and digitize the curve
using a digitizer.

Step 3. Fit the curve using a polynomial function
based on least squares and moving least
squares

Step 4. Estimate the random error and evaluate the
accuracy of curve fitting.

Curve Generation

Different mathematical functions were used to
generate different shapes of curves. To evaluate the
effect of curvature on digitization, circles with
different radii were used. It is more difficult to fit a
curve that has different curvatures in its different
segments. A set of sine functions were used to
represent the curves with different curvatures. The
sine function used to generate curves was
y=asinbx, where a and b were parameters for
adjusting the shape of the curve a={1.0, 1.25, 1.5,
2.0} and b={1.0} in our experiments. The third kind
of curve was an ellipse representing polygon
boundaries with different curvatures. The ellipse
equation is:

2

2
X
_2_|..

<<

a
where a=(2, 6} and b={1, 3}.

To further test the polynomial curve fitting
technique, more complicated curves were
constructed by mirroring a sine curve (Figure 6) or
joining two ellipses (Figure 7).

Digitization

All the curves generated with mathematical
functions were digitized manually by some
experienced operators at their normal speeds. The
digitized data were then taken as sampled points
for curve fitting and random error estimation.

Original circle

Digitized circle

Figure 2. A digitized version of a circle (dotted)
overlaid on top of the original one (solid).
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Figure 2 shows a set of digitized points along one of
the original circles. The radius of the circle is 5.5
cm printed with a laser printer having a resolution
of 600 dots per inch (DPI). The line thickness is 0.1
mm. The digitization was done on a Summagraphics
(MM 11 1812) digitizer with a resolution of 1000 DPI.
As can be seen from Figure 2, the digitized points
are not exactly on the circle. We calculated the exact
position errors and plotted the distribution of the
digitizing errors in Figure 3. As expected, most of
the digitized points locate along the circle and the
number of sampled points decreases as the distance
between the digitized points from the circle
increases. Although the distribution of errors is a
little skewed, it looks close to a normal distribution.
In this study we assume that the digitizing error
distribution is normal.

Errors caused from curve plotting by a printer and
point-position reading from digitizing tables are
determined by the resolution of the printer and
digitizer used. Since a 600 DPI printer was used,
curve plotting errors should be within approximately
+/- 0.022 mm while point reading errors should be
within 0.013 mm. Because errors from different
sources do not simply add up (Gong et al., 1995) and
the error magnitudes of curve printing and point
reading are one order of magnitude less than the
digitizing errors at an average level of approximately
0.2 mm (Figure 3), errors caused by curve printing
and point reading have been ignored in this study.

Curve fitting

The curvature of the sine curve reaches its

— Original curve

...... Digitized curve

------- Fitted curve
with LS

(a)

02

0.1+

Percentage

0.0 -
........................
5 b 00 G 0O0CO0COGa o090 oea8c e 8
ooooooooooooooooooo

Error {cm)

Figure 3. Digitized error distribution calculated
from the example in Figure 2. Error is determined
by calculating the distance of each digitized circle

maximum at the peak and valley positions (Figure
4). With a 9-th order polynomial function, the curve
fitting errors are still largely observable.
Particularly, the fitted curve does not reach the
apices of the sine curve (Figure 4a). Better results
were achieved from the moving least squares with
an order of 5 (Figure 4b).

Figure 5 shows a comparison of the results from the
least squares and the moving least squares. The
four curves in Figure 5(a) include the original curve
and the curves generated by polynomial functions
of order 1, 5, and 9, respectively. It can be seen that
the curve simulated with the 9th order polynomials
is a close approximation to the original curve. Figure

— Original curve
------ Digitized curve

------- Fitted curve
with MVLS

(b)

Figure 4. The effect of curvature on curve fitting. (a) Original curve, digitized version, and fitted curve
using the 9th order polynomial functions estimated with the least squares method. (b) Fitted curve using

the 5th order polynomials estimated with moving least squares.
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—— Origiinal curve
------ Fitted curve (order=1)
— - — Fitted curve (order=5)

..... Fitted curve (order=9)

(a)

—— Origiinal curve
------ Fitted curve (order=1)
—-— [itted curve (order=3)
..... Fitted curve (order=>5)

(b)

Figure 5. Curve fitting results using different orders of polynomial functions. The original is displayed
using a solid line. (a) Fitted results using least squares with polynomial orders of 1, 5, and 9, respectively.
(b) Fitted results using moving least squares with polynomial orders of 1, 3, and 5, respectively.

Table 1. The Comparison of the Errors of Least Squares and Moving Least Squares
Least Squares Moving Least Squares

Order x (cm) y (em) Order x (em) y (cm)
1 0.463824 0.477288 1 0.029826 0.102721
3 0.059176 0.075351 2 0.011229 0.018969
5 0.023897 0.028138 3 0.008875 0.014013
7 0.006212 0.020102 4 0.004368 0.006309
9 0.006224 0.006068 5 0.003307 0.004847

5(b) shows the curve fitting results obtained from
the moving least squares with order 1, 3, and 5,
respectively. The curves generated with the 5th
order polynomial functions fit well to the original
curve. Table 1 summarizes some of the curve fitting
accuracies. For the least squares method, when the
order is 11, the sample variances along both the x
and y directions are tremendously greater than
those obtained from the 9th order polynomial
functions. Therefore, an 11th order polynomial
function may represent an over fitting to the original
curve because of the intrinsic ill-condition of the
Vandermonde problem and the roundoff errors.

Figure 6 shows an example when curve fitting by
one single polynomial function reaches its limit in
simulating curve sections containing sharp
curvature changes. In this example, there are two
sharp points. For the curve segment containing the
left sharp corner where the sample starts and ends,
the fitted curve matches the original curve well. At
the other sharp point, the fitted value is smooth and
cannot reach the sharp corner as shown in Figure
6. The third order polynomial functions were used.
For a continuous and smooth curve as shown in
Figure 7, although the curve has an intersection

point that makes two closed ellipse shapes, the fitted
curve can still match the original curve well with
the 3rd order polynomial functions estimated using
the moving least squares method with C=2.0.

Fitting accuracy and random error

Generally speaking, the order of polynomials used
is directly related to curve fitting accuracies as can
be seen in Table 1. Because of the limitation of
computer precision, when the order was 11 or greater
in our experiment, the fitting accuracy decreased
dramatically using the least squares. Moving least
squares resulted in higher accuracies of curve fitting
with lower order polynomials.

Table 2 is a comparison of errors among the original
curve, the digitized curve and the fitted curve from

Table 2. A Comparison of Position Deviations

Position Deviation (cm)

Digitized vs. Original 0.0193
Fitted vs. Original 0.0096
Digitized vs. Fitted 0.0120
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|— Original curve
-+++:Fitted curve (order=3)

Figure 6. Fitting a curve with internal intersection
and abrupt curvature changes. The fitted results
were obtained using the 3rd order polynomials
estimated with moving least squares.

an experiment. The error of a digitized point was
estimated from the minimum distance between the
point to the original curve. It can be seen that the
standard deviation between the digitized curve and
the original curve is 0.193 mm while the standard
deviation between the fitted curve and the original
curve is 0.096 mm. Thus, the fitted curve has a
higher accuracy than the digitized curve (Figure 8).
Since the original true line may not be available in
practice, the deviation of 0.120 mm between
digitized points and the fitted curve may be taken
as an approximation of the uncertainty introduced
by digitization. Although the approximation tends
to be smaller than the true digitizing error, it seems
to be a proper measure of curve uncertainty for the
application of the epsilon band model because the
majority of the true curve will be within a 0.24 mm
zone centered at the fitted curve.

Uncertainty modeling in map overlay

Map overlay is an important tool in geographical
analysis. Through different operations such as
intersection, matching, and merging (Pullar and
Beard, 1990), two or more multisource data sets can
be combined into one. Because different thematic
maps are made by different people at different times

— Original curve
----- Digitized curve

(a)

| = Original curve

=+« Fitted curve (order=3)

Figure 7. Fitting a curve with internal intersection
with no abrupt curvature changes. The fitted
version was produced by the 3rd order polynomials
estimated from moving least squares.

using different data sources, the polygon boundaries
in different digital maps do not exactly match. Even
if the same polygon boundaries are separately
digitized, the resultant maps will not exactly
coincide due to digitization and other errors.
Therefore, the operation of map overlay will
generate many small spurious polygons (Goodchild,
1978). Spurious polygons are another source of
uncertainty in spatial data bases.

To remove those spurious polygons, three strategies
have been used: (1) randomly choose one side and
delete the other side; (2) use a straight line to connect
the two end points; (3) choose the line that has a
higher accuracy or that is from a larger map scale
and erase the other (Zhang et al, 1993).

Polynomial curve fitting can be used as the fourth
strategy to find a new line as an estimation of the
true boundary line based on weighted least squares
using all the points of a specific boundary from every
layer. The new line has the minimum error if all
the layers have the same accuracy. When the
relative accuracies are different among layers to be
overlaid, weights can be assigned to points in each
layer in the weighted least squares estimation. The
weight assigned to each layer should be made in

— Original curve

----- Digitized curve

(b)

Figure 8. A comparison of the accuracies between the original, a digitized, and a fitted curve. (a) The
original curve and the digitized curve. (b) The original curve and the fitted curve.
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accordance to the accuracy of the layer, i.e., assign
the layer of higher accuracy with a greater weight
for the generation of the new boundary. The
determination of weights should also be based on
the scale of the source maps because maps of smaller
scale tend to have less accurate boundary positions.

(b)

Figure 9. An example of multilayer curve fitting
using the polynomial technique. (a) Original ellipse.
(b) Three digitized versions. (c) Fitted curve with
the 9th order polynomials estimated using weighted
least squares technique.

Figure 9 shows some simulated results. Three
curves digitized from the same original curve were
regarded as three boundary lines each from a
different source map. The fitted curve was
calculated from the three digitized curves each
having the same weight assignment. Table 3 lists
the standard deviations between the fitted curve and
the true curve and between the digitized points and
the true curve.

An ellipse curve was produced from a mathematical
equation and treated as the true curve (Figure 9a).
It was digitized three times and the three digitized
versions were overlaid (Figure 9b). Were they
displayed at some larger scale, we would see many
spurious polygons from the overlaid results along
the boundary. Figure 9(c) shows the derived line
using the 9th order polynomial functions based on
all the points on the three different digitized curves
with weighted least squares.

Table 3. A Comparison of the Position Deviations
in a Map Overlay Experiment

Position Deviation (cm)

Digitized vs. Original 0.0167
Fitted vs. Original 0.0078
Digitized vs. Fitted 0.0145

(a)

Original curve

Fitted curve

(c)

VIL. SUMMARY AND CONCLUSIONS

In vector-based GIS, linear features are sampled in
the form of discrete point series and represented by
consecutively joined straight lines. The sampled
points contain a large amount of errors and the
representation method is not suitable for curve
features. Few efforts have been made to improve
this situation. The primary objective of this research
was to seek appropriate methods to model linear
features sampled in spatial databases and to
determine uncertainties associated with the
samples. We presented some methods based on a
decomposition model implemented through
parametric polynomial functions determined by
least squares and moving least squares techniques
to achieve the objective particularly for modeling
continuous and smooth curve features.

A discrete point series can be decomposed into three
components, the original data set, the systematic
error, and the random error. Since the systematic
error component may be detected through
visualization and calibrated or removed through
manual editing, we excluded it from our
experiments. If the point series comes from a
continuous and smooth curve such as a stream,
contour, or a boundary of natural phenomena,
through experiments we demonstrated that digitized
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point series can be represented with polynomial
functions. A single polynomial function whose
coefficients are determined by the least squares
technique or a group of polynomial functions whose
coefficients are estimated with the moving least
squares technique can be used to model a continuous
and smooth curve.

In our experiments, we assumed that the random
error of sampled points has a stationary normal
distribution. Because a true curve is often unknown
in real spatial databases, it is impossible to calculate
the sample errors such as errors caused by
digitization. We demonstrated the use of least
squares and weighting least squares methods for
estimating sample errors. The standard deviation
between point data sampled along a curve and the
fitted curve can be used in an epsilon band model to
model uncertainties of the sample data, particularly
digitized data.

The order of polynomials required to accurately
model a curve is lower for moving least squares than
that for the regular least squares. While the moving
least squares technique gives higher curve fitting
accuracies than regular least squares, it lacks
computational efficiency.

These techniques may be used to estimate the
uncertainties in map digitization, field survey using
GPS units, multilayer map overlay, and to represent
curves in spatial databases. Modeling and
representing lines with polynomials have potential
advantages in saving storage space, curve
generalization, curve matching and object
recognition.

Selecting suitable models and base functions for
linear feature modeling and representation and
developing appropriate uncertainty estimation
methods for linear features in spatial databases
warrant more research attention. Further test of
the methods proposed here through experiments
with curve features digitized from a map or collected
in the field may provide important insights for better
spatial data modeling and uncertainty estimation.
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