42 Huang and Lin: Restructuring the SQL Framework for Spatial Queries

Restructuring the SQL Framework for Spatial Queries

Bo Huang and Hui Lin

Department of Geography & Joint Laboratory for Geoinformation Science
The Chinese University of Hong Kong
Shatin, NT, Hong Kong

Abstract

This paper presents an approach to designing a spatial query language, called GeoSQL, in terms of the conven-
tional spatial query and implementation process. A critical factor to the design is how to accommodate spatial
operators in an appropriate form, while being compatible with the Structured Query Language (SQL) standard.
To achieve this, the FROM clause of SQL is restructured to contain spatial operators via a subquery so that the
results of spatial operations can be easily fed into both the SELECT and WHERE clauses. The subquery in the
FROM clause creates an intermediate relation, on which the selection in terms of certain criteria is conducted.
This is a distinct characteristic of GeoSQL. The syntax and semantics of GeoSQL are described, and a set of
examples for testing the expressiveness of the language is given. The interface of the language is also designed
with the introduction of visual constructs (e.g., icons and ListBoxes) to aid the entry of query text. This distin-
guishes GeoSQL’s interface from the previous extended SQLs, which only employ pure text for constructing a
query. After this, an implementation of GeoSQL is discussed. This paper finally suggests further extending
GeoSQL for temporal and fuzzy queries.

wm =

ARSCHUR 5 ALY 23) B ad 1, 803 T 2 #1035 5 : GeoSQL, GeoSQLR T F# ifi(subquery), H41 T FROM 4],
JXJi GeoSQL iy EZFF (2 —, HK, GeoSQLAYH M iHMA T Icon, ListBox Gl L&E(, {175 if) A AR
Bo, RINECD TIRIERG, XR GeoSQLAYT —Hff, AXAHT GeoSQL M FLILA, Friii% iFmBlr ik,

"

I. INTRODUCTION

The need for a formal spatial query language has
been widely identified in GIS community [8, 10].
Therefore, several approaches to devising a spatial
query language have been developed [2, 4], Of them,
extending the relational database languages, pri-
marily SQL, is a major one.

SQL, very suitable for the retrieval of lexical data,
has been the standard query language for relational
databases [1]. However, based on the underlying
power of relational algebra, SQL has proved to be
insufficient for the queries involving spatial propri-
eties such as metric and topology [7]. Hence a vari-
ety of extended SQLs were addressed (e.g., [8, 12,
14, 16, 21]). For GIS requirements, the main exten-
sions to SQL include the introduction of spatial data
types such as point, line and polygon, as well as spa-
tial operators such as distance, direction, intersec-
tion and buffer. Given that spatial operators in these
languages are applied in either the SELECT or
WHERE clause, it becomes difficult to apply the

results of spatial operators occurring in one clause
(e.g., WHERE clause) to another clause (e.g., SE-
LECT clause), and to implement further conditions
on these operators such as temporality.

Different from the above approach, Gadia [11] pro-
posed a spatial SQL in the form of “SELECT ...
RESTRICTED TO - FROM ... WHERE”. The condi-
tion in the WHERE clause only includes non-spa-
tial attributes, while the condition in the augmented
RESTRICTED TO clause deals with the spatial
data. Huang [15] designed an extended SQL by in-
corporating spatial operators in the FROM clause,
while the other clauses remain intact. The modified
FROM clause creates a new relation with derived
attributes representing the results of spatial opera-
tions. These attributes, just as other attributes in
the source relations, can then be applied in both the
SELECT and WHERE clauses. The direct incorpo-
ration of spatial operators, however, does not com-
ply with the general representation of the FROM

1082-4006/97/0301~2-42%$3.00
©1997 The Association of Chinese Professionals in

Geographic Information Systems (Abroad)

M3 (5 B F

Geographic Information Sciences

B=% %= —MUNEF+HZA
Vol. 3, No. 1-2, December 1997

43

clause, as has been done by many variants of SQL.

In order to overcome this problem, this paper at-
tempts to redesign the FROM clause via a subquery
(i.e., a nested SQL), and in the meanwhile, incorpo-
rate more spatial operators including those for com-
plicated spatial analyses such as INTERSECTION,
UNION and DIFFERENCE. It should be clear that
the ongoing SQL/MM [17] and SQL3 do not impose
a unique form for representing spatial queries. The
design of GeoSQL is conducted strictly within their
framework.

The remainder of this paper is organized as follows.
Section IT describes the spatial data types and spa-
tial operators in GeoSQL. The syntax and seman-
tics of GeoSQL are discussed in Section III, with a
stress on the representation of the FROM clause.
Section IV gives several examples to illustrate how
spatial queries are represented by GeoSQL. The
interface of GeoSQL is presented in Section V, which
introduces some visual constructs such as icons and
ListBoxes, thereby increasing its user friendliness.
Following this is an implementation of GeoSQL in
Section VI. Finally, in Section VII, this paper con-
cludes with some comments on the characteristics
of GeoSQL and its future development.

II. SPATIAL DATA TYPES AND OPERATORS
Spatial Data Types

Generally, there are two kinds of spatial data mod-
els: feature-based and layer-based in GIS. The
former one models spatial features while the latter
one models map or a set of thematic maps [24]. The
feature-based data model is currently adopted by
many GIS packages such as ESRI's ArcView,
Maplnfo Inc.’s MapInfo and Intergraph’s Modular
Graphical Environment (MGE).

In a feature-based model, a spatial feature, e.g., a
road, school or region, is represented as a geometric
object with spatial attributes such as coordinates
and topological relationships, as well as non-spa-
tial attributes such as name, type and size. Usu-
ally, a class of features having a similar thematic
property (e.g., roads, rivers or landuse) is repre-
sented by a spatial relation, and a feature corre-
sponds to a tuple in the spatial relation. The spatial
relation extends the conventional relation with an
Abstract Data Type (ADT) , i.e., using GEO attribute
for spatial representation. In other words, spatial

attributes appear at the same conceptual level as
the non-spatial attributes [22]. The basic relational
operations such as projection and Cartesian prod-
uct are considered applicable to spatial relations.
The GEO attribute can be of point, line or polygon

type.

Using the above method, the following schemas re-
lated to Hong Kong region are defined:

region (ID, name, population, GEO)

landuse (ID, type, GEO)

parcel (ID, address, GEO)

road (ID, name, class, GEO)

building (ID, name, owner, GEO)

university (ID, name, studentnum, GEO)

The features of region, landuse, parcel, building and
university are of polygon type, while those of road
are of line type. These tables are to be used along
this paper.

Spatial Operators

Spatial operators are the methods pertaining to spa-
tial features, which are employed to extract infor-
mation from spatial features, as well as to create
new spatial features from existing ones [23].

Several sets of spatial operators have been defined
to query spatial database [2, 6]. Both SQL/MM and
Spatial Database Engine (SDE) [9] have also defined
their sets of spatial operators. Based on these, four
groups of typical spatial operators are defined to il-
lustrate how they are applied in GeoSQL.

(1) Unary spatial operators

The unary spatial operators are often used to ob-
tain a scalar value, arcs or centroid of a spatial fea-
ture such as
ARCS(Pgn) gets the arcs from the polygon Pgn
AREA(Pgn) calculates the area of the polygon
Pgn
LENGTH(I/Pgn) calculates the length of the line
L or the polygon Pgn (perimeter)
CENTROID(Pgn) gets the center point of the
polygon Pgn
VORONOI(Pnts) gets the VORONOI map of a
pointset Pnts
BUFFER(SP) gets the buffer area of a spatial
feature

Some of the above operators are type-specific, e.g.,
AREA, which can only take spatial features of poly-

44

Huang and Lin: Restructuring the SQL Framework for Spatial Queries

gon type as its operands while line and point type of
features are not applicable. But, some others are
generic, e.g., BUFFER(SP), which can operate on
one or more data types,. In this case, the spatial
data type is defined as SP.

(2) Binary geometric operators

The following are the two main geometrical opera-
tors:
DISTANCE(SP1, SP2) calculates the minimum
Euclidean distance between two spatial features.
DIRECTION(Pnt1, Pnt2) calculates the angle of
the line connecting the points Pntl and Pnt2.

(3) Binary topological operators

Topological operators determine the topological re-
lationship between two spatial features and return
a Boolean value. If the topological relationship de-
fined by an operator holds between its arguments,
the operator returns the value TRUE; else FALSE.

According to [5, 6], the topological relationships usu-
ally include DISJOINT, CONTAINS, TOUCH,
WITHIN, OVERLAP, CROSS, INTERSECTS and
EQUALS.

(4) Binéry construction operators

Construction operators may create new spatial fea-
tures if a certain topological relationship holds be-
tween two spatial features. The main construction
operators are:
UNION(SP1, SP2) gets all the primitive lines or
polygons
INTERSECTION(SP1, SP2) gets the common
part of two spatial features
DIFFERENCE(SP1, SP2) gets the different part
of two spatial features

This group of operators represent the most difficult
type of spatial operators to define directly in SQL
[14]. However, like other types of operators, these
operators in GeoSQL are represented in the way as
other operators. This is discussed below.

III. REPRESENTATION OF GEOSQL

Conventional Spatial Query and Implementa-
tion Process Using GIS

When a query involves several spatial operations,

[source rclation(s)]

spatial operations

unary binary
spatial spatial
operators operators

l

[intermediate 1'clali011]
L
[qelecl in terms of cond]

&

project attributes }-—-—-—-

Figure 1. The conventional spatial query and imple-
mentation process using current GIS packages

WHERE

we often first do spatial operations using unary spa-
tial operators, binary spatial operators or both of
them, and obtain an intermediate result. Then a
selection in terms of certain criteria is carried out
on this intermediate result. Finally, the desired at-
tributes are projected. This procedure is shown in
the left part of Figure 1, which provides a basis for
the design of GeoSQL.

Syntax of GeoSQL

Generally, a SQL statement is as follows:
SELECT Ay, ..., Am
FROM Ri, veny Rn
WHERE F

It is described in relational algebra as

[1,. . (@R x..xR,)

Hence the FROM clause implies the Cartesian prod-
uct of the given relations. In any case, the FROM
clause needs to finally define a single relation, be-
cause it is the relation to which the selection in the
WHERE clause and the projection in the SELECT
clause are applied.

Enlightened from this, if the FROM clause is re-
structured to create an intermediate spatial rela-
tion resulted from spatial operations, the SQL state-
ment can then be easily adapted to the above spa-
tial query and implementation process (Figure 1).

UBLHERSE R e

Geographic Information Sciences

B=%P—FE —MLEEFZA
Vol. 3, No. 1-2, December 1997

45

An approach to implementing this is to append new
attributes derived from spatial operations to the
Cartesian product of source relations. Since the di-
rect insertion of spatial operators into the FROM
clause will not be consistent with the ongoing SQL3
standard, it is necessary to employ a subquery, i.e.,
embedding a SQL statement, in the FROM clause.
The spatial operators are, therefore, applied in the
nested SELECT clause for projection of their results,
for example,
SELECT
FROM
(SELECT *, CONTAINS(r. GEO, u. GEO) AS
contval, AREA(urge) AS areaval
FROM region AS r, university AS u)
WHERE

The result of CONTAINS operation is represented
by the attribute “contval”, and the result of AREA
operation by the attribute “areaval”. The subquery
in the above FROM clause creates an intermediate
relation, whose schema is shown in Table 1. The
selection with certain conditions can then be car-
ried out on this intermediate relation. In effect, such
a relation is a virtual result because it can be opti-
mized in terms of projection items and selection con-
ditions during the implementation process.

This FROM clause can be described in geo-relational
algebra [13] as
region university product
extend [contval: CONTAINS(region.GEO,
university. GEO), areaval:
AREA(university. GEO)]
select [-]
project [-]

The “extend” operation above is to add new at-
tributes to the Cartesian product of region and uni-
versity.

The syntax of GeoSQL is based on the conventional
SQL, whose basic form is

SELECT <select-clause>

FROM <from-clause>

WHERE <where-clause>

Since only the FROM clause is different from that
in the conventional SQL, its BNF form is described
below:
<from-clause> :: = <relations> | <nested SQL>
<relations> :: = relation (, <relations>}
<nested SQL> :: = SELECT <sub-select clause>
FROM <relations>
<sub-select clause> :: = *, <spatially derived at-
tributes>
<spatially derived attributes> :: = <spatial op-
erators> AS <attribute name> {, <spatially de-
rived attributes> }
<spatial operators> :: = <unary spatial opera
tors> | <binary geometric operators>
| <binary topological operators> | <binary
construction operators>

Conceptually, the subquery in the FROM clause of
GeoSQL is just seen as an intermediate relation,
which includes new derived attributes representing
the spatial operation results. The derived attributes
are taken as the same as those in the source rela-
tions, and thus can be easily applied as constraints
in the WHERE clause, and referenced in the main
SELECT clause for further statistical analysis or
graphical display.

IV. QUERY EXAMPLES

A set of database schemas related to Hong Kong
region has been defined in Section II. The following
gives a group of examples to illustrate how spatial

queries are represented by GeoSQL.

Example 1, Display the commercial landuse in

Hong Kong.
SELECT GEO
FROM landuse

WHERE type = ‘commercial’
The GEO attribute occurring in the SELECT clause
is to display the selected features in a map.

Example 2. Find the residences less than 2KM
away from the Hong Kong Polytechnic University
(HKPU), and show the distance.

Table 1. The virtual schema of the above FROM clause

Attributes of region (r)

Attributes of university(u)

New attributes

r. T T. I. u. u.

1D name GEO | 1D

population

name

u. u. contval | areaval

GEO

studentnum

46

Huang and Lin: Restructuring the SQL Framework for Spatial Queries

SELECT b.name, distval
FROM
(SELECT *, DISTANCE(u.GEO, b.GEO) AS
distval
FROM university AS u, building ASb)
WHERE u.name = ‘HKPU’ and b.type = ‘resi
dence’ and distval <=2

The attribute “distval” derived in the FROM clause
enables it to be applied in both the SELECT and
WHERE clauses.

Example 3. Find the universities with more than
10,000 students, and indicate they are inside or out-
side the Kowloon region in Hong Kong.
SELECT u.name, contval
FROM
(SELECT *, CONTAINS(r.GEO, u.GEO) AS
contval
FROM region AS r, university AS u)
WHERE r.name = ‘Kowloon’ and u.studentnum
> 10,000

The derived attribute “contval” occurring in the
SELECT clause shows a Boolean value indicating a
selected university is inside or outside the specified
region.

Example 4. Display the built-up area in Kowloon
and New Territories, and sum the area.
SELECT IGEO, sum(areaval)
FROM
(SELECT *, INTERSECTION(rg.GEO,
Iu.GEO) AS IGEO, AREA(IGEO) AS
areaval
FROM region AS rg, landuse AS lu)
WHERE rg.name = ‘Kowloon’ or rg.name = ‘New
Territories’ and lu.type = ‘built-up’

Since landuse parcels and the regions may overlap,
an intersection operation is required. Its result is
specified by the spatial attribute “IGEO”.

Example 5. Display the residences in Kowloon re-
gion that are nearer to HKPU than other universi-
ties.
SELECT b.GEO
FROM
(SELECT *, VORONOI(u.GEO) AS VGEO,
INTERSECTION(VGEO, r.GEO) AS
IGEO CONTAINS(IGEO, b.GEO) AS
contval
FROM region AS r, building AS b, university
AS u)

WHERE r.name = ‘Kowloon’ and b.type = ‘resi
dence’ and u.name = ‘HKPU’ and
contval = TRUE

Voronoi operation, whose result is specified by the
spatial attribute “VGEO”, can meet the requirement
of “nearer” function.

Example 6. Which are the roads crossing Kowloon
region such that the total distance is between 30
KM and 50 KM?

SELECT rd.name, rd.GEO, lval

FROM
(SELECT *, INTERSECTION(rg.GEO,
rd.GEO) AS IGEO,
LENGTH(IGEO) AS lval

FROM region AS rg, road AS rd)
WHERE rg.name = ‘Kowloon’
GROUP BY rd.name
HAVING sum(lval) > 30 and sum(lval) < 50

This query shows that the result of spatial opera-
tion can also be applied to other clauses like HAV-
ING clause besides the SELECT and WHERE

clauses.

V. INTERFACE DESIGN

Although GeoSQL, an extended SQL, belongs to the
textual language that is often considered incompat-
ible with the visual language, the advantages of vi-
sual query languages such as intuitiveness and easi-
ness [3, 19] can still be introduced in the interface
design of GeoSQL to facilitate text input and reduc-
ing syntactic errors. In particular, with the devel-
opment of windows programming, various visual
constructs such as icons, ListBoxes and ComboBoxes
can be employed in building such a user interface
(Figure 2).

The interface is composed of five windows: (1) the
text window, (2) the control window, (3) the
ComboBoxes window, (4) the icons window, and
(5)the settings window.

The text window is where the user enters the
GeoSQL text following the SELECT ... FROM (SE-
LECT - FROM) ... WHERE block. The control win-
dow contains four command buttons. The execute
button passes the GeoSQL text to the implementa-
tion program. After execution, the map and attribute
table are popped up to show the query result. The
verify button checks the text with GeoSQL gram-

HTE{ BR 2 B=% H—F—M —AREEFA
Geographic Information Sciences Vol. 3, No. 1-2, December 1997 47
Icons ComboBoxes
Window Window [
TABLES
O SELECT _
O DISIONT Text FIELDS | |
O I Window
FROM SQL SP. |
o — (SELECT
RN COLO []
- R
(I)chmaouu WHERE Settings
fi PATTERN | ||
O san
N Control N LINETYPE Jl
Wity SY MBOL |:|
*
EXECUTE VERIFY CANCEL| [CLEAR

Figure 2. Window layout of GeoSQL

mar. If there is any mistake, a message is shown in
a temporary pop-up window. The clear button clears
the text window, and causes the already selected
part of spatial objects to disappear in both the map
and attribute display windows.

The ComboBoxes window contains three
ComboBoxes. The “tables” stores both spatial and
non-spatial tables. Once an item of the table
ComboBox is selected, its corresponding fields will
be added to the fields ComboBox. If two or more
tables are selected, the field name will be in the form
of table_name.attribute_name.

The SQL Special ComboBox lists all the predicates
and operators in standard SQL. If any item in the
above four ComboBoxes is selected, its correspond-
ing text expression will occur in where the cursor
locates in the text window so that the user input by
keyboard is saved and the likely syntactical errors
are reduced (Figure 3).

The icons window lists spatial operators in GeoSQL.
The item in this ListBox differs from the ordinary
ListBox in that it can combine an icon with its tex-
tual description. The ListBox is scrollable so that
the user can select all the icons. It is apparent that
the icons window and the ComboBoxes window are

.

used together to assist the entry of GeoSQL text.

The settings window sets the graphical output of
the query with colors, patterns, linetypes or sym-
bols, which are realized by the four ComboBoxes
respectively. The patterns for spatial data output
are shown in Figure 3.

VI. AN IMPLEMENTATION

In our prototype system, GeoSQL is implemented
using Oracle, Open Database Connectivity (ODBC)
and Visual C** (VC). The user interface is pro-
grammed in Visual C** language (VC). The spatial
data are stored in the Binary Large Object Block
(BLOB) item in Oracle database, which are accessed
through the ODBC embedded in VC programs.

After checking syntactic errors in the query text and
optimization, the query processor including a spa-
tial ODBC executes spatial operators and yields
results. The spatial ODBC is composed of ODBC
Application Program Interfaces (API) and APIs for
implementing spatial operators. The whole imple-
mentation process corresponding to the “execute”
command in the user interface is shown in Figure

Huang and Lin: Restructuring the SQL Framework for Spatial Queries

Icons Window Text Window -
TABLES | |
O SELECT GEO |
O DISIOINT \.____ et —
~IGEO w.
© CONTAIN FROM POPULATION
(SELECT *, OVERLAP(,) AREA
]
FROM) =
@NHGHB(]JR COLDR
WHERE PATTERN _|
O = BEEINZ
=[E[|=
] 6 o)1
EXECUTE VERIFY CANCEL (552 EHE kA

Figure 3. The assistance of visual constructs for GeoSQL text entry and the settings for
graphical output

4. Using such a method, the example 4 in Section
IV is implemented and the result is shown in Fig-
ure 5.

VII. CONCLUSIONS

This paper describes a different approach to design-

Spatial
User Database

Interface
1 Load

Spatial
ODBC

'

[——
Result
(Map & Table
| DR ——

Query Processor

Parser &
Optimizer

GeoSQL
Query Text

Figure 4. An implementation of GeoSQL

ing an extended SQL in terms of the conventional
spatial query and implementation process. By in-
corporating spatial operators in the FROM clause
via a subquery, GeoSQL is well adapted to the con-
ventional SQL design principles. More importantly,
it becomes possible to apply the results of spatial
operations in the SELECT, WHERE and HAVING
clauses. Because the result of a spatial operation in
GeoSQL is treated as a derived attribute, the fur-
ther conditions such as temporality (e.g., valid-time)
and fuzziness (e.g. “very far” and “overlap signifi-
cantly”) can be acted on it. In this sense, GeoSQL
holds promise in expressing the spatio-temporal and
fuzzy queries.

The interface design of GeoSQL introduces a set of
visual constructs, which aid the entry of query text
and reduce the possible syntactical errors. Such an
approach overcomes the problems of previous ex-
tended SQLs, which compose a query only by pure
text input.

The implementation of GeoSQL is a non-trivial task.
Currently only part of the spatial operators can be
implemented. Since SDE is now available in our
laboratory, the spatial operators are to be realized

by it. The connection of SDE with our programs still
needs to be done. In addition, more attention is also
needed to the optimization of the language during
its implementation.

ACKNOWLEDGMENTS

This research is partially supported by the Research
Grants Council of HKSAR government under RGC ear-
marked research grant No. CUHK 150/96H, CUHK RAC
under grant No. 4720401, and the National Natural Sci-
ence Foundation (NNSF) of China under grant No.
49501013. We are grateful to Professors Guanhua XU and
Shouyong Yan for their thoughtful suggestions at the early
~ stage of this research.

REFERENCES

[11 American National Standards Institute (ANSI), 1989,
X3.135-1989 Database Language SQL.

Boursier, P. and M. Mainguenaud, 1992, Spatial
query languages: extended SQL vs. visual language
vs. hypermaps. 5th International Symposium on
Spatial Data Handling, Charleston, SC, USA.
Calcinelli, D. and M. Mainguenaud, 1992, Cigales: a
visual query language for Geographical Information
System: the user interface. Journal of Visual Lan-

[2]

[3]

P

[4]

(5]

(6]

[7]

[8]

[9]

[10]

[11]

[12]

o B2 W= H—EW AN
Geographic Information Sciences Vol. 3, No. 1-2, December 1997 &
—|Of %
< =
g
. 9
ew erriﬁ P
SR b
Attributes !E'm
éo =
¥ lu_area
77507825.490000
%
Al v

Figure 5. Experimental result of example 4 in Section IV

guages and Computing, 5, 113-132.
Chu, T.H. and Y.T. Lung, 1995, Design a spatial
language applying behavioral approach. In Proceed-
ings of Geolnformatics’ 95, Hong Kong, pp. 851-867.
Clementini, E., D. Paolino and P. Qosterom, 1993, A
small set of formal topological relationships suitable
for end-user interaction. In D.J. Abel and B.C. Ooi
(eds.), Advances in Spatial Databases, SSD’1993,
Singapore, pp. 277-295.
Egenhofer, M. and R. Franzosa, 1991, Point-set to-
pological spatial relations. International Journal of
Geographical Information Systems, 5(2): 161-174.
Egenhofer, M., 1992, Why not SQL! International
Journal of Geographical Information Systems, 6(2):
71-85.
Egenhofer, M., 1994, Spatial SQL: a query and pre-
sentation language. IEEE Transactions on Know!l-
edge Engineering and Data Engineering. 6(1): 86-
95.
ESRI, 1996, SDE Developer’s Guide Version 2.1, En-
vironmental Systems Research Institute, Inc.
Frank, A., 1982, Mapquery - Database query lan-
guages for retrieval of geometric data and its graphi-
cal representation. ACM Computer Graphics, 16(3):
199-207.
Gadia, S.K., 1993, Parametric databases: seamless
integration of spatial, temporal, belief, and ordinary
data. SIGMOD Record, 22(1): 15-20.
Goh, P.C., 1989, A graphic query language for carto-
graphic and land information systems. International
Journal of Geographical Information Systems, 3(1):

50

Huang and Lin: Restructuring the SQL Framework for Spatial Queries

245-255.

[13] Guting, R.H., 1988, Geo-relational algebra: a model
and query language for geometric database system.
In J.W. Schmidt, S. Ceri and M. Missikoff (eds.), Pro-
ceedings of the International Conference on EDBT,
Venice, pp. 506-527.

[14] Herring, J.R., R.C. Larsen and J. Shivakumar, 1988,
Extensions to the SQL query language to support
spatial analysis in a topological database. In Pro-
ceedings of GIS /LIS’ 88, San Antonio, 30 Novem-
ber-2 December.

[15] Huang, B., 1997, GeoSQL: a Visual Spatial SQL for
Topological Relationships in GIS. In Proceedings of
the Workshop on Dynamic and Multi-dimensional
GIS, The Polytechnic University of Hong Kong, Hong
Kong, August.

[16] Ingram, K.J. and W.W. Phillips, 1987, Geographic
information processing using a SQL based query lan-
guage. In Proceedings of AutoCarto 8, Baltimore,
Maryland, pp. 326-335.

[17] IS0, 1995, SQL Multimedia and Application Pack-
ages (SQL/MM) Part3: Spatial, ISO Working Draft,
September.

[18] Kruglinski, D.J., 1993, Inside Visual C++. Microsoft
Press, USA.

[19] Lee, Y.C. and F.L. Chin, 1995, An iconic query lan-
guage for topological relationships in GIS. Interna-
tional Journal of Geographical Information Systems,
9(1): 25-46.

[20] Ooi, B.C., 1988, Efficient query processing for Geo-
graphic Information System. PhD thesis, Monash
University, Victoria, Australia.

[21] Roussopoulos, N., C. Faloutsos and T. Sellis, 1988,
An efficient pictorial database system for PSQL.
IEEE Transactions on Software Engineering, 14(5):
639-650.

[22] Samet, H. and W. Aref, 1994, Spatial data models
and query processing. In W. Kim (ed.), Modern Da-
tabase Systems: The Object Model, Interoperability,
and Beyond, Addison Wesley/ACM Press, Reading,
MA.

[23] Svensson, P. and Z.X. Huang, 1991, A query lan-
guage for spatial data analysis. In 2nd Symposium
on Large Spatial Databases, Zurich, Switzerland.

[24] Tang, A.Y., T.M. Adams and E.L. Usery, 1996, A
spatial data model design for feature-based Geo-
graphical Information Systems. International Jour-
nal of Geographical Information Systems, 10(5): 643-
659.

EAMFRANAL, CPCISR AL BAFEEAFNAEEY. RESL: HF,
E M, L A (A HATK), 3 X(CPGIS E b 45), THR, ik, k. MR,
BT PRI AT RN, EALGE & FTRIATK), o F L LR R CRAL AT % i 5
FHAE LA RBERELRRE) P XA,

