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Abstract

The effect of scale on spatial analysis has long, but sporadically, been recognized in human geography and more
recently and acutely in landscape ecology. As the number of studies directly and systematically addressing
scale effects is still limited, it remains unclear how results of different statistical analyses are affected by chang-
ing scale for different landscapes, or whether or not such effects can be predicted and, if so, in what situations.
However, it is certain that erroneous conclusions may result if scale effects are not considered explicitly in
spatial analysis with area-based data. With widespread use of remote sensing data and GIS, a better under-
standing of the issue of scale effects is much needed. The main purpose of this study, therefore, was to examine
how results of statistical analysis respond to a systematic change in the scale of analysis. Specifically, we
investigated how the relationship between landscape metrics (local landcover diversity and richness indices)
and independent variables (TM bands and vegetation indices) would change with different sample sizes and
mathematical representations of variables. The landscape under study is the Minden area of Nevada in the
western Great Basin. Four different sample sizes (19x19, 15x15, 11x11, and 5x5 pixels) and four different
representation forms (variance, mean, variance-mean ratio, and coefficient of variation) of the variables were
used in all statistical analyses. We systematically examined the effects of changing sample size and representa-
tions of variables on the results of regression, analysis of variance, and correlation analysis. The results indi-
cated that the relationship between landscape metrics and TM bands and vegetation indices was affected con-
siderably by the change of sample size. Both the R? value and the level of statistical significance of the relation-
ship tended to increase as sample size increased. In addition, the results of ANOVA showed that the relative
importance of the TM bands and vegetation indices in the relationship varied with sample size as well. Al-
though the spatial pattern of local-scale (or “neighborhood”) diversity and richness of land-cover types in this
Great Basin landscape could be adequately quantified using spectral information-based variables, the results
and accuracy of such a analysis depended on both landscape composition and sample size. The linear response
of the statistical relationship to the change in sample size over some range of scales indicated that scale effects
could be readily predicted in certain cases. However, in general, because scale effects can further be complicated
by the choice of variables and the idiosyncrasy of particular landscapes, the predictability of scale effects seems
to be confined only to certain domains of scale. To find these domains multiple-scale or hierarchical analysis
must be performed. This study further supports that the modifiable areal unit problem is a common one across
the disciplinary boundaries of geography, ecology and other earth sciences. Unraveling the problem not only
will improve our understanding of pattern and process in nature, but also will have important implications for
appropriate use of remote sensing data and GIS,
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L INTRODUCTION

Spatial pattern has important effects on a variety
of physical and ecological processes, including flows
of energy and nutrients and dispersal and move-
ment of plants and animals (Turner, 1989; Risser,
1990; Wiens et al., 1993; Wu et al., 1993; Hunsaker
et al., 1994; Wu and Levin, 1994, 1997). To under-
stand the interactions between pattern and process
it is necessary to quantitatively characterize spa-
tial heterogeneity over a range of scales. Because
today’s spatial pattern results from yesterday’s dy-
namic processes, pattern analysis may potentially
reveal critical information on properties of under-
lying processes. Landscape ecology, focusing on the
study of the reciprocal relationship between spatial
pattern and ecological processes, provides a new
conceptual framework for understanding how na-
ture works (Pickett and Cadenasso, 1995; Wu and
Loucks, 1995). In recent years, numerous studies
have been carried out to quantify landscape pat-
terns using various spatial analysis methods
(O’Neill et al., 1988; Turner and Gardner, 1991;
Cullinan and Thompson, 1992; Plotnic et al., 1993;
Wickham and Riitters, 1995; Riitters et al., 1995;
Jelinski and Wu, 1996; Qi and Wu, 1996). In gen-
eral, both promises and problems have been found
regarding the plethora of techniques used in land-
scape pattern analysis (see Riitters et al., 1995,
Jelinski and Wu, 1996).

Remotely sensed data and geographic information
systems (GIS) have been increasingly used to fa-
cilitate large-scale studies in landscape ecology
(Iverson et al., 1989; Roughgarden et al., 1991;
Turner and Gardner, 1991). Landsat Thematic
Mapper (TM) and NOAA satellite AVHRR data, in
particular, have been widely adopted in landscape
ecological studies. Based on the features of reflec-
tance and absorption of vegetation to electromag-
netic radiation, a number of vegetation indices have
been developed from several TM bands (e.g., Tueller,
1989). Both the spectral values of the different TM
bands and vegetation indices derived from them can
be correlated with various characteristics of land-

scapes (e.g., Tueller, 1989, Rey-Benayas and Pope,
1995),

Landscapes are hierarchically structured in space,

within which pattern and processes operate over a
range of scales (O’Neill et al., 1991; Wu and Loucks,
1995). Detected spatial pattern usually varies with
the scales of observation, measurement, and data
analysis. Therefore, any analysis based on a single
scale may provide little (or even misleading) infor-
mation on the overall landscape structure under
study (Wu and Loucks, 1995; Jelinski and Wu, 1996).
Two concepts, grain and extent, have been particu-
larly useful for making landscape pattern analysis
scale-explicit, thus facilitating communication and
comparison of the results. Grain is the “smallest
unit of measure” or “the first level of spatial resolu-
tion possible with a given data set”, whereas extent
is the “cover” or “the total area of the study” (sensu
Turner and Gardner, 1991). Studies in plant com-
munity ecology, human geography, and landscape
ecology have shown that the results of spatial analy-
sis using area-based data usually are sensitive to
three kinds of related, but distinctive changes in
spatial data: changes in grain size, extent
(Meentemeyer and Box, 1987; Woodcock and
Strahler, 1987; Turner et al., 1989; Wickham and
Ritters, 1995; Qi and Wu, 1996), and aggregation
zones (the zoning problem; see Openshaw, 1984;
Fotheringham and Rogerson, 1993; Wu and Jelinski,
1995; Jelinski and Wu, 1996). It has been suggested,
therefore, that landscape pattern should best be
understood by conducting analysis on multiple
scales or hierarchically (Wu and Loucks, 1995; Wu
and Jelinski, 1995; Jelinski and Wu, 1996; Qi and
Wu, 1996).

As a part of a research project that attempts to link
spatial pattern to ecosystem properties in the Great
Basin, this study examined the effects of systemati-
cally changing spatial scale on the results of par-
ticular statistical analyses. Specifically, the objec-
tives of this study were as follows: (1) to investigate
how landscape metrics such as diversity and rich-
ness relate to spectral parameters readily available
from remote sensing (e.g., TM band values) and veg-
etation indices derived from them; and (2) to exam-
ine the effects of varying sample sizes on the re-
sults of the analysis.
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II. DATA AND METHODS

The data set for this study is a land-cover map de-
rived from empirical information on topography,
vegetation distribution, and land use conditions.
The data set contains fourteen land-cover types,
covering the Minden area of Nevada in the western
Great Basin. The geographic coordinates for the
four corners are 39°9’18.3” N and 119°51"13.7" W,
39°6'14.2” N and 119°30'30.0” W, 38°54'12.3” N and
119°54'55.8” W, and 38°51’8.2” N and 119°34'12.1"
W, respectively. The data set has 999 rows and 1069
columns with a linear dimension of about 30 m for
each pixel, which represents a total area of 96,114
hectares (or 961.14 square kilometers). The GIS
package, IDRISI™, was used for Landsat image
processing and a part of the pattern analysis, while
S-Plus™ was used for ANOVA, regression, and cor-
relation analysis.

From the land-cover map, we computed three land-
scape metrics, diversity (H), dominance (D) and rich-
ness (R), as descriptors of landscape structure.
These metrics have been widely used in landscape
ecological studies (e.g., O’'Neill et al., 1988, 1996;
Turner, 1989; Wickham and Riitter, 1995), and are
defined as follows:

Landscape Diversity

H=-Y P InP,
k=1

where H is the diversity index, m is the number of
land-cover types, P}, is the proportion of the grid
cells of land-cover type £ (the number of pixels of
the land-cover type & divided by the total number
of pixels). Larger values of H correspond to more
diverse landscapes which tend to have many land-
cover types with similar proportions of pixels be-
longing to each type.

Landscape Dominance

m

D = HII‘:IK = z ﬂ ln PJ-

k=1
where D is the Dominance index, H,, .. is the maxi-
mum diversity when all land-cover types are present
in equal proportions (i.e. ). m and P are defined
exactly the same as in the diversity index. This in-
dex is a measure of the extent to which one or a few
land covers dominate the landscape. Small values
usually correspond to landscapes with a large num-
ber of land use types of similar proportions. Appar-

ently, a simple numerical relationship exists be-
tween diversity and dominance indices, both carry-
ing the same non-spatial, compositional information
of a landscape. While they were used together in
our analysis for purposes of checking computational
errors and facilitating interpretation, here we will
focus primarily on the results on diversity to avoid
redundancy.

Relative Richness

N

R= 100

max

where N is the number of different land-cover types
present in an area under observation, and the N
is the maximum value of richness. S
Although the same basic formulas are used, in this
study these metrics were calculated differently from
the conventional way whereby they are computed
for the entire study area or non-overlapping subre-
gions. Because we were more interested in the char-
acteristics of local-scale (or “neighborhood”) diver-
sity and their spatial changes, the landscape metrics
were computed using a 3 by 3 pixel moving window
as defined by the GIS package, IDRISI. For diver-
sity and relative richness, respectively, a value for
the metric was computed for the 9 neighboring cells,
and then was assigned to the central cell. The win-
dow moves on one column at a time from the up left
corner of the grid, until all the grid cells received
their values. This is exactly the way these metrics
are calculated using the PATTERN module of
IDRISI (Eastman, 1995). As a result, the values of
diversity and richness formed a 2-dimensional ma-
trix and were represented as maps.

Three vegetation indices, RVI (Ratio Vegetation
Index), NDVI (Normalized Difference Vegetation
Index), and TNDVI (Transformed Normalized Dif-
ference Vegetation Index) were calculated from spec-
tral information of the Landsat TM imagery of the
study area. It was one of our objectives in this analy-
sis to determine which of these vegetation indices
would be best suited for detecting changes in the
Great Basin landscapes. These indices were ob-
tained from the following formula (Richardson and
Wiegand, 1977; Tucker, 1979; Huete and Jackson,
1987): |

I'
{

RVI = Rﬁ |
NIR
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NIR — Red

NVl = e Red

TNDVI = \/(NIR— Red) (NIR + Red) + 0.5

The Ratio Vegetation Index is simply the ratio of
red to infrared brightness values and capitalizes on
the increase in brightness as one moves from the
red to the infrared data space. The Normalized Dif-
ference Vegetation Index is a more complex version
of this simple ratio, and has been used in numerous
vegetation assessment studies. Many studies have
shown that NDVI is responsive to rapidly growing
highly reflective plant communities such as alfalfa
fields and riparian vegetation (Tueller, 1989; Rey-
Benayas et al., 1995). The transformed normalized
difference vegetation index, with the addition of 0.5,
avoids negative values and usually is easier to in-
terpret (Deering et al., 1975; Richardson and
Wiegand, 1977; Harlan et al., 1979).

III. ANALYSIS AND RESULTS

In previous studies (Wu et al., 1994; Wu and
Jelinski, 1995; Jelinski and Wu, 1996; Qi and Wu,
1996), we have shown that, for area-based data,
varying the scale of analysis (grain size) and zoning
systems (orientation and configuration) of the spa-
tial units at the same scale both may have signifi-
cant effects on the results of spatial analysis. This
problem has been termed the modifiable areal unit
problem (MAUP) in the geography literature
(Openshaw, 1984; Fotheringham and Rogerson,
1993; Amrhein, 1995; Wu and Jelinski, 1995;
Jelinski and Wu, 1996). In this study, we intended
to explore how systematic (or progressive) changes
of the analysis scale (specifically sample size) affect
the results of regression and correlation analysis
based on landscape data. How do different repre-
sentation forms of variables — variance, mean, vari-
ance-mean ratio (V/M), and coefficient of variation
— interact with the scale effects? Do scale effects
show any trends that are predictable?

We used the three landscape metries (diversity, and
richness) as dependent variables and TM3, TM4,
TM?7, NDVI, TNDVI, and RVI as independent vari-
ables in the statistical analysis. To examine scale
effects, four sample sizes were used: 25 pixels (5x5),
121 pixels (11x11), 225 pixels (15x15), and 361 pix-
els (19x19). First, we cut forty-nine 5x5 pixel
samples from each of the 9 images (diversity, domi-

nance, richness, TM3, TM4, TM7, NDVI, TNDVI,
and RVI), and then symmetrically increased the
scale of analysis, from the center cell outward, to
11x11, 15x15, and 19x19 pixels (Figs. 1 and 2). Asa
result, there were 49 replicates for each sample size.
Variance, mean, variance-mean ratio (V/M), and
coefficient of variation (CV =) of the nine variables
at each sample size (n = 49) were computed, and
then used accordingly for regression analysis, analy-
sis of variance, and correlation analysis.

Regression analysis was conducted to examine how
the landscape metrics relate to TM band parameters
(TM3, TM4 and TM7) and vegetation indices (NDVI.
TNDVI and RVI). Variance, mean, V/M, and CV of
each variable are used for each sample size, respec-
tively. For example, at the sample size of 5 by 5
pixels, four multiple linear regression models were
constructed for each of the three dependent vari-
ables (diversity, dominance, richness) in terms of
their variance, mean, V/M, and CV, respectively.
The analysis of variance was used to determine the
relative importance of the TM band parameters and
vegetation indices in the relationship. We also per-
formed a correlation analysis to further explore the
relationship between landscape metrics and TM
variables. In both ANOVA and correlation analy-
sis, only the variance of dependent and independent
variables at each sample size was used as the rep-
resentation form because the regression analysis
had shown that variance was more sensitive to
changes in the landscape metrics than mean, V/M
and CV.

The results of regression analysis showed that, for
the sample size of 5 by 5 pixels, there did not ap-
pear to be a linear relationship between the land-
scape metrics (i.e., diversity, dominance, richness)
and the six independent variables (i.e., TM3, TM4,
TM7, NDVI, TNDVI, and RVI). This was true for
all representation forms of the variables (i.e., mean,
variance, V/M, and CV). For the sample size of 11
by 11 (121 pixels), a statistically significant linear
relationship was apparent between the landscape
metrics and independent variables when mean, vari-
ance, and V/M, but not CV, of these variables were
used for the analysis (Table 1). When the sample
size increased to 15x15 and 19x19 pixels, the linear
relationship of the landscape metrics with TM bands
and vegetation indices became statistically signifi-
cant for all four forms of measure for the variables,
with progressively larger R? values and smaller P
values (see Table 1, Figs. 3 and 4). In general, the
strength of this relationship tended to increase as
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Table 1. Results of linear regression between the landscape metrics (diversity, dominance, richness) and
TM3, TM4, TM7, NDVI, TNDVI, and RVI at 4 different sample sizes (5x5, 11x11, 15x15, and 19x19
pixels). Variance, mean, V/M and CV of the nine variables at each sample size are used separately in the

analysis.

Measure Landscape R? P-value R? P-value R? P-value R? P-value
Indies

5%5(25 P) 11*11(121 P) 15%15(225 P) 19%19(361 P)

Diversity 0.1637 0.3964 0.3943  0.0015%*% 0.4459  0.0003** 0.7679  0.0000%*

Variance Dominance 0.2191  0.1950 0.311 0.0138% 0.4240  0.0006** 0.9999  0.0000%*
Richness 0.1192 0.6183 0.3179 0.0117% 0.5500  0.0000** 0.7049  0.0000%%
Diversity 0.256 0.1117  0.3778  0.0024** 0.4553  0.0002** 0.3883  0.0018%*

Mean Domanence 0.1473  0.4735 0.3494  0.0052%% 0.4872  0.0001** 0.4232  0.0006%*
Richness 0.2471  0.1286  0.3449  0.0059%% 0.4361  0.0004** 0.4022  0.0012%*
Diversity 0.2505 0.1218 0.2531 0.0492% 0.4166 0.0163* 0.3889  0.0174%

V/M Domanence 0.2293 0.1682 0.3231 0.0103* 0.5485  0.0000%* 0.3181  0.0116*
Richness 0.2315  0.1534  0.2933  0.0211* 05731  0.0000%* 0.4207  0.0007%*
Diversity 0.1278 0.5725 0.1568 0.2919 0.2214  0.0966  0.5232  0.0001%*

Ccv Domanence 0.1138 0.6469 0.1808 0.1994 0.2180 0.1031 0.2885  0.0236*
Richness 0.1359 0.5305 0.1448 0.3478 0.2511 0.0534 0.2514  0.0531

*P<0.05, % P<0.01

sample size increased for all four forms of measure
(Fig. 3). However, a closer look reveals that R? val-
ues actually peaked at the sample size of 15x15 pix-
els in the cases of mean and V/M (Fig. 4).

The results of analysis of variance showed that,
when variance was used as the representation form
for the variables, the independent variables differed
in terms of the level of significance in the relation-
ship with landscape metrics as sample size increased
(Table 2). For all the three landscape metrics, all
independent variables were found insignificant at
the sample size of 5x5 pixels. TM3 was statistically
significant in the relationship for all the three land-
scape metrics at sample sizes of 11x11 pixels and
larger, NDVI was significant for sample sizes of
15x15 and 19x19 pixels, and TM7 was only signifi-
cant for the sample size of 19x19 pixels. The num-
ber of the spectral variables that were significant
in the regression relationship increased as the
sample size expanded. The results of the analysis
of variance also were indicative of the relative im-
portance of the different independent variables in
the regression relationship at each sample size.
Although a certain variable might be important at
several sample sizes, its P value tended to decrease
with the sample size (Table 2).

The results of correlation analyses, using variance
as the representation form of all variables, showe
that TM7 was significantly correlated with all the
three landscape metrics at all four sample sizes
whereas TM 3 and TM4 were significantly corre
lated with these metrics when sample size was big:
ger than 5x5 pixels (Table 3). For all the three T'
bands, R? values increased and P decreased a
sample size expanded, indicating that the correla
tion between the landscape metrics and the T
bands became more significant with increasin
sample size.

IV. DISCUSSION AND CONCLUSIONS

The results of our study have shown that the sp
tial pattern of local-scale or neighborhood diversi
and richness in the Minden landscape could be ch
acterized using TM spectral data. But sample si
or the scale of analysis played an important role i
relating the landscape metrics to TM spectral va
ables. With explicit specification of this scale e
fect, it seems feasible to use TM spectral inform

tion or vegetation indices to quantify and monito
spatial changes in the Great Basin landscape. How
ever, several points are worth further discussion.
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Figure 3. Accumulative R* values for the multiple linear regression between landscape metrics and
spectral variables as a function of increasing sample sizes (5x5, 11x11, 15x15, and 19x19 pixels). Dependent
variables are diversity (A), dominance (not shown here), and richness (B), and independent variables are
TM3, TM4, TM7, NDVI, TNDVI, and RVI. Variance, mean, V/M and CV of the nine variables at each
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Figure 4. R? values for the multiple linear regression between landscape metrics and spectral variables
as a function of increasing sample sizes (5x5, 11x11, 15x15, and 19x19 pixels). Dependent variables are
diversity, dominance (not shown here), and richness, whereas independent variables are TM3, TM4, TM7,
NDVI, TNDVI, and RVI. Variance (A), mean (B), V/M (C) and CV (D) of the nine variables at each sample

size are used separately in the analysis. Also refer to Table 1 for numerical values.

Scale effects

S_eve'ral studies have shown that changing scale may
Slgirflﬁcantly affect the pattern quantification of an
entire landscape or its subregions using, for ex-

ample, richness and information theory-based
metrics (Turner et al., 1989; Wickham and Ritters,
1995; O’Neill et al., 1996) and spatial autocorrelation
indices (Legendre and Fortin, 1989; Jelinski and Wu,
1996; Qi and Wu, 1996). Specifically, the scale be-
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Table 2. Results of analysis of variance between the landscape metrics (diversity, dominance, richness)
and TM3, TM4, TM7, NDVI, TNDVI, and RVI at 4 different sample sizes. The variance value of each

variable at each sample size is used in the analysis.

Sample Diversity Dominance Richness

size VS. P value VS. P value VS, P value
TM3 0.08091 T™M3 0.42235 TM3 0.17482
T™M4 0.59403 T™4 0.61092 TM4 0.76886

5X5 TM7 0.41344 ™7 0.74131 T™M7 0.57186
NDVI 0.94461 NDVI 0.36995 NDVI 0.80863
RVI 0.15879 RVI 0.05845 RVI 0.23338
TNDVI 0.69449 TNDVI 0.06810 TNDVI 0.44635
TM3 0.00015%* TM3 0.01066* T™3 0.00077%*
TM4 0.39013 TM4 0.09552 TM4 0.72986

11X11 TM7 0.64337 TM7 0.68709 TM7 0.18886
NDVI 0.03771* NDVI 0.02759% NDVI 0.16830
RVI 0.06890 RVI 0.06370 RVI 0.15953
TNDVI 0.71911 TNDVI 0.38048 TNDVI 0.97257
TM3 0.00002%* T™M3 0.00249%** TM3 0.00000%*
TM4 0.55443 TM4 0.21824 TM4 0.79383

15X15 TM7 0.20461 T™M7 0.08522 T™7 0.11359
NDVI 0.00206%** NDVI 0.01068* NDVI 0.01075*
RVI 0.04888* RVI 0.01108% RVI 0.01462*
TNDVI 0.84668 TNDVI 0.16059 TNDVI 0.95484

- T™M3 0.00000%* T™3 0.00000%* TM3 0.00000%*

TM4 0.63878 TM4 0.00000%* TM4 0.97097
™7 0.00006%# TM7 0.00000%* T™M7 0.00025%*

19X19 NDVI 0.00000%* NDVI 0.00000%** NDVI 0.00000%**
RVI 0.42321 RVI 0.31253 RVI 0.27869
TNDVI 0.94307 TNDVI 0.56559 TNDVI 0.50972

*P<0.05 % P<0.01

ing changed in our study is sample size, or may be
regarded as extent with 49 replicates (see Fig. 2).
Our study further has suggested that statistical
analyses like regression, ANOVA, and correlation
analysis with landscape data are also affected by
changing scale. The effect of changing sample size
on these analyses can be considerably large (Fig. 4).
Of particular interest was that R? values increased
monotonically in the variance and CV graphs (A and
D in Fig. 4), whereas a peak became apparent at
the 15x15 sample size in both mean and V/M graphs
(B and C in Fig. 4). Further studies are needed to
confirm whether this peak was indicative of a char-
acteristic scale at which a real structural change in
the landscape takes place. Because of scale effects,
ecological conclusions based on such analyses should
be made with explicit specification of scales (grain
size and extent). Our results seem to suggest that
this effect may be predictable within a certain do-

main of scales in some cases (see Fig. 4 for regions
that correspond to nearly linear change in R? val-
ues).

Effects of different representation forms of
variables

Scale effects were further complicated by the effect
of different representation forms of variables used
for the landscape analysis. For example, the four
representation forms (variance, mean, V/M, and CV)
for the 9 variables in this study resulted in some-
what distinctive patterns of change in R? values with
increasing sample size (Fig. 4). For example, while
diversity and richness seemed to exhibit similar
patterns for each representation form at finer scales,
variance was most sensitive to changes in diversity
and richness pattern. The higher sensitivity of vari-
ance to change in the analysis scale is attributable,
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Table 3. Results of correlation analysis between the landscape metrics (diversity, dominance, richness)
and TM3, TM4, and TM7 at 4 different sample sizes. The variance value of each variable at each sample

size is used in the analysis.

Sample T™ Diversity Dominance Richness
size (Variance)
R? P R* P R? P
TM3 0.2866 0.0365% -0.125 0.7789 0.2266 0.0799
5x5 pixels TM4 0.0772 0.3180 0.0018  0.4955 0.0775 0.3174
T™M7 0.3205 0.0219%  -0.096 0.7221 0.2473 0.0019*%
TM3 0.5082 0.0001**  0.3620 0.0154%* 0.4769 0.0004**
11x11 pixels TM4 0.3602 0.0060%* 0.3537 0.0069%* 0.2994 0.0238%
TM7 0.4849 0.0004** 0.3223 0.0127* 0.3512 0.0094**
TM3 0.6697 0.0041*%*  0.3820 0.0248% 0.6361 0.0013%*
15x15 pixels TM4 0.3664 0.0052%% 0.3312 0.0107* 0.3672 0.0051%%
T™7 0.5478 0.0000%*  0.4496 0.0007%* 0.6043 0.0000%*
T™3 0.6020 0.0000%%  0.4048 0.0050%* 0.6677 0.0000%*
19x19 pixels TM4 0.3680 0.0020%* 0.3374 0.0095%* 0.5114 0.0015%*
™7 0.6728 0.0000%*  0.4204 0.0001%* 0.7118 0.0000

*P<0.05, ¥ P<0.01

at least in part, to the fact that its values are larger
than those of V/M or CV in which variance is “scaled
down” by mean.

Relationship between TM bands/derived veg-
etation indices and spatial pattern of land-
cover richness and diversity

The results of regression analysis indicated that
neighborhood diversity and richness were signifi-
cantly correlated to TM band parameters and veg-
etation indices. The strength of the correlation
seemed to increase with sample size (or calculation
scale). This was evidenced by the increasing R? val-
ues and decreasing P values for the regression rela-
tionship, as well as by ANOVA and correlation
analysis. In particular, the results suggested that
the selected TM bands and vegetation indices could
detect and predict changes in local-scale diversity
and richness at sample sizes from 11x11 to 19x19
pixels with increasing accuracy. Clearly, use of vari-
ance as the representation form of variables at the
19x19 sample size gave the best result (R* larger
than 0.7 for all three metrics; see Table 1 and Fig.
4). The results of both ANOVA and correlation
analysis further suggested that TM3 and NDVI were
the most consistent and best predictor variables.

TM3 band has been shown to be a good indicator of
green vegetation (e.g., Tucker, 1979; Baret and

Guyot, 1991). Rey-Benayas and Pope (1995) indi-
cated that TM spectral data have the potential of
measuring landscape diversity. While our results
seem to support this claim, the choice of appropri-
ate sample size will be critically important to achieve
high accuracy. On the other hand, vegetation indi-
ces derived from several bands using different math-
ematical formulations may indicate quantitative and
qualitative differences in the properties of vegeta-
tion because significant differences in reflectance
and absorption of radiation exist between vegeta-
tion and other geographical characteristics of the
landscape (Tueller, 1989). According to our analy-
sis, normalized difference vegetation index (NDVI)
appeared to be better than RVI and TNDVI for char-
acterizing local-scale diversity and richness pattern
in this particular desert landscape (Table 2). Nu-
merous studies have shown that NDVI is a sensi-
tive indicator of green biomass (Tucker, 1979,
Tueller, 1989). Out study suggested that, together
with TM3 and TM7, NDVI was a good predictor of
diversity and richness in the landscape of our study.
However, it is worth emphasizing again that the
accuracy of these variables as predictors of land-
cover diversity and richness not only depends on
landscape composition, but also on sample size.

In conclusion, we emphasize that scale effects rep-
resent an important and challenging issue that must
be considered explicitly in all landscape analysis.
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Based on this and previous studies it seems unlikely
to find “universal” rules that can be used to accu-
rately predict scale effects over a wide range of scales
or across different types of analysis and landscapes.
This is in part because scale effects are further com-
plicated by the choice of variables and the idiosyn-
crasy of particular landscapes. Yet, as this study
suggests, responses of the statistical relationship to
changes in analysis scale may exhibit simple (e.g.,
linear or monotonic) patterns over some ranges of
scale, implying that scale effects could be readily
predicted within these domains of scale. To find
scale domains where predictions or extrapolations
can be readily made, multiple-scale or hierarchical
analysis must be performed. This study further
supports that the modifiable areal unit problem is
common across the disciplinary boundaries of geog-
raphy, ecology and other earth sciences. Unravel-
ing the problem will not only improve our under-
standing of pattern and process in nature, but also
will have important implications for appropriate use
of remote sensing data and GIS.
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