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Future Research on Application of GPS/GIS/RS for
Farmcrops Temporal Arrangement

Deren Li*, Zequn Guan® and Xiufeng He'

“Institute of Remote Sensing and Information Engineering

Wuhan Technical University of Surveying and Mapping, Wuhan, 430070, China

TDepartment of Automatic Control

Nanjing University of Aeronautics and Astronautics, Nanjing, China

Abstract

Currently, farmerops temporal arrangement is constrained by the generally inadequate treatment of spatial
simulation in terms of socioeconomic and ecological information, resulting in artificially deflected planning. For
farming in the future, positional information is of particular importance. In this paper, a description is given of
the farmerops temporal arrangement method, to reduce errors and time in precision farming, based on GPS/
GIS/RS and planning techniques currently being used in many institutions together with respective approaches,
usability, and trends. The system, being presented here, appears to be particularly suited to data processing and
data analysis incorporating image segmentation with location sensing, which will help to combine the advan-
tage of small field sample locations with large-scale, cost-efficient image processing methods.
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L. INTRODUCTION

Since China embarked on economic reform and
opening up to the outside world, her agriculture has
seen relatively rapid development, and it has since
produced abundant farm products to meet general
social demands. However, from a long-term point of
view, China’s agriculture is not only confronted with
multiple pressures such as growth of population but
greater demands on farm products by accelerated
industrialization . The prospects brook no over-op-
timism.

How shall farm products and increase of incomes of
peasants be effectively supplied? One of the valid
ways is to develop agriculture from a weak-quality
industry to a highly effective industry, and it is the
key for us to effect the process through the intro-
ducing of scientific methods and management , one
of whose nature is to handle the precision informa-
tion of farming.

Precision farming problems are inherently linked
to planing problems. To create better Planning Sup-
port System(PSS) that will begin to address these
complex issues, the changes of farmcrops and the
relationships between them and geo-referenced in-
formation must be positioned, recognized and un-
derstood. One approach to meeting these needs is
the integration of remote sensing (RS) image pro-
cessing, Geographical Information System (GIS),
farmcerops inventory, and Global Positioning Sys-
tem (GPS) for an operational farmcrops temporal
arrangement.

Lachapelle et al (1994) outlined the precision farm-
ing objective of optimizing field potential based on
information known about the field. Hermann et al
(1995) pointed out that the major application of po-
sitioning with GPS/DGPS is to be seen in the area
of local information and documentation. Chen et al
(1992) developed a portable information manage-

1082-4006/97/0301~2-1%$3.00
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ment system which integrated the remote sensing
(RS), GIS and GPS with basic interface screen over-
view.

Although the integration of RS, GIS and GPS has
been extensively studied in the past, little has been
done in developing some adaptive algorithms for
incorporating image segmentation with location
sensing, and farmcrops temporal arrangement.

The PSS discussed in this paper is intended to op-
erate in a WINDOWS environment.. The PSS
graphically integrates digital images and map in-
formation with observed positions. In general, the
PSS automatically plots a position onto a digital
image or map. The real value of the PSS will be re-
alized when data analysis tools permit user to “see”
further into the growing digital database of spatial
information that is possible using traditional carto-
graphic renditions of the data.

New analytical tools that extend our vision into lo-
cation sensing and extract the useful information
needed to practise farmerops temporal arrangement
are described in this paper.

I1. BASIC FUNCTIONALITIES

An application system is proposed for the farmerops
temporal arrangement project. The system under
consideration consists of five major functional blocks
shown in Figure 1. A standard Microsoft WINDOWS
graphical user interface is implemented for PSS
system equipped with mouse or other interface tools.
A brief discussion will be provided for each function
in the following paragraph.

1. Data processing. All the data process of the
observation and images until one gets the final
farmcrops planning can be arranged in the follow-
ing steps:

1). To input the multi-temporal images data
from the user.

2). To determine if there are significant
changes, either increases or decreases, occurring in
the images.

3). To classify the images.

4). To document the features which could char-
acterize the change areas of farmecrops, such as size,
time, speed, domain and so on.

2. GPS. A GPS unit concerns:
1). To feed field measurement information into

Data Processing

Y

GPS

Y

Data Analyzing
Y

Temporal Arrangement

Data Base

-Image Input
-Image Output
-Change Detection
-Classification
-Document Feature

-Positioning Display
-Navigation
-Field Measurement

-Change Recognizing
-Statistics Description
-Geo-Referenced
Information
-Area Comparition

-Fertilizer
Arrangement
-Planting
Arrangement

-Field History
-Cropping Sysytem
-Drought or
-Excessive Rain Level
-Interpretation Key

Crop Map
1 1---High Land
2 2---Low Land
3---Slop Land
3
Display Windows

Figure 1. Basic Interface Screen Overview and Display Windows
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the system.

2). To feed position information into the sys-
tem.

3). To feed navigation information into the sys-
tem.

3. Data analyzing. The analysis subsystem will
be in charge of following several items:

1). To determine possible correlation between
the features and interpretation of significance to
farmerops temporal arrangement

2). To describe the situation for a service area
around each of pointed locations based on statistics

3). To compare the areal extent of the farmerops
defined in each set of satellite data

4. Temporal arrangement. The study which is
proposed has two important appliances:

1). To find the appropriate procedure for moni-
toring and detecting farmerops change

2). Planning techniques are used to arrange
the rotation of crops and the adequate time of fer-
tilization.

5. Database. Field history, cropping system,
level of drought or excessive rain, interpretation key
and so on are maintained, managed and created for
the farmerops temporal arrangement.

ITI. PLOTTING A POSITION ONTO A SEG-
MENTATION IMAGE

Image segmentation is an important step in the
analysis of digital images. Usually, it is employed

after image enhancement and before object recog-
nition. In this section, the problem of how to trans-
form a primary image into a segmentation image,
and homogeneous region image is described. At the
same time, we will apply an adaptive Voronoi tes-
sellation to the image.

At first, the primary image is segmented by the judg-
ment of intraparallelism which involves the at-
tributes stemming from the gray level, such as in-
tensity, hue, saturation ete. To each pixel of the seg-
ment that maybe contains multiple objects, if the
attributes are parallel, then give it a corresponding
label, otherwise give it a question mark label which
is a control label used to indicate where the seg-
ments must be continuously subdivided. As a re-
sult, an image composed of these labels is obtained.
It is called the segmentation image.

The pixel intensities of neighboring pixels from the
same object can be assumed to be incompletely cor-
related. For many objects more than one segment
may be obtained. Thus these segments must be
conbined into homogeneous regions on the basis of
the knowledge of objects that determine collections
of segments, which form “natural” components of
the scenes.

Figure 2 illustrates the elements of segmentation
image and homogeneous region image, and their
transformation. The attribute and uniformity of seg-
ments, which are mainly based on statistical prop-
erties and sensor dependent; while the attribute and
homogeneity of homogeneous regions mainly refer
to the knowledge of objects and themes, which in-

10 15
Homogeneous
region image
boundary 20

Label:

Attribute: Form

Homogenous: Regular polygon

Knowledge: The geometric
knowledge of objects

Segmentation
image boundary

— Label:

Attribute: Mean values

Uniformity: Variance

Knowledge: The spectral
knowledge (gray level)

Figure 2. The elements of segmentation image and homogeneous region, and their transformation.
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clude the geometric characteristics. For example,
segments 10, 12, 14 in Fig.2 indicate three rice lands
with different water depths. Because all of them
have the same attribute, regular polygon, they
should be merged into a single homogeneous region
by using form attribute.

Pyramidal techniques have been shown to be effi-
cient methods for image segmentation. On this al-
ready irregular structure, an irregular pyramid will
be build. The advantage of this approach is that the
Voronoi tessellation and the Delaunay graph offer
a reduced description of the image and the neighbour
relation between regions, which is already adapted
to the image content(Etienne 1996).

Voronoi diagrams built from a distribution of dis-
crete seeds are also of interest in the content of geo-
metrical partitions. Given a distance function, each
Voronoi polygon is associated with a seed and is
defined as the set of points which are closer to this
seed than from any of the other seeds (see Figure
3).

~., Seeds

N

Figure 3. A Voronoi diagram and the associated
Delaunay tessellation. The seeds are contained in
the interiors of the polygons.

Each seed is connected with field sample locations
using GPS/DGPS so that a consistent reference sys-
tem could be used. The number of sample points is
approximately that of the seeds.

Geo-referenced information means information
available at a respective seed position. Thus, if po-
sitioning is available at the seed, image segments
may be accessed. A number of intermediate stages
are conceivable, starting with a display for the user
only and leading to totally automated processes.

Image segmentation proceeds in two steps. The first
step is the splitting: polygons are added in the sup-

port of the seeds and image until convergence. This
step involves a dynamic management of the Voronoi
diagrams. The second step is the merge step: some
polygons and seeds are deleted. If a polygon P is
nonhomogeneous, a seed should be added in the
middle of each Voronoi edge e¢= P(1Q where the
polygon Q is neigbbour of P, otherwise, we do noth-
ing.

IV. PLANNING TECHNIQUES FOR
FARMCROPS TEMPORAL ARRANGEMENT

Economic representation of data with all their in-
terrelationships is one of the most central problem
in information sciences. In thinking, and in the sub-
conscious information processing, there is a general
tendency to compress information by forming re-
duced representations of the most relevant facts,
without loss of knowledge about their interrelation-
ships, The purpose of intelligent information pro-
cessing seems in general to be creation of simplified
images of the observable world at various levels of
abstraction, in relation to a particular subset of re-
ceived data.

Temporal arrangement of crops is a vivid example
of this kind of problem hence the name “temporal
arrangement problem”. The term “temporal”
strongly evokes the idea of a one-dimensional plan-
ning space but the temporal arrangement problem
may also refer to temporal-spatial planning in a four-
dimensional workspace. However the section of this
paper will focus on the one-dimensional case.

Consider the map shown in Figure 4. It consists of
three landforms: high-land, slope-land and low-land,
where one is a neighbour of the others which are
planted or are not.

/] Planted Land
I:I Non-Planted Land

1. High-Land
2. Slope-Land
3. Low-Land

Figure 4. A map of cropping system
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The study area is chosen in lower reaches alluvial
plain of Yellow river. This study area selection is
made on the basis of the geographic coverage of the
socioeconomic data that corresponds to the mainly
farming area in China. In addition, area bounding
the Yellow river and suffering from severe drought
or excessive rain is the major factors considered in
choosing the study area. The relationships between
landform and drought or excessive rain are demon-
strated in Table 1. The farmcrops in this area may
be classified five types:

(1) Spring-sown crops April-August.

(2) Spring-Summer-sown crops May-Septem

ber.

(3) Summer-sown crops dJune-October.

(4) Summer-Autumn crops July-November.

(5) Autumn-sown crops October- June.

To make a farmerops temporal arrangement, we give
the constraints as follows:

(a) Balance spring-sown crops with autumn-sown

Crops.

(b) The farmcrops temporal arrangement of high-
land is prior to slope-land, in turn slope-land
is prior to low-land.

(c) Adjust farmerops temporal arrangement cor
responding to the level of drought or exces-
sive rain.

The planning techniques used for farmerops tem-
poral arrangement by this system have two cases:
(1) When the middle-long-term weather forecast-
ing is not considered, the farmcrops tempo-
ral arrangement is a combination of Plot 1 +
Plot 2 + Plot 3 temporal arrangement. In
terms of constraints (a), (b),(c) above, we may
get the arrangements shown in Figure 5.

(2) According to middle-long-term weather fore-
casting, the farmcrops temporal arrangement
appears to be a more complicated situation to
represent the relationships between the plots.
An algorithm for farmcrops temporal arrange-
ment considering middle-long-term weather
forecasting is presented. According to con-
straints (a), (b), (c) above, we may get the ar-
rangement shown in Figure 6.

V. CONCLUSIONS

The use of PSS is expected to increase in the fu-
ture, but the development of both the hardware and
the software will have to be based on rational con-
siderations and projects. To enhance the
interactivity, efficiency, and computational power
in a WINDOWS environment as much as possible,
suitable system may be developed as, for instance,
the framework presented in Section 2. A novel data
processing and data analysis algorithm that at-
tempts to build Voronoi diagrams from a distribu-
tion of discrete seeds, which are connected with field
sample location using GPS/DGPS, is proposed. The
incorporation of image segmentation and location
sensing helped to combine the advantages of small
field sample locations with large-scale, cost-efficient
image processing methods is pointed out. At the
same time, a farmcrops temporal arrangement
method in terms of the integration of GPS/GIS/RS
and planning techniques is proposed. It will be use-
ful to reduce errors and time in precision farming.
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Very serious Once / a year Low
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Linear Feature Modeling with Curve Fitting:
Parametric Polynomial Techniques

Xiaoming Zheng and Peng Gong

Center for Assessment and Monitoring of Forest and Environmental Resources

Department of Environmental Science, Policy and Management,
University of California, Berkeley, CA 94720-3310, USA

Abstract

A decomposition model is described to model linear features sampled by manual digitization or field survey. The
model consists of three components, original data, systematic pattern, and random error. Least squares and
moving least squares techniques are introduced for polynomial curve fitting. Polynomial functions are proposed
to represent linear features. The position deviation between sampled points and the polynomial function is used
as an approximation of the random error. Experimental results are presented to show the effectiveness of the
decomposition model. Potential applications of the model have been discussed including estimation of errors
associated with points sampled along linear features, digital representation and mapping of linear features.
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I. INTRODUCTION

In a vector-based GIS, digital representation of
curve features is done through the use of a series of
point coordinates sampled along the curves.
Manually digitizing paper maps is a predominant
method of point sampling. This has been recognized
as a significant source of error of spatial data
(Chrisman, 1982). Perhaps a more precise method
is to use global positioning systems (GPS) units in
the field. The high precision of GPS receivers,
however, does not offer much help for curve features
because such features are approximated by and
handled as a series of straight line segments joining
the consecutively sampled points. The facts that
use of discrete points to represent curve features is
prone to errors and that such errors are not
quantified are fundamental problems, some yet
unsolved tasks, in vector-based GIS (Brunsdon and
Openshaw, 1993).

To exactly calculate position errors of discrete points,
we need to compare the sampled points with their
true position along a curve. In most cases, however,

the true curve is not known. We must first
approximate the true curve from sampled points and
then derive position uncertainties by comparing the
sampled points with the estimated curve. To do so,
we must (1) develop a mathematical model that can
approximate and represent the true curve features
in a map or in reality based on the sampled points,
and (2) provide a procedure to estimate the errors
or uncertainties associated with the curve model.
Splines function used for curve fitting and
interpolation is not suitable for those purposes
because it forces the fitted curve to go through the
sampled points. In time series analysis, some
prediction models such as the autoregressive model,
the Autoregressive Integrated Moving Average
(ARIMA) model and adaptive filtering based on
Wiener-Levinson and Kalman Filter theories may
be useful, but they use data observed in the past to
predict the future behavior of the modeled
phenomenon (Janacek and Swift, 1993, Graupe,
1984). In spatial data modeling, it is desirable to
use both the “past” and “future” points. Some shape

1082-4006/97/0301~2-7$3.00
©1997 The Association of Chinese Professionals in
Geographic Information Systems (Abroad)
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analysis methods (e.g., Lin and Hwang, 1987;
Gunther and Wong, 1990; Grogan et al., 1992)
including strip tree, curve fitting method using
Bezier curves, arc tree, and Fourier descriptors may
only be useful for curve representation not for
estimation of errors or uncertainties.

Polynomials can be used for the two purposes
mentioned above, particularly for intuitively smooth
curves that are continuously differentiable. In
reality, not all linear features have this
mathematical property. Many linear features
resulting from human activities may not be
continuously differentiable. Examples are roads,
utility lines, cadastral and administration lines. On
the other hand, most linear features delineating
natural phenomena can be considered as
continuously differentiable. These include contours,
streams, and natural resource boundaries (e.g., soil,
climate, vegetation, wetland, etc.). Because of the
increased amount of human abstraction realized by
map generalization, on smaller scale maps we
observe a larger proportion of differentiable curves.
It is possible to store polynomial coefficients and use
polynomial functions to represent curve features
particularly if lower order polynomial functions can
fit curves with sufficiently high accuracy. It may
require less space to store polynomial coefficients
than to store sampled point coordinates. In addition,
it is effective to use polynomial coefficients to
represent curve shapes. Curve shape analysis may
be made based on polynomial functions for
subsequent curve generalization, curve matching for
object registration or recognition. Thus, curve
representation with polynomial coefficients may
have some advantages in data storage and curve
shape analysis over the traditional curve
representation method involving consecutive
straight lines.

The objective of this paper is to develop a
decomposition model for curve fitting by employing
polynomial functions. The model consists of three
components, original data, systematic error, and
random error. It is used to simulate differentiable
curve features from sampled points and to
approximate sampling errors or uncertainties.
Without loss of generality, we concentrate on the
development of the model and its application to
digitized curve features. Sampled points through
GPS units can be processed in the same manner. In
the next section, we introduce a framework for
spatial data modeling particularly curve modeling
based on the decomposition model. In section 3, we

introduce an epsilon band model for the estimation
of errors or uncertainties of sampled points that
constitute a stationary random data series. For
estimation of polynomial coefficients, we describe
least squares and moving least squares methods in
sections 4 and 5, respectively. The two methods are
used to implement the curve models. Some
experiment results with digitized data from
simulated curves are presented in section 6 followed
by some conclusions.

I1. SPATIAL DATA MODELING

There are two kinds of natural or social phenomenon
that can be described with a mathematical model.
One is deterministic physical process or signal,
which is entirely known and can be represented
exactly with a mathematical function. The other is
random event, which can only be described using a
stochastic model based on random samples.

Spatial data digitization is a stochastic process
(Keefer et al, 1988). The random error is introduced
during the generation, analysis and processing of
the digitized spatial data. To model a digitized line,
its uncertainty and random error, three steps are
needed. These are model selection, model
estimation, and model evaluation.

Model Selection

A sgpatial series model describing a curve or a linear
feature should be capable of (1) representing the
original data with a deterministic mathematical
function that can simulate or account for the
sampled data series, and (2) estimating the random
error distribution for evaluating the accuracy of the
fitting, interpolation and prediction of the linear
feature. Selecting an appropriate model is one of
the most crucial steps in spatial data modeling.
Model selection criteria depend on the objective of
data simulation. To describe the behavior of a
physical phenomenon, we may derive a model based
on physical laws so that we can precisely represent
or predict the value of a physical parameter in a
given time or space. To estimate the trend of a
random phenomenon affected by many unknown
factors, stochastic process models can be chosen. It
is helpful to plot the data first for understanding
the type, pattern and trend of the random data sets.
The knowledge on the physical process of data
acquisition is also useful in mathematical model
selection.
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For a discrete series represented by digitized points
{P,t=1,2,..,n], the series can be expressed with
a general stochastic decomposition model
P=F+E+R, (1)
where
P, is the digitized point;
t is a number index for a particular point;
F, is the component that represents the original,
undistorted part of the data series;
E, contains the systematic pattern or systematic
error that can be removed if known.
R, is the random component, which can only be
estimated using some a priori knowledge
about its distribution.

A digitized-point series consists of a sequence of X
and Y coordinates, which can generally be
represented as:
{P=(X,Y,), t=12,-- (2)
Because sample points are a discrete series with
unequal intervals, it is more practical to write the
point set in a parametric form

F=(X,Y)
X, = X(s,)
Y, = ¥(s,)
t =1,2,--n (3)

where s, is a distance parameter between the origin
and point t. Both X, and Y, are the functions of
parameters, . X, and Y, can be fitted by using the
same mathematical form with different coefficients.
We only focus on the discussion of data modeling
with the series of {X,, f=1,2, --,n}in this paper.
The decomposition model can be written as

X =f +e +r, (4)

The component of e, largely depends on the physical
process of data acquisition and the digitizer used.
It is difficult to use a mathematical expression to
describe the systematic pattern without a complete
knowledge of a specific data series to be modeled.
One of the common systematic errors is linear shift.
To remove the systematic effect of a linear shift, a
linear parametric function can be used to rectify the
error. Some systematic patterns or errors may be
modeled separately through visual analysis of the
digitized data. Visualizing the sample points may
allow systematic errors to be detected and corrected

through manual editing. To simplify the discussion,
we assume that there is no systematic pattern and
error in a digitized data series, that is, the
component of ¢, is zero. We have

X =f+r (5)
Generally, any data series can be decomposed into
a deterministic and a random part and can be
represented by equation (5) (Janacek and Swift,
1993). Model selection includes the determination
of the mathematical expression for the parametric
equation f, and the definition of the distribution of
the random component 7.

Model Estimation

A mathematical model for describing a random event
contains some unknown parameters, which should
be estimated with the available sample data. Least
squares is an important statistical technique for
estimating model parameters based on some
specified standard and criteria.

Suppose a model for a spatial data series takes the
form

X =fi+n=[f10)+r
where@isthe
8=(6,,0,,...6,)"

(6)

parameter vector and

Let ¥ _ (t,0) be an estimation of the original data
set X,. Then the deviation of the estimation for the
t-th data point is

r=X-X, t=12,..,n (7)

The sum of squared deviations is

R=Yr=Y(x,-X) (8)
=1 =1

The criterion for calculating parameter 6, is that
the parameter can minimize the sum of the squares.
Let

R

—=0, =12k
26, '

(9)
Since JE', is a linear function of the parameter vector
g> we can draw a set of k linear equations from (9).
Solving the linear equation set, we can obtain the
parameters, 6, (i=1, 2, ..., k; k<n), which minimize
the sum of squared deviations in (8).



10

Zheng and Gong: Linear Feature Modeling with Curve Fitting

Model Evaluation

When a model is estimated based on the available
data sets, it is necessary to diagnostically check the
goodness of fit between the estimated and the
digitized data. We need to ascertain if the model is
appropriate for the data set, and evaluate the
estimated characteristic parameters.

III. STATIONARY RANDOM DISTRIBUTION
AND EPSILON MODEL

Suppose there is a random data series {X,|r =12, }
If its statistical characteristics do not change with
variable t, that is, the characteristics is independent
of the origin of variable t, we call the random data
series stationary (Janacek and Swift, 1993).

A stationary data series have a constant mean

H,=E[X,]|=u (10)

and, for any two points t and s in time series, its
autocovariance function satisfies

R(s—1)=E[(X, - u)(X, - )] (11)
Let m=s-t , and we have
R(m) = E[(X“,,‘ - p)(X, - ,u)] (12)

Specially, if m=0, the autocovariance becomes the
squared deviation

R(0) = E[(X, = ,u)z] (13)

A stationary random series is completely
characterized by its mean and autocovariance. The
exact values of these parameters can be calculated
if the ensemble of all possible realizations is known.

Probability

area

Uncertainty

The position of
reference line

Otherwise, they can be estimated if multiple
independent realizations are available. However,
in most applications, it is difficult or impossible to
obtain multiple realizations. Most available spatial
data series constitute only a single realization. This
makes it impossible to calculate the ensemble
average. For a stationary data series, we have a
natural alternative of replacing the ensemble
average by the average along the time or distance
axle if the stationary process is ergodic (Zhong and
Hu, 1990).

The process of digitization can be considered as a
stationary random sampling process when the
cursor is used to trace a curve which can be modeled
by a normal distribution (Keefer et al, 1988; Maffini
et al 1989; Gong and Chen, 1992). This implies that
the probability of the sampled points located at both
sides of the curve are about the same and the sum
of all the errors cancels out. However, for a random
sample point, it is impossible to predict its position
along the curve. Moreover, the true curve is usually
unknown. It has been suggested that the epsilon
band model proposed by Perkal (1966) be used to
represent an uncertain zone centered at the
continuous representation of the digitized curve
(e.g., Blakemore, 1984). The position deviation,
epsilon, times a certain number is used as the width
of the uncertain zone (Figure 1).

In practice, the problem with applying the epsilon
band model to indicate curve uncertainty is how to
estimate the position deviation - the epsilon value.
Distances between the representation of the curve
and the digitized points (Bolstad et al, 1990; Gong
and Chen, 1992) may be used to estimate the width
of the epsilon band. Provided that the true curve
can be simulated with a mathematical function, the
digitizing error can be estimated from the sample

reference line

Figure 1. The distribution of digitizing points along a true boundary line and Epsilon band.
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standard deviation of the stationary random process
based on a series of digitized points.

1| =

(14)

== [y 5
=) =[;):(x, ~1) }
=1
where f is supposed to be the points on the true
curve, which is consistent with equation (5). Because
f, is unknown, a polynomial function can be used to
represent f, based on the available sample points.

IV. UNCERTAINTY MODELING WITH
POLYNOMIAL CURVE FITTING

From equation (5), we have

X, =fi+n

where f, represent the undistorted curve, and , is
the random component with a normal stationary
distribution.

There are two approaches to estimating the random
error 7, filtering and curve fitting.

The first approach is to use a filter to remove
from X, , thatis

F, = F{X,}

If the original curve is continuous and smooth, f,
should be a low frequency signal, which can be fitted
by using a polynomial function. The component of
1, is mainly a high frequency signal, which usually
has a normal distribution. To remove f,, filtering
can be applied in spatial or frequency domain.

(15)

In spatial domain, a high-pass filter is equivalent
to taking the derivatives. If f can be represented
by a K-th order polynomial function, a (K+1)th-order
differential operator can remove f, fromX, . The
standard deviation of the differentiated result can
be used as an estimation of the random error. The
problem is that, for a discrete spatial data series, a
difference operator has to be used to replace the
differential operation. Difference operation is not
invertible, and the operation will enhance the
random component when removing the low
frequency signal, which will change the magnitude
of the error and affect the estimation of the
parameters. High-pass filtering in frequency
domain seems to be more reasonable for removing
[, and estimating the random error if a filter can
be designed to remove the low-frequency part and
keep the high-frequency part unchanged.

The second approach is to use a mathematical
function to simulate f, and then subtract the
estimated f, from X,, thatis

P=X-f (16)
We use polynomials to fit a series of digitized points

as a simulation of the true curve. The general form
of a polynomial function is defined as

K
X=X(s)=) a,s* =a, +as+a,s* +.....+a,s"

k=0

(17)

where K is a non-negative integer, the degree of the
function, and a,,a,, -+, a, are fixed real numbers, s
is the distance between point s and the origin which
can be defined as the first digitizing point. The
coefficients a,,a,,"-,a,can be calculated using the
least squares technique based on the available
sampled points.

Suppose that there are n digitized points for a curve.
For the t-th point, the fitting equation is

i
v k 2 k
X, =X(s)= Z“;--Y. =da, + a5, + a8, +....taqs,,

k=0

t=1,2,...,n (18)
The residue is
R=Yr'=Y(X,~X) (19)
=1 =1
Let
IR _
—=0, i=0,1,...k(k<n) (20)
da,

we have a set of k linear equations forq,,a,, -+, a, .
Solving these equations we can obtain the unique
solution for all the coefficients. In practice, the shape
of a curve to be fitted needs to be smooth and
continuous and the order of the polynomials cannot
be infinitely high. These are further elaborated
below.

(1). Curve continuity

A curve is mathematically continuous and smooth
if its various order of derivatives exist. If a curve is
discontinuous or there exist sharp turning points,
it should be divided into continuous and smooth
segments at the broken points, and piecewise
polynomial functions may be constructed segment
by segment. Practically, polynomial functions are
less effective for linear features that are intrinsically
non-smooth or mathematically discontinuous
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because more sample points may be required and a
curve may have to be broken into too many
segments.

(2). The order of the polynomial function
Theoretically, a polynomial function can fit any
continuous and smooth curve so long as the order is
sufficiently high. Usually, better results can be
obtained when a higher order of polynomial function
is used to fit a curve if there is a sufficient number
of sample points. Practically, there is a
computational problem related to the limited
precision and magnitude of a computer. An
exceedingly high order will cause the fitted curve
vibrating around the curve because of the intrinsic
ill-condition of the Vandermonde problem and the
roundoff errors, which may introduce rather
substantial coefficients in the leading terms of the
polynomial. A reasonable order for fitting a specific
curve needs to be determined.

If a k-th order polynomial function can completely
represent a curve, then (k+1)th derivative operation
will result in zero. This fact can be used to construct
a method to determine the order of a polynomial
function.

For discrete sample points, the backward difference
operator can be defined as (Wei, 1990):

VX, =X, - X, =(1-B)X, (21)
and
VX, =(1-B)'X, (22)

where V =1-B and B is a backward shift operator
BX =X

T ="
After the k-th order difference operation, we need
to test the assumption of random stationary
distribution for the residue (Janacek and Swift,
1993). If the assumption is true, we take k as the
appropriate order for the polynomial function. If a
curve can be completely represented with a K-th
order polynomial function, for any P-th order
polynomial function (P>K), all the coefficients a; = 0
(K < j< P), and the accuracy of the fitting should
be the same as the K-th order polynomial function.
There is a more practical method to determine the
order of a polynomial curve. When k is smaller than
K, the fitting error or residual R, monotonically
decreases as the order increases. When k increases
to K+1 and if R, equals R, or even is less than
R, because of the intrinsic ill-condition of the

Vandermonde problem and the roundoff errors, K
should be taken as the order of the polynomials.

V. MOVING LEAST SQUARES FOR CURVE
FITTING

If a continuous curve changes sharply in some parts
and changes gently in some other parts, it requires
a high order polynomial function to fit the curve.
On the other hand, because the precision limitation
of a computer, a sufficiently high order of polynomial
function will cause vibration of the fitted curve and
hence introduce a large fitting error. To solve this
problem, moving least squares can be used.

The basic idea of moving least squares is that if X is
the function associated with the fitted curve, then
the value of X at a point s should be most strongly
influenced by the values at those points 5, that are
close to s. In other words, the influence of a value
at 5, on X at point s should decrease as the distance
between s and s, increases. Therefore, we can
modify equation (19) to a weighted sum of squared
deviations and minimize

"

R, =Y w,(5)[X(s)- X, I’

1=l

" K B
B Zw,[s)[Zak k- X,:l (23)
=1 k=0

where w,(s) is the weight function of s at point t.
Choose the following function

w,(s) =exp(~Cls - s,)) (24)

which is a monotonically decreasing function, and
C is a constant for adjusting weights of neighboring
points. The greater C is, the smaller is the size of
the neighborhood points that have significant effect
on the fitted value at position s.

To obtain the optimal coefficients according to the
minimum squares of deviation, let

% =0, k=0,1,.., K (25)
da,

Then, the normal equations are
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n " n
0 I K
ay, Z w,S, ] +a, [Z w, S, J +eeetdy, {Z WS, )
=1 =1 =1
H
= Z w X,
1=l
" " n
1 2 K+l
ay, z WS, ] +a, (z WS, J +eeetay {Z WS, ]
=1 =1 =1
n I
= Z w,s, X,
=1

n n n
K K+1 i 2K
au{g w,s, J+a,(z w,s, )+- +ax[2 w, s, ]
=1 =1

=1
n i
= Swstx,
=l

(26)

For polynomial curve fitting based on least squares,
the coefficients of the polynomial function is identical
for any fitted point s. Therefore, a high order
polynomial function may be required. With moving
least squares, the solution for the coefficients
ay,a,, - a,depends on s through the weight
function w,(s). For each s, we have to solve a set of
normal equations. Therefore, it is computationally
prohibitive to use high order polynomials.

VI. EXPERIMENTAL RESULTS AND
DISCUSSION

Experiments were conducted to evaluate the
accuracy and uncertainty of digitization and curve
fitting for linear features using polynomial functions
based on least squares and moving least squares.
The original curves were generated with some
mathematical functions. The exact position error
of each point can be calculated by comparing the
digitized point, the fitted curve value with the
original mathematical function.

Experimental procedures are as following:

Step 1. Design a kind of mathematical function to
generate a curve.

Step 2. Print out the curve and digitize the curve
using a digitizer.

Step 3. Fit the curve using a polynomial function
based on least squares and moving least
squares

Step 4. Estimate the random error and evaluate the
accuracy of curve fitting.

Curve Generation

Different mathematical functions were used to
generate different shapes of curves. To evaluate the
effect of curvature on digitization, circles with
different radii were used. It is more difficult to fit a
curve that has different curvatures in its different
segments. A set of sine functions were used to
represent the curves with different curvatures. The
sine function used to generate curves was
y=asinbx, where a and b were parameters for
adjusting the shape of the curve a={1.0, 1.25, 1.5,
2.0} and b={1.0} in our experiments. The third kind
of curve was an ellipse representing polygon
boundaries with different curvatures. The ellipse
equation is:

2

2
X
_2_|..

<<

a
where a=(2, 6} and b={1, 3}.

To further test the polynomial curve fitting
technique, more complicated curves were
constructed by mirroring a sine curve (Figure 6) or
joining two ellipses (Figure 7).

Digitization

All the curves generated with mathematical
functions were digitized manually by some
experienced operators at their normal speeds. The
digitized data were then taken as sampled points
for curve fitting and random error estimation.

Original circle

Digitized circle

Figure 2. A digitized version of a circle (dotted)
overlaid on top of the original one (solid).



14

Zheng and Gong: Linear Feature Modeling with Curve Fitting

Figure 2 shows a set of digitized points along one of
the original circles. The radius of the circle is 5.5
cm printed with a laser printer having a resolution
of 600 dots per inch (DPI). The line thickness is 0.1
mm. The digitization was done on a Summagraphics
(MM 11 1812) digitizer with a resolution of 1000 DPI.
As can be seen from Figure 2, the digitized points
are not exactly on the circle. We calculated the exact
position errors and plotted the distribution of the
digitizing errors in Figure 3. As expected, most of
the digitized points locate along the circle and the
number of sampled points decreases as the distance
between the digitized points from the circle
increases. Although the distribution of errors is a
little skewed, it looks close to a normal distribution.
In this study we assume that the digitizing error
distribution is normal.

Errors caused from curve plotting by a printer and
point-position reading from digitizing tables are
determined by the resolution of the printer and
digitizer used. Since a 600 DPI printer was used,
curve plotting errors should be within approximately
+/- 0.022 mm while point reading errors should be
within 0.013 mm. Because errors from different
sources do not simply add up (Gong et al., 1995) and
the error magnitudes of curve printing and point
reading are one order of magnitude less than the
digitizing errors at an average level of approximately
0.2 mm (Figure 3), errors caused by curve printing
and point reading have been ignored in this study.

Curve fitting

The curvature of the sine curve reaches its

— Original curve

...... Digitized curve

------- Fitted curve
with LS

(a)

02

0.1+

Percentage

0.0 -
........................
5 b 00 G 0O0CO0COGa o090 oea8c e 8
ooooooooooooooooooo

Error {cm)

Figure 3. Digitized error distribution calculated
from the example in Figure 2. Error is determined
by calculating the distance of each digitized circle

maximum at the peak and valley positions (Figure
4). With a 9-th order polynomial function, the curve
fitting errors are still largely observable.
Particularly, the fitted curve does not reach the
apices of the sine curve (Figure 4a). Better results
were achieved from the moving least squares with
an order of 5 (Figure 4b).

Figure 5 shows a comparison of the results from the
least squares and the moving least squares. The
four curves in Figure 5(a) include the original curve
and the curves generated by polynomial functions
of order 1, 5, and 9, respectively. It can be seen that
the curve simulated with the 9th order polynomials
is a close approximation to the original curve. Figure

— Original curve
------ Digitized curve

------- Fitted curve
with MVLS

(b)

Figure 4. The effect of curvature on curve fitting. (a) Original curve, digitized version, and fitted curve
using the 9th order polynomial functions estimated with the least squares method. (b) Fitted curve using

the 5th order polynomials estimated with moving least squares.
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—— Origiinal curve
------ Fitted curve (order=1)
— - — Fitted curve (order=5)

..... Fitted curve (order=9)

(a)

—— Origiinal curve
------ Fitted curve (order=1)
—-— [itted curve (order=3)
..... Fitted curve (order=>5)

(b)

Figure 5. Curve fitting results using different orders of polynomial functions. The original is displayed
using a solid line. (a) Fitted results using least squares with polynomial orders of 1, 5, and 9, respectively.
(b) Fitted results using moving least squares with polynomial orders of 1, 3, and 5, respectively.

Table 1. The Comparison of the Errors of Least Squares and Moving Least Squares
Least Squares Moving Least Squares

Order x (cm) y (em) Order x (em) y (cm)
1 0.463824 0.477288 1 0.029826 0.102721
3 0.059176 0.075351 2 0.011229 0.018969
5 0.023897 0.028138 3 0.008875 0.014013
7 0.006212 0.020102 4 0.004368 0.006309
9 0.006224 0.006068 5 0.003307 0.004847

5(b) shows the curve fitting results obtained from
the moving least squares with order 1, 3, and 5,
respectively. The curves generated with the 5th
order polynomial functions fit well to the original
curve. Table 1 summarizes some of the curve fitting
accuracies. For the least squares method, when the
order is 11, the sample variances along both the x
and y directions are tremendously greater than
those obtained from the 9th order polynomial
functions. Therefore, an 11th order polynomial
function may represent an over fitting to the original
curve because of the intrinsic ill-condition of the
Vandermonde problem and the roundoff errors.

Figure 6 shows an example when curve fitting by
one single polynomial function reaches its limit in
simulating curve sections containing sharp
curvature changes. In this example, there are two
sharp points. For the curve segment containing the
left sharp corner where the sample starts and ends,
the fitted curve matches the original curve well. At
the other sharp point, the fitted value is smooth and
cannot reach the sharp corner as shown in Figure
6. The third order polynomial functions were used.
For a continuous and smooth curve as shown in
Figure 7, although the curve has an intersection

point that makes two closed ellipse shapes, the fitted
curve can still match the original curve well with
the 3rd order polynomial functions estimated using
the moving least squares method with C=2.0.

Fitting accuracy and random error

Generally speaking, the order of polynomials used
is directly related to curve fitting accuracies as can
be seen in Table 1. Because of the limitation of
computer precision, when the order was 11 or greater
in our experiment, the fitting accuracy decreased
dramatically using the least squares. Moving least
squares resulted in higher accuracies of curve fitting
with lower order polynomials.

Table 2 is a comparison of errors among the original
curve, the digitized curve and the fitted curve from

Table 2. A Comparison of Position Deviations

Position Deviation (cm)

Digitized vs. Original 0.0193
Fitted vs. Original 0.0096
Digitized vs. Fitted 0.0120
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|— Original curve
-+++:Fitted curve (order=3)

Figure 6. Fitting a curve with internal intersection
and abrupt curvature changes. The fitted results
were obtained using the 3rd order polynomials
estimated with moving least squares.

an experiment. The error of a digitized point was
estimated from the minimum distance between the
point to the original curve. It can be seen that the
standard deviation between the digitized curve and
the original curve is 0.193 mm while the standard
deviation between the fitted curve and the original
curve is 0.096 mm. Thus, the fitted curve has a
higher accuracy than the digitized curve (Figure 8).
Since the original true line may not be available in
practice, the deviation of 0.120 mm between
digitized points and the fitted curve may be taken
as an approximation of the uncertainty introduced
by digitization. Although the approximation tends
to be smaller than the true digitizing error, it seems
to be a proper measure of curve uncertainty for the
application of the epsilon band model because the
majority of the true curve will be within a 0.24 mm
zone centered at the fitted curve.

Uncertainty modeling in map overlay

Map overlay is an important tool in geographical
analysis. Through different operations such as
intersection, matching, and merging (Pullar and
Beard, 1990), two or more multisource data sets can
be combined into one. Because different thematic
maps are made by different people at different times

— Original curve
----- Digitized curve

(a)

| = Original curve

=+« Fitted curve (order=3)

Figure 7. Fitting a curve with internal intersection
with no abrupt curvature changes. The fitted
version was produced by the 3rd order polynomials
estimated from moving least squares.

using different data sources, the polygon boundaries
in different digital maps do not exactly match. Even
if the same polygon boundaries are separately
digitized, the resultant maps will not exactly
coincide due to digitization and other errors.
Therefore, the operation of map overlay will
generate many small spurious polygons (Goodchild,
1978). Spurious polygons are another source of
uncertainty in spatial data bases.

To remove those spurious polygons, three strategies
have been used: (1) randomly choose one side and
delete the other side; (2) use a straight line to connect
the two end points; (3) choose the line that has a
higher accuracy or that is from a larger map scale
and erase the other (Zhang et al, 1993).

Polynomial curve fitting can be used as the fourth
strategy to find a new line as an estimation of the
true boundary line based on weighted least squares
using all the points of a specific boundary from every
layer. The new line has the minimum error if all
the layers have the same accuracy. When the
relative accuracies are different among layers to be
overlaid, weights can be assigned to points in each
layer in the weighted least squares estimation. The
weight assigned to each layer should be made in

— Original curve

----- Digitized curve

(b)

Figure 8. A comparison of the accuracies between the original, a digitized, and a fitted curve. (a) The
original curve and the digitized curve. (b) The original curve and the fitted curve.



T (3 B R

Geographic Information Sciences

E=E B—FE— —hbEE+TA
Vol. 3, No. 1-2, December 1997

accordance to the accuracy of the layer, i.e., assign
the layer of higher accuracy with a greater weight
for the generation of the new boundary. The
determination of weights should also be based on
the scale of the source maps because maps of smaller
scale tend to have less accurate boundary positions.

(b)

Figure 9. An example of multilayer curve fitting
using the polynomial technique. (a) Original ellipse.
(b) Three digitized versions. (c) Fitted curve with
the 9th order polynomials estimated using weighted
least squares technique.

Figure 9 shows some simulated results. Three
curves digitized from the same original curve were
regarded as three boundary lines each from a
different source map. The fitted curve was
calculated from the three digitized curves each
having the same weight assignment. Table 3 lists
the standard deviations between the fitted curve and
the true curve and between the digitized points and
the true curve.

An ellipse curve was produced from a mathematical
equation and treated as the true curve (Figure 9a).
It was digitized three times and the three digitized
versions were overlaid (Figure 9b). Were they
displayed at some larger scale, we would see many
spurious polygons from the overlaid results along
the boundary. Figure 9(c) shows the derived line
using the 9th order polynomial functions based on
all the points on the three different digitized curves
with weighted least squares.

Table 3. A Comparison of the Position Deviations
in a Map Overlay Experiment

Position Deviation (cm)

Digitized vs. Original 0.0167
Fitted vs. Original 0.0078
Digitized vs. Fitted 0.0145

(a)

Original curve

Fitted curve

(c)

VIL. SUMMARY AND CONCLUSIONS

In vector-based GIS, linear features are sampled in
the form of discrete point series and represented by
consecutively joined straight lines. The sampled
points contain a large amount of errors and the
representation method is not suitable for curve
features. Few efforts have been made to improve
this situation. The primary objective of this research
was to seek appropriate methods to model linear
features sampled in spatial databases and to
determine uncertainties associated with the
samples. We presented some methods based on a
decomposition model implemented through
parametric polynomial functions determined by
least squares and moving least squares techniques
to achieve the objective particularly for modeling
continuous and smooth curve features.

A discrete point series can be decomposed into three
components, the original data set, the systematic
error, and the random error. Since the systematic
error component may be detected through
visualization and calibrated or removed through
manual editing, we excluded it from our
experiments. If the point series comes from a
continuous and smooth curve such as a stream,
contour, or a boundary of natural phenomena,
through experiments we demonstrated that digitized



18

Zheng and Gong: Linear Feature Modeling with Curve Fitting

point series can be represented with polynomial
functions. A single polynomial function whose
coefficients are determined by the least squares
technique or a group of polynomial functions whose
coefficients are estimated with the moving least
squares technique can be used to model a continuous
and smooth curve.

In our experiments, we assumed that the random
error of sampled points has a stationary normal
distribution. Because a true curve is often unknown
in real spatial databases, it is impossible to calculate
the sample errors such as errors caused by
digitization. We demonstrated the use of least
squares and weighting least squares methods for
estimating sample errors. The standard deviation
between point data sampled along a curve and the
fitted curve can be used in an epsilon band model to
model uncertainties of the sample data, particularly
digitized data.

The order of polynomials required to accurately
model a curve is lower for moving least squares than
that for the regular least squares. While the moving
least squares technique gives higher curve fitting
accuracies than regular least squares, it lacks
computational efficiency.

These techniques may be used to estimate the
uncertainties in map digitization, field survey using
GPS units, multilayer map overlay, and to represent
curves in spatial databases. Modeling and
representing lines with polynomials have potential
advantages in saving storage space, curve
generalization, curve matching and object
recognition.

Selecting suitable models and base functions for
linear feature modeling and representation and
developing appropriate uncertainty estimation
methods for linear features in spatial databases
warrant more research attention. Further test of
the methods proposed here through experiments
with curve features digitized from a map or collected
in the field may provide important insights for better
spatial data modeling and uncertainty estimation.
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Abstract

Managing highway incidents involving gaseous hazardous spills requires accurate assessment of potential risks
to both the population and environment. Further, quick decisions must be made on how to effectively carry out
emergency rescue and evacuation. In this paper we demonstrate that a Geographic Information System (GIS)
provides an ideal tool to perform risk analysis and to assist emergency response. We have built a prototype GIS
that integrates a dispersion model with Arc/Info to simulate gaseous hazardous spills under different
circumstances. A case study is conducted based on the highway network and 1990 census data of the Greater
Cincinnati Metropolitan area.
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L. INTRODUCTION

Over the last decade the study of hazardous material
transportation has become a very popular field (for
reviews, see Helander and Melachrinoudis, 1997;
Erkut and Verter, 1995; William 1994; List et al.,
1991). The importance of this field lies in the fact
that over 1.5 billion tons of hazardous materials are
shipped annually in the U.S., and there are
enormous concerns expressed by the public, the
government, and the industry (Lepofsky, et al.,
1993). In general, managing hazardous material
transportation involves several strategic tasks, as
spelled out in the Hazardous Materials
Transportation Uniform Safety Act of 1990: (1)
assessing the risks to the population and/or
environment based on such elements as type and
quantities of hazardous materials, type of highways,
population density, etc.; (2) siting toxic facilities and
planning the best shipping routes; (3) acting on
traffic division, emergency rescue, and population
evacuation in the event of accidents. Many of these
issues have been studied extensively with
transportation engineering methods and models, but
rarely they are considered and dealt with
simultaneously.

As the development and application of Geographic
Information Systems (GIS) continue to grow, many
researchers as well as practitioners have realized
the great potential of using this technology to help
manage hazardous material transportation. The
main idea is to integrate GIS and well developed
hazardous material transportation models in a
coherent environment for strategic planning,
visualization, and analysis. For example, Lepofsky
et al. (1993) discussed the suitability of GIS for five
decision support aspects in hazardous material
transportation: risk assessment, routing and
scheduling, emergency preparedness, evacuation
planning, and incident management. Comfort and
Chang (1995) addressed the need of creating a
distributed, intelligent spatial information system
for disaster management. However, a closer look at
current literature indicates that GIS applications
in this area are mostly related to locating toxic sites
and planning optimal shipping routes (for example,
Anders and Olsten, 1990; List and Turnquist, 1994;
Parentela and Sathisan, 1995). Not much work has
been done to address the issues of how to predict
the potential dangers and act on emergency rescue

1082-4006/97/0301~2-20%3.00
©1997 The Association of Chinese Professionals in
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once an incident occurs. It is against this background
that the current research project is developed.

The objective of our study is to demonstrate that a
Geographic Information System (GIS) provides an
ideal tool to deal with risk assessment and
emergency rescue in an event of a highway accident
involving gaseous hazardous material
transportation. We will embed a gas dispersion
model in a GIS environment so that the entire
process of model input, output, display and analysis
become interactive and integrated with powerful
GIS functions. Specifically, we are concerned with
using GIS (1) to interactively simulate the gaseous
hazardous release and map the toxic area; (2) to
calculate the number of population exposed and
their risk level; and (3) to select routes for emergency
response teams. We have chosen to focus on highway
accident because it has a higher probability
compared to other transportation modes. It is
estimated more than 85 percent hazardous release
during shipping occurs on highways (Hardwood, et
al., 1989). Further, a highway incident involving
hazardous material spills often cause enormous
damages to people and environment, especially in
the urban area. In order to effectively carry out
emergency rescue and evacuation in the event of an
accident, questions regarding the characteristics of
hazardous material release and the severity of
health consequence need be answered quickly.

The remainder of this paper is organized as follows.
Section two discusses the dispersion model that
predicts the toxic level of hazardous gas release.
Section three demonstrates how the dispersion
model is implemented in a GIS environment. Section
four presents our case study. Section five concludes
the paper and points out future research directions.

II. THE DISPERSION MODEL

Dispersion models are quantitative models that
estimate the dispersion of atmospheric pollutants
and predict the toxic corridor (see, for example,
Munger, et al., 1983; Ryckman and Peters, 1983;
| Klug, 1984). In case of a highway accident involving
gas spills, a dispersion model is employed to answer
the following questions:

Where will the toxic cloud go?

When will the toxic cloud get to a place?

What are the impacted areas?

How serious will the population and/or

environment be affected?

In order to correctly answer these questions, we
must consider a variety of elements that may
influence the outcome of a gaseous spills. These
elements are:
* the characteristics of the gas (density,
molecular weight, potential danger, etc.)
« the release rate and duration (sonic vs. subsonic,
instantaneous vs. continuous)
* meteorological conditions (wind speed, direction,
atmospheric stability, etc.)
* the topography of the surrounding area
(roughness of surface, buildings, trees, ete.)

Our handling of these elements is based on the
standard engineering approach, as described by
William (1994). We assume the properties of various
gaseous chemicals are known and have been stored
in the database. Given the type of gas, users can
immediately retrieve its physical and chemical
attributes. The release rate is determined according
to the gas dynamic theory of ideal, adiabatic
compressible flows with standard equations.
Depending on the pressure of the gas in the
container, the flow can be classified under sonic or
subsonic flow. If the criterion described in Equation
(1) is satisfied, the flow is sonic (i.e., the flow velocity
is equal to the sound speed in the gas), otherwise it
is subsonic:

PIP,2[(y+1)/2]""" (1)

where:
P= absolute tank pressure (N/m?)
P, = absolute ambient pressure (N/m?)
Y = gas specific heat ratio (usually 1.5)

The release rate for sonic and subsonic flow is
calculated by Equation (2) and Equation (3)
respectively (William, 1994).

Q= CJAP[()M!RT)(ZI(]/+ I))tww—n]”z @)

Q — C(,A{Zp"P(}’i(}’— [))[{F:‘ .-"P}z”’ _ (afp)ir.-l)-‘y]}lfz

(3)
where:
® = discharge (kg/s)
C,= orifice discharge coefficient
A = area of flow (m?)
M = gas molecular weight (kg/kg-mole)
R = absolute gas constant (8.31 X 10° J/kg-mole/
K)
T = absolute gas temperature in container (K)
p,= gas density (kg/m?)
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The parameters required for estimating the amount
of release are difficult or impossible to obtain when
the accident is reported to the emergency response
unit. Hence, default parameters are used to run the
model until accurate information is available.

Given the gas discharge rate as input, the well tested
and most widely used Gaussian model is chosen to
calculate the concentration distribution of the spilled
gas. The Gaussian model assumes that the
atmospheric turbulence is random, which results in
Gaussian distribution of toxic clouds in the vertical
and horizontal downwind directions. The equation
for continuous release is as follows (Gifford, 1968):

x= (Q."J’EO‘I‘_O‘:JLJ]EXP{—[{J’J 1207)+(h* 120} )]}
(4)

The formula for instantaneous release is as follows:
x =012 0,0 wexp(-[((x— ut)’ 1267) +

(*1200)+(h* 1200)]) (5)

where:
x = concentration of the released material (g/m?)
& = material release rate (g/s) for continuous
release or total release (g) for puff releases
« 0,0,0.= standard deviations of the
concentration distribution to the plume
centerline (m) in the x, y, and z directions
y = horizontal distance perpendicular to the plume
centerline
z = vertical distance perpendicular to the plume
centerline (m)
x = distance downward (m)
h = effective release height from the ground (m)
u= wind speed (m/s)
¢t = time since release (s)

0,.0,,0. are diffusion parameters estimated in
accord with the atmospheric stability. Atmospheric
stability is usually measured by the vertical
temperature gradient. An unstable temperature
profile produces more turbulence whereas a stable
temperature suppresses turbulence. When a
highway accident is reported, the atmospheric
stability for the incident location is very likely to be
unknown. Therefore, as illustrated by Table 1, we
adopt the Pasquill stability types which are defined
according to surface wind speed and insolation
conditions (Gifford 1968). The Pasquill scheme
varies from extremely unstable conditions (type A)
to moderately stable conditions (type F).

Once a Pasquill stability type is identified for the
accident location, the formulas in Table 2
recommended by Hanna et al. (1982) are used to
compute the diffusion parameters for open-country
and urban conditions. The formulas are applicable
to continuous toxic plumes with 10 to 30 minute
exposures (William, 1994).

Finally, the concentration of the gas is converted to
normally desired units of parts per million (PPM)
by the formula:

PPM =23691y /M
where M = Molecular weight of the gas.

(6)

III. THE GIS IMPLEMENTATION

The Gaussian gas dispersion model is implemented
as a raster GIS model in Arc/Info. We chose using
raster data because the cell-based format provides
a better visual representation and analysis of
gaseous spills that move continuously over space.
QOur objective is to simulate highway gas spills and

Table 1. Pasquill stability types

Daytime Insolation Nighttime Conditions
Surface Wind  Strong Moderate Slight Thin overcast or <3/8
speed, m/sec 23/8 cloudiness cloudiness
<2 A A-B B
2 A-B B C E E
4 B B-C C D E
6 C C-D D D D
>6 C D D D D

A: Extremely unstable conditions
B: Moderately unstable conditions
C: Slightly unstable conditions

D: Neutral conditions
E: Slightly stable conditions
F: Moderately stable conditions
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to perform incident analysis through friendly
graphical user interface.

The Data

Four types of data need to be collected: data on the
physical attributes and release characteristics of gas,
meteorological data, population data, and
environmental data (landuse, road network,
topography, etc.). Figure 1 is the data flow diagram
that shows how the spatial and attribute data are
prepared and processed. First, based on the type of
hazardous gas and discharge type, the attributes of
the gas are used to calculate the release rate (see
Equation (2) and (3)). Second, based on the location
of the accident, we immediately know whether this
is a predominantly urban or rural area. We could
then compute the diffusion parameters according
to the atmospheric stability conditions (see Table 1
and 2). Third, based on the wind speed, direction,
and the time since incident, we create map layers
representing location factors (direction, vertical and
horizontal distance) with respect to the plume center
line. In addition, population data, road network
data, and other environmental data are used for
query, routing and visualization purpose.

The Graphical User Interface (GUI)

A friendly graphical user interface (GUI) is designed
to facilitate the dispersion modeling process. It

consists of a collection of menus, buttons, and tools
through which users communicate with the
prototype system. As shown in the main menu
(Figure 2a), the GUI inter-connects with users, the
database, and all the functional elements of the
prototype system. Each button in the main menu
leads users to a set of sub-menus and tools for data
entry, parameter selection, and model operation.

There are five major components in the main menu.
The “Spill Characteristics” button opens a sub-menu
(Figure 2b), which allows users to choose one special
type of hazardous gas, its physical attributes, and
discharge type. Similarly, the “Meteorological
Conditions” button provides a sub-menu (Figure 2¢)
for simulating different Pasquill atmospheric
stability types and wind speed. Clicking on the
“Incident location/Display” button will display the
highway network of the study area and a cross
cursor. Users can specify the reported accident
location on the highway. The system displays an
error message if the point does not lie on the highway
network. The “Run” button results in a sub-menu
(Figure 2d) through which users could input the time
since the incident, as well as the desired time
increment which is needed to automatically update
the display. The system prompts for confirmation
before running the model for the next time
increment. Finally, the “Query” button leads to the
overlay and routing process which estimate the
population affected by the accident and draws the

Flow area

Absolute tank pressure
Molecular weight of gas
Ambient temperature
Type of release (Continuous / Instantaneous)

—b-l Rate of Relmsc'

Time since incident

Wind speed

distances from plume centerline

Horizontal and Vertical

\

—Fl ARC/INFO Covcrngcl<
3

| Area type (Rural / Urﬁl"’/

Gaussian Model I

| Meteorological condilinnsH Pasquill stability type I—» l Diffusion parameters

Time increment

ARC/INFO |

‘F

| Isopleth Map
Population
\

I Road thworq—bl Analysis and Visualizalionl

Figure 1. The data flow of the disperse modeling
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Table 2. Formulas recommended by Hanna et al (1982) for o (x) and ¢_.(x) (100 m < x < 10 km)

Pasquill stability type

o,,m
Open-Country Conditions

HEgOQW >

Urban Conditions

Hoop
o5 | os]

0.22x(1 + 0.0001x)"2
0.16x(1 + 0.0001x)"2
0.11x(1 + 0.0001x)"2
0.08x(1 + 0.0001x)"2
0.06x(1 + 0.0001x) 2
0.04x(1 + 0.0001x) 2

0.32x(1 + 0.0004x)"*
0.22x(1 + 0.0004x)"*
0.16x(1 + 0.0004x)"*
0.11x(1 + 0.0004x)"*

o.,m

0.20x

0.12x

0.08x(1 + 0.0001x)"*
0.06x(1 + 0.00015x) "2
0.03x(1 + 0.0003x)"*
0.016x(1 + 0.0003x)"*

0.24x(1 + 0.0001x) "2
0.20x

0.14x(1 + 0.0003x) 2
0.08x(1 + 0.00015x) "2

fastest route from the nearest emergency rescue unit
to the incident location.

The Analytical Process

As illustrated in Figure 3, the modeling and
visualization process is implemented by means of a
collection of scripts in Arc Macro Language (AML).
With user providing the incident location, type of
atmospheric stability, wind speed, and the time since
the release, a temporary ARC/INFO grid is created
from the existing highway network coverage. The
extent of the grid is determined by multiplying the
current wind speed by the estimated maximum
release duration time. Initially all the cells in the
temporary grid coverage have the value of NODATA
except for the cell representing the incident location.
Then the following steps are taken to implement
the dispersion model:

Step 1. The Euclidean distance function is used to
calculate the distance closest to the source cell. The
result is a new grid with each cell value representing
its distance from the incident location. Similarly, the
Euclidean direction function is used to create a new
grid with each cell value representing its direction
(in degrees) from the incident location. Since the
plume center line follows the given wind direction,
each cell’s angle (in degrees) with respect to the
plume center line can be easily obtained by
subtracting the wind direction value from the
direction grid. Based on the angle, each cell’s
horizontal and vertical distances (x and y) from the
plume centerline are computed using the
trigonometric calculations. The x and y values are
stored in separate grids.

Step 2. The Pasquill stability type is selected
according to the current meteorological conditions
(see Table 1). The result is subsequently used to
determine the horizontal and vertical diffusion
parameters (s (x) and s (x) in Table 2).

Step 3. Depending on the type of release
(instantaneous or continuous) Equation (4) or (5) as
well as Equation (6) are implemented by using the
grid algebra to calculate the concentration of the
gas distribution (in PPM) for each cell in the grid.
The concentrations are displayed in different colors
in the resulting isopleth map. In the continuous
release case, it is assumed that the gas will not

Highway Network
(Grid)

A

Point representing
incident location

N

Distance from

Direction from
incident location incident location

N/

Dispersion Model

Figure 3. The logic diagram of the analytical
process
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Figure 2. The graphical user interface(GUI). (a) the main menu; (b) the spill characteristics
sub-menu; (¢) the meteorlogical conditions sub-menu; and (d) the run model sud-menu.

spread beyond the distance covered by the wind in
the same time period. As the time increases, new
coordinates are sent to the dispersion model, and
the display is updated accordingly.

addition, the population being affected by the spill
may be estimated by carrying out the following
raster overlay analysis:

Step 1. Create a grid with cell values representing

The resulting isopleth map can be queried after each
time increment. The system gives the concentration
(in PPM) at any desired cell location, and the
distance from that cell to the incident source. In

the estimated number of people within each cell (or
any phenomena of interest such as landuse type,
property value, number of buildings, etc.). Create a
binary grid with cell value equal to 1 for those that
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are within the plume and 0 for the ones outside the
plume.

Step 2. Multiply the above two grids to obtain the
population within the toxic plume. The sum of the
cell values thus represents the total population
affected by the incident since the release of
hazardous gas.

If users intend to know the number of people exposed
to a particular range of concentration, they could
simply repeat the above two steps except making
the binary grid only include the cells that fit into
the range of concentration. In a similar fashion, one
could interactively choose any grid cell(s) at any
location(s) within the plume and find out the total
population in that area.

Routing analysis for the emergency response team
can be done using the Arc/Info network analysis
functions. The key operations are (a) to display the
highway network on the top of the plume grid and
to ‘snap’ the incident source cell to the nearest node
on the network. The result is the ‘destination’ for
the shortest path function; (b) to geocode the all the
fire stations or emergency response centers in the
study area so that the emergency response units that
are within certain time windows to the incident
location may be quickly identified and ranked (the
closest, the 2nd closest, the third closest, ete.); and
(c) to run the shortest path algorithm and draw the
resulting paths. Since our routing analysis did not
consider traffic conditions and the capacity
(personnel, equipment, etc.) of fire stations, the
result could be unrealistic. Therefore, it is necessary
to have an expert who is able to adjust these
computer selected routes based on traffic conditions,
facility capacity and other unforeseen elements.

IV. A CASE STUDY

To test the prototype system, a hypothetical case

study was conducted simulating a highway accident
in the Greater Cincinnati Metropolitan area.
Chlorine was selected as the hazardous gas for the
disperse model. The GIS database includes
population and highway network (intestates, US
routes and state routes) for the Ohio-Kentucky-
Indiana tri-state region. The cell resolution of the
raster data is 25 meters.

The incident involving continuous Chlorine spills
happened on Interstate highway 75 in a heavily
populated suburban area in Cincinnati. Based on
the user defined chemical characteristics, release
types, and surface meteorological data, the
dispersion model computes the size and moving
direction of the plume at a 3 minute increment.
Figure 4a presents the isopleth map for the
distribution of Chlorine gas 15 minutes since the
release. The characteristics of the release, the
meteorological conditions, and the concentration
level of Chlorine are displayed in the legend. The
map clearly shows the movement of toxic clouds
and the exposure during the downwind dispersion
of the plume. By overlaying the isopleth map with
the population map, we can quickly evaluate how
serious the exposure is. In case of Chlorine, it is
known at 1 to 5 ppm, irritation of the nose,
respiratory tract, and eyes starts. At 15 ppm,
irritation is considered severe (The Chlorine
Institute, 1991). Therefore, as shown in Table 3,
within 15 minutes of the accident, approximately
1600 people need be evacuated from the downwind
area (zip code 45069 and 45246) where the predicted
concentration exceeds 10 ppm. Such information is
very critical to evacuation planners or emergency
rescue teams. In reality, though, the calculation may
be overestimated due to the fact a) the dispersion
model is usually conservative in predicting the toxic
level; b) there are less people in the residential area
during normal business hours; ¢) some people may
have taken evasive actions by themselves and some
may stay inside a shelter.

Table 3. Population exposed to the chlorine spill 15 minutes since incident

Level of Concentration Number of People Affected Zip Code
> 100 ppm 741 45069
10 - 100 ppm 871 45069, 45246
5-10 ppm 445 45069, 45246
4 -5 ppm 743 45069,45246
3 -4 ppm 2084 45069, 45246
<3 ppm 8450 45069, 45246, 45218, 45240
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analysis functions.

There are two major advantages of this approach.
First, it facilitates interactive model input, analysis,
and visualization. Second, it allows users to
experiment and simulate gaseous spill incidents at
any highway location under different circumstances
with respect to hazardous materials, meteorological
conditions, and release types and duration. The
simulated case studies can provide rich information
for transportation engineers, managers, and
emergency response planners.

There exists plenty of room for improvement and
extension of this study. Future research should be
directed to the following areas:

» Better dispersion models which are able to
consider the changes in wind direction and
wind speed with time; changes in terrain,
obstacles etc.

« Wind direction database (one of the attributes)
for the whole area which will substitute for lack
of real time information.

« Routing strategies which consider capacity of
fire stations and traffic volumes.

+ Models to evacuate the affected population.

« C(Case studies that are based on real world
incidents.
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Abstract

The effect of scale on spatial analysis has long, but sporadically, been recognized in human geography and more
recently and acutely in landscape ecology. As the number of studies directly and systematically addressing
scale effects is still limited, it remains unclear how results of different statistical analyses are affected by chang-
ing scale for different landscapes, or whether or not such effects can be predicted and, if so, in what situations.
However, it is certain that erroneous conclusions may result if scale effects are not considered explicitly in
spatial analysis with area-based data. With widespread use of remote sensing data and GIS, a better under-
standing of the issue of scale effects is much needed. The main purpose of this study, therefore, was to examine
how results of statistical analysis respond to a systematic change in the scale of analysis. Specifically, we
investigated how the relationship between landscape metrics (local landcover diversity and richness indices)
and independent variables (TM bands and vegetation indices) would change with different sample sizes and
mathematical representations of variables. The landscape under study is the Minden area of Nevada in the
western Great Basin. Four different sample sizes (19x19, 15x15, 11x11, and 5x5 pixels) and four different
representation forms (variance, mean, variance-mean ratio, and coefficient of variation) of the variables were
used in all statistical analyses. We systematically examined the effects of changing sample size and representa-
tions of variables on the results of regression, analysis of variance, and correlation analysis. The results indi-
cated that the relationship between landscape metrics and TM bands and vegetation indices was affected con-
siderably by the change of sample size. Both the R? value and the level of statistical significance of the relation-
ship tended to increase as sample size increased. In addition, the results of ANOVA showed that the relative
importance of the TM bands and vegetation indices in the relationship varied with sample size as well. Al-
though the spatial pattern of local-scale (or “neighborhood”) diversity and richness of land-cover types in this
Great Basin landscape could be adequately quantified using spectral information-based variables, the results
and accuracy of such a analysis depended on both landscape composition and sample size. The linear response
of the statistical relationship to the change in sample size over some range of scales indicated that scale effects
could be readily predicted in certain cases. However, in general, because scale effects can further be complicated
by the choice of variables and the idiosyncrasy of particular landscapes, the predictability of scale effects seems
to be confined only to certain domains of scale. To find these domains multiple-scale or hierarchical analysis
must be performed. This study further supports that the modifiable areal unit problem is a common one across
the disciplinary boundaries of geography, ecology and other earth sciences. Unraveling the problem not only
will improve our understanding of pattern and process in nature, but also will have important implications for
appropriate use of remote sensing data and GIS,
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L INTRODUCTION

Spatial pattern has important effects on a variety
of physical and ecological processes, including flows
of energy and nutrients and dispersal and move-
ment of plants and animals (Turner, 1989; Risser,
1990; Wiens et al., 1993; Wu et al., 1993; Hunsaker
et al., 1994; Wu and Levin, 1994, 1997). To under-
stand the interactions between pattern and process
it is necessary to quantitatively characterize spa-
tial heterogeneity over a range of scales. Because
today’s spatial pattern results from yesterday’s dy-
namic processes, pattern analysis may potentially
reveal critical information on properties of under-
lying processes. Landscape ecology, focusing on the
study of the reciprocal relationship between spatial
pattern and ecological processes, provides a new
conceptual framework for understanding how na-
ture works (Pickett and Cadenasso, 1995; Wu and
Loucks, 1995). In recent years, numerous studies
have been carried out to quantify landscape pat-
terns using various spatial analysis methods
(O’Neill et al., 1988; Turner and Gardner, 1991;
Cullinan and Thompson, 1992; Plotnic et al., 1993;
Wickham and Riitters, 1995; Riitters et al., 1995;
Jelinski and Wu, 1996; Qi and Wu, 1996). In gen-
eral, both promises and problems have been found
regarding the plethora of techniques used in land-
scape pattern analysis (see Riitters et al., 1995,
Jelinski and Wu, 1996).

Remotely sensed data and geographic information
systems (GIS) have been increasingly used to fa-
cilitate large-scale studies in landscape ecology
(Iverson et al., 1989; Roughgarden et al., 1991;
Turner and Gardner, 1991). Landsat Thematic
Mapper (TM) and NOAA satellite AVHRR data, in
particular, have been widely adopted in landscape
ecological studies. Based on the features of reflec-
tance and absorption of vegetation to electromag-
netic radiation, a number of vegetation indices have
been developed from several TM bands (e.g., Tueller,
1989). Both the spectral values of the different TM
bands and vegetation indices derived from them can
be correlated with various characteristics of land-

scapes (e.g., Tueller, 1989, Rey-Benayas and Pope,
1995),

Landscapes are hierarchically structured in space,

within which pattern and processes operate over a
range of scales (O’Neill et al., 1991; Wu and Loucks,
1995). Detected spatial pattern usually varies with
the scales of observation, measurement, and data
analysis. Therefore, any analysis based on a single
scale may provide little (or even misleading) infor-
mation on the overall landscape structure under
study (Wu and Loucks, 1995; Jelinski and Wu, 1996).
Two concepts, grain and extent, have been particu-
larly useful for making landscape pattern analysis
scale-explicit, thus facilitating communication and
comparison of the results. Grain is the “smallest
unit of measure” or “the first level of spatial resolu-
tion possible with a given data set”, whereas extent
is the “cover” or “the total area of the study” (sensu
Turner and Gardner, 1991). Studies in plant com-
munity ecology, human geography, and landscape
ecology have shown that the results of spatial analy-
sis using area-based data usually are sensitive to
three kinds of related, but distinctive changes in
spatial data: changes in grain size, extent
(Meentemeyer and Box, 1987; Woodcock and
Strahler, 1987; Turner et al., 1989; Wickham and
Ritters, 1995; Qi and Wu, 1996), and aggregation
zones (the zoning problem; see Openshaw, 1984;
Fotheringham and Rogerson, 1993; Wu and Jelinski,
1995; Jelinski and Wu, 1996). It has been suggested,
therefore, that landscape pattern should best be
understood by conducting analysis on multiple
scales or hierarchically (Wu and Loucks, 1995; Wu
and Jelinski, 1995; Jelinski and Wu, 1996; Qi and
Wu, 1996).

As a part of a research project that attempts to link
spatial pattern to ecosystem properties in the Great
Basin, this study examined the effects of systemati-
cally changing spatial scale on the results of par-
ticular statistical analyses. Specifically, the objec-
tives of this study were as follows: (1) to investigate
how landscape metrics such as diversity and rich-
ness relate to spectral parameters readily available
from remote sensing (e.g., TM band values) and veg-
etation indices derived from them; and (2) to exam-
ine the effects of varying sample sizes on the re-
sults of the analysis.
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II. DATA AND METHODS

The data set for this study is a land-cover map de-
rived from empirical information on topography,
vegetation distribution, and land use conditions.
The data set contains fourteen land-cover types,
covering the Minden area of Nevada in the western
Great Basin. The geographic coordinates for the
four corners are 39°9’18.3” N and 119°51"13.7" W,
39°6'14.2” N and 119°30'30.0” W, 38°54'12.3” N and
119°54'55.8” W, and 38°51’8.2” N and 119°34'12.1"
W, respectively. The data set has 999 rows and 1069
columns with a linear dimension of about 30 m for
each pixel, which represents a total area of 96,114
hectares (or 961.14 square kilometers). The GIS
package, IDRISI™, was used for Landsat image
processing and a part of the pattern analysis, while
S-Plus™ was used for ANOVA, regression, and cor-
relation analysis.

From the land-cover map, we computed three land-
scape metrics, diversity (H), dominance (D) and rich-
ness (R), as descriptors of landscape structure.
These metrics have been widely used in landscape
ecological studies (e.g., O’'Neill et al., 1988, 1996;
Turner, 1989; Wickham and Riitter, 1995), and are
defined as follows:

Landscape Diversity

H=-Y P InP,
k=1

where H is the diversity index, m is the number of
land-cover types, P}, is the proportion of the grid
cells of land-cover type £ (the number of pixels of
the land-cover type & divided by the total number
of pixels). Larger values of H correspond to more
diverse landscapes which tend to have many land-
cover types with similar proportions of pixels be-
longing to each type.

Landscape Dominance

m

D = HII‘:IK = z ﬂ ln PJ-

k=1
where D is the Dominance index, H,, .. is the maxi-
mum diversity when all land-cover types are present
in equal proportions (i.e. ). m and P are defined
exactly the same as in the diversity index. This in-
dex is a measure of the extent to which one or a few
land covers dominate the landscape. Small values
usually correspond to landscapes with a large num-
ber of land use types of similar proportions. Appar-

ently, a simple numerical relationship exists be-
tween diversity and dominance indices, both carry-
ing the same non-spatial, compositional information
of a landscape. While they were used together in
our analysis for purposes of checking computational
errors and facilitating interpretation, here we will
focus primarily on the results on diversity to avoid
redundancy.

Relative Richness

N

R= 100

max

where N is the number of different land-cover types
present in an area under observation, and the N
is the maximum value of richness. S
Although the same basic formulas are used, in this
study these metrics were calculated differently from
the conventional way whereby they are computed
for the entire study area or non-overlapping subre-
gions. Because we were more interested in the char-
acteristics of local-scale (or “neighborhood”) diver-
sity and their spatial changes, the landscape metrics
were computed using a 3 by 3 pixel moving window
as defined by the GIS package, IDRISI. For diver-
sity and relative richness, respectively, a value for
the metric was computed for the 9 neighboring cells,
and then was assigned to the central cell. The win-
dow moves on one column at a time from the up left
corner of the grid, until all the grid cells received
their values. This is exactly the way these metrics
are calculated using the PATTERN module of
IDRISI (Eastman, 1995). As a result, the values of
diversity and richness formed a 2-dimensional ma-
trix and were represented as maps.

Three vegetation indices, RVI (Ratio Vegetation
Index), NDVI (Normalized Difference Vegetation
Index), and TNDVI (Transformed Normalized Dif-
ference Vegetation Index) were calculated from spec-
tral information of the Landsat TM imagery of the
study area. It was one of our objectives in this analy-
sis to determine which of these vegetation indices
would be best suited for detecting changes in the
Great Basin landscapes. These indices were ob-
tained from the following formula (Richardson and
Wiegand, 1977; Tucker, 1979; Huete and Jackson,
1987): |

I'
{

RVI = Rﬁ |
NIR
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NIR — Red

NVl = e Red

TNDVI = \/(NIR— Red) (NIR + Red) + 0.5

The Ratio Vegetation Index is simply the ratio of
red to infrared brightness values and capitalizes on
the increase in brightness as one moves from the
red to the infrared data space. The Normalized Dif-
ference Vegetation Index is a more complex version
of this simple ratio, and has been used in numerous
vegetation assessment studies. Many studies have
shown that NDVI is responsive to rapidly growing
highly reflective plant communities such as alfalfa
fields and riparian vegetation (Tueller, 1989; Rey-
Benayas et al., 1995). The transformed normalized
difference vegetation index, with the addition of 0.5,
avoids negative values and usually is easier to in-
terpret (Deering et al., 1975; Richardson and
Wiegand, 1977; Harlan et al., 1979).

III. ANALYSIS AND RESULTS

In previous studies (Wu et al., 1994; Wu and
Jelinski, 1995; Jelinski and Wu, 1996; Qi and Wu,
1996), we have shown that, for area-based data,
varying the scale of analysis (grain size) and zoning
systems (orientation and configuration) of the spa-
tial units at the same scale both may have signifi-
cant effects on the results of spatial analysis. This
problem has been termed the modifiable areal unit
problem (MAUP) in the geography literature
(Openshaw, 1984; Fotheringham and Rogerson,
1993; Amrhein, 1995; Wu and Jelinski, 1995;
Jelinski and Wu, 1996). In this study, we intended
to explore how systematic (or progressive) changes
of the analysis scale (specifically sample size) affect
the results of regression and correlation analysis
based on landscape data. How do different repre-
sentation forms of variables — variance, mean, vari-
ance-mean ratio (V/M), and coefficient of variation
— interact with the scale effects? Do scale effects
show any trends that are predictable?

We used the three landscape metries (diversity, and
richness) as dependent variables and TM3, TM4,
TM?7, NDVI, TNDVI, and RVI as independent vari-
ables in the statistical analysis. To examine scale
effects, four sample sizes were used: 25 pixels (5x5),
121 pixels (11x11), 225 pixels (15x15), and 361 pix-
els (19x19). First, we cut forty-nine 5x5 pixel
samples from each of the 9 images (diversity, domi-

nance, richness, TM3, TM4, TM7, NDVI, TNDVI,
and RVI), and then symmetrically increased the
scale of analysis, from the center cell outward, to
11x11, 15x15, and 19x19 pixels (Figs. 1 and 2). Asa
result, there were 49 replicates for each sample size.
Variance, mean, variance-mean ratio (V/M), and
coefficient of variation (CV =) of the nine variables
at each sample size (n = 49) were computed, and
then used accordingly for regression analysis, analy-
sis of variance, and correlation analysis.

Regression analysis was conducted to examine how
the landscape metrics relate to TM band parameters
(TM3, TM4 and TM7) and vegetation indices (NDVI.
TNDVI and RVI). Variance, mean, V/M, and CV of
each variable are used for each sample size, respec-
tively. For example, at the sample size of 5 by 5
pixels, four multiple linear regression models were
constructed for each of the three dependent vari-
ables (diversity, dominance, richness) in terms of
their variance, mean, V/M, and CV, respectively.
The analysis of variance was used to determine the
relative importance of the TM band parameters and
vegetation indices in the relationship. We also per-
formed a correlation analysis to further explore the
relationship between landscape metrics and TM
variables. In both ANOVA and correlation analy-
sis, only the variance of dependent and independent
variables at each sample size was used as the rep-
resentation form because the regression analysis
had shown that variance was more sensitive to
changes in the landscape metrics than mean, V/M
and CV.

The results of regression analysis showed that, for
the sample size of 5 by 5 pixels, there did not ap-
pear to be a linear relationship between the land-
scape metrics (i.e., diversity, dominance, richness)
and the six independent variables (i.e., TM3, TM4,
TM7, NDVI, TNDVI, and RVI). This was true for
all representation forms of the variables (i.e., mean,
variance, V/M, and CV). For the sample size of 11
by 11 (121 pixels), a statistically significant linear
relationship was apparent between the landscape
metrics and independent variables when mean, vari-
ance, and V/M, but not CV, of these variables were
used for the analysis (Table 1). When the sample
size increased to 15x15 and 19x19 pixels, the linear
relationship of the landscape metrics with TM bands
and vegetation indices became statistically signifi-
cant for all four forms of measure for the variables,
with progressively larger R? values and smaller P
values (see Table 1, Figs. 3 and 4). In general, the
strength of this relationship tended to increase as
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Table 1. Results of linear regression between the landscape metrics (diversity, dominance, richness) and
TM3, TM4, TM7, NDVI, TNDVI, and RVI at 4 different sample sizes (5x5, 11x11, 15x15, and 19x19
pixels). Variance, mean, V/M and CV of the nine variables at each sample size are used separately in the

analysis.

Measure Landscape R? P-value R? P-value R? P-value R? P-value
Indies

5%5(25 P) 11*11(121 P) 15%15(225 P) 19%19(361 P)

Diversity 0.1637 0.3964 0.3943  0.0015%*% 0.4459  0.0003** 0.7679  0.0000%*

Variance Dominance 0.2191  0.1950 0.311 0.0138% 0.4240  0.0006** 0.9999  0.0000%*
Richness 0.1192 0.6183 0.3179 0.0117% 0.5500  0.0000** 0.7049  0.0000%%
Diversity 0.256 0.1117  0.3778  0.0024** 0.4553  0.0002** 0.3883  0.0018%*

Mean Domanence 0.1473  0.4735 0.3494  0.0052%% 0.4872  0.0001** 0.4232  0.0006%*
Richness 0.2471  0.1286  0.3449  0.0059%% 0.4361  0.0004** 0.4022  0.0012%*
Diversity 0.2505 0.1218 0.2531 0.0492% 0.4166 0.0163* 0.3889  0.0174%

V/M Domanence 0.2293 0.1682 0.3231 0.0103* 0.5485  0.0000%* 0.3181  0.0116*
Richness 0.2315  0.1534  0.2933  0.0211* 05731  0.0000%* 0.4207  0.0007%*
Diversity 0.1278 0.5725 0.1568 0.2919 0.2214  0.0966  0.5232  0.0001%*

Ccv Domanence 0.1138 0.6469 0.1808 0.1994 0.2180 0.1031 0.2885  0.0236*
Richness 0.1359 0.5305 0.1448 0.3478 0.2511 0.0534 0.2514  0.0531

*P<0.05, % P<0.01

sample size increased for all four forms of measure
(Fig. 3). However, a closer look reveals that R? val-
ues actually peaked at the sample size of 15x15 pix-
els in the cases of mean and V/M (Fig. 4).

The results of analysis of variance showed that,
when variance was used as the representation form
for the variables, the independent variables differed
in terms of the level of significance in the relation-
ship with landscape metrics as sample size increased
(Table 2). For all the three landscape metrics, all
independent variables were found insignificant at
the sample size of 5x5 pixels. TM3 was statistically
significant in the relationship for all the three land-
scape metrics at sample sizes of 11x11 pixels and
larger, NDVI was significant for sample sizes of
15x15 and 19x19 pixels, and TM7 was only signifi-
cant for the sample size of 19x19 pixels. The num-
ber of the spectral variables that were significant
in the regression relationship increased as the
sample size expanded. The results of the analysis
of variance also were indicative of the relative im-
portance of the different independent variables in
the regression relationship at each sample size.
Although a certain variable might be important at
several sample sizes, its P value tended to decrease
with the sample size (Table 2).

The results of correlation analyses, using variance
as the representation form of all variables, showe
that TM7 was significantly correlated with all the
three landscape metrics at all four sample sizes
whereas TM 3 and TM4 were significantly corre
lated with these metrics when sample size was big:
ger than 5x5 pixels (Table 3). For all the three T'
bands, R? values increased and P decreased a
sample size expanded, indicating that the correla
tion between the landscape metrics and the T
bands became more significant with increasin
sample size.

IV. DISCUSSION AND CONCLUSIONS

The results of our study have shown that the sp
tial pattern of local-scale or neighborhood diversi
and richness in the Minden landscape could be ch
acterized using TM spectral data. But sample si
or the scale of analysis played an important role i
relating the landscape metrics to TM spectral va
ables. With explicit specification of this scale e
fect, it seems feasible to use TM spectral inform

tion or vegetation indices to quantify and monito
spatial changes in the Great Basin landscape. How
ever, several points are worth further discussion.
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Figure 3. Accumulative R* values for the multiple linear regression between landscape metrics and
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variables are diversity (A), dominance (not shown here), and richness (B), and independent variables are
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Figure 4. R? values for the multiple linear regression between landscape metrics and spectral variables
as a function of increasing sample sizes (5x5, 11x11, 15x15, and 19x19 pixels). Dependent variables are
diversity, dominance (not shown here), and richness, whereas independent variables are TM3, TM4, TM7,
NDVI, TNDVI, and RVI. Variance (A), mean (B), V/M (C) and CV (D) of the nine variables at each sample

size are used separately in the analysis. Also refer to Table 1 for numerical values.

Scale effects

S_eve'ral studies have shown that changing scale may
Slgirflﬁcantly affect the pattern quantification of an
entire landscape or its subregions using, for ex-

ample, richness and information theory-based
metrics (Turner et al., 1989; Wickham and Ritters,
1995; O’Neill et al., 1996) and spatial autocorrelation
indices (Legendre and Fortin, 1989; Jelinski and Wu,
1996; Qi and Wu, 1996). Specifically, the scale be-
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Table 2. Results of analysis of variance between the landscape metrics (diversity, dominance, richness)
and TM3, TM4, TM7, NDVI, TNDVI, and RVI at 4 different sample sizes. The variance value of each

variable at each sample size is used in the analysis.

Sample Diversity Dominance Richness

size VS. P value VS. P value VS, P value
TM3 0.08091 T™M3 0.42235 TM3 0.17482
T™M4 0.59403 T™4 0.61092 TM4 0.76886

5X5 TM7 0.41344 ™7 0.74131 T™M7 0.57186
NDVI 0.94461 NDVI 0.36995 NDVI 0.80863
RVI 0.15879 RVI 0.05845 RVI 0.23338
TNDVI 0.69449 TNDVI 0.06810 TNDVI 0.44635
TM3 0.00015%* TM3 0.01066* T™3 0.00077%*
TM4 0.39013 TM4 0.09552 TM4 0.72986

11X11 TM7 0.64337 TM7 0.68709 TM7 0.18886
NDVI 0.03771* NDVI 0.02759% NDVI 0.16830
RVI 0.06890 RVI 0.06370 RVI 0.15953
TNDVI 0.71911 TNDVI 0.38048 TNDVI 0.97257
TM3 0.00002%* T™M3 0.00249%** TM3 0.00000%*
TM4 0.55443 TM4 0.21824 TM4 0.79383

15X15 TM7 0.20461 T™M7 0.08522 T™7 0.11359
NDVI 0.00206%** NDVI 0.01068* NDVI 0.01075*
RVI 0.04888* RVI 0.01108% RVI 0.01462*
TNDVI 0.84668 TNDVI 0.16059 TNDVI 0.95484

- T™M3 0.00000%* T™3 0.00000%* TM3 0.00000%*

TM4 0.63878 TM4 0.00000%* TM4 0.97097
™7 0.00006%# TM7 0.00000%* T™M7 0.00025%*

19X19 NDVI 0.00000%* NDVI 0.00000%** NDVI 0.00000%**
RVI 0.42321 RVI 0.31253 RVI 0.27869
TNDVI 0.94307 TNDVI 0.56559 TNDVI 0.50972

*P<0.05 % P<0.01

ing changed in our study is sample size, or may be
regarded as extent with 49 replicates (see Fig. 2).
Our study further has suggested that statistical
analyses like regression, ANOVA, and correlation
analysis with landscape data are also affected by
changing scale. The effect of changing sample size
on these analyses can be considerably large (Fig. 4).
Of particular interest was that R? values increased
monotonically in the variance and CV graphs (A and
D in Fig. 4), whereas a peak became apparent at
the 15x15 sample size in both mean and V/M graphs
(B and C in Fig. 4). Further studies are needed to
confirm whether this peak was indicative of a char-
acteristic scale at which a real structural change in
the landscape takes place. Because of scale effects,
ecological conclusions based on such analyses should
be made with explicit specification of scales (grain
size and extent). Our results seem to suggest that
this effect may be predictable within a certain do-

main of scales in some cases (see Fig. 4 for regions
that correspond to nearly linear change in R? val-
ues).

Effects of different representation forms of
variables

Scale effects were further complicated by the effect
of different representation forms of variables used
for the landscape analysis. For example, the four
representation forms (variance, mean, V/M, and CV)
for the 9 variables in this study resulted in some-
what distinctive patterns of change in R? values with
increasing sample size (Fig. 4). For example, while
diversity and richness seemed to exhibit similar
patterns for each representation form at finer scales,
variance was most sensitive to changes in diversity
and richness pattern. The higher sensitivity of vari-
ance to change in the analysis scale is attributable,
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Table 3. Results of correlation analysis between the landscape metrics (diversity, dominance, richness)
and TM3, TM4, and TM7 at 4 different sample sizes. The variance value of each variable at each sample

size is used in the analysis.

Sample T™ Diversity Dominance Richness
size (Variance)
R? P R* P R? P
TM3 0.2866 0.0365% -0.125 0.7789 0.2266 0.0799
5x5 pixels TM4 0.0772 0.3180 0.0018  0.4955 0.0775 0.3174
T™M7 0.3205 0.0219%  -0.096 0.7221 0.2473 0.0019*%
TM3 0.5082 0.0001**  0.3620 0.0154%* 0.4769 0.0004**
11x11 pixels TM4 0.3602 0.0060%* 0.3537 0.0069%* 0.2994 0.0238%
TM7 0.4849 0.0004** 0.3223 0.0127* 0.3512 0.0094**
TM3 0.6697 0.0041*%*  0.3820 0.0248% 0.6361 0.0013%*
15x15 pixels TM4 0.3664 0.0052%% 0.3312 0.0107* 0.3672 0.0051%%
T™7 0.5478 0.0000%*  0.4496 0.0007%* 0.6043 0.0000%*
T™3 0.6020 0.0000%%  0.4048 0.0050%* 0.6677 0.0000%*
19x19 pixels TM4 0.3680 0.0020%* 0.3374 0.0095%* 0.5114 0.0015%*
™7 0.6728 0.0000%*  0.4204 0.0001%* 0.7118 0.0000

*P<0.05, ¥ P<0.01

at least in part, to the fact that its values are larger
than those of V/M or CV in which variance is “scaled
down” by mean.

Relationship between TM bands/derived veg-
etation indices and spatial pattern of land-
cover richness and diversity

The results of regression analysis indicated that
neighborhood diversity and richness were signifi-
cantly correlated to TM band parameters and veg-
etation indices. The strength of the correlation
seemed to increase with sample size (or calculation
scale). This was evidenced by the increasing R? val-
ues and decreasing P values for the regression rela-
tionship, as well as by ANOVA and correlation
analysis. In particular, the results suggested that
the selected TM bands and vegetation indices could
detect and predict changes in local-scale diversity
and richness at sample sizes from 11x11 to 19x19
pixels with increasing accuracy. Clearly, use of vari-
ance as the representation form of variables at the
19x19 sample size gave the best result (R* larger
than 0.7 for all three metrics; see Table 1 and Fig.
4). The results of both ANOVA and correlation
analysis further suggested that TM3 and NDVI were
the most consistent and best predictor variables.

TM3 band has been shown to be a good indicator of
green vegetation (e.g., Tucker, 1979; Baret and

Guyot, 1991). Rey-Benayas and Pope (1995) indi-
cated that TM spectral data have the potential of
measuring landscape diversity. While our results
seem to support this claim, the choice of appropri-
ate sample size will be critically important to achieve
high accuracy. On the other hand, vegetation indi-
ces derived from several bands using different math-
ematical formulations may indicate quantitative and
qualitative differences in the properties of vegeta-
tion because significant differences in reflectance
and absorption of radiation exist between vegeta-
tion and other geographical characteristics of the
landscape (Tueller, 1989). According to our analy-
sis, normalized difference vegetation index (NDVI)
appeared to be better than RVI and TNDVI for char-
acterizing local-scale diversity and richness pattern
in this particular desert landscape (Table 2). Nu-
merous studies have shown that NDVI is a sensi-
tive indicator of green biomass (Tucker, 1979,
Tueller, 1989). Out study suggested that, together
with TM3 and TM7, NDVI was a good predictor of
diversity and richness in the landscape of our study.
However, it is worth emphasizing again that the
accuracy of these variables as predictors of land-
cover diversity and richness not only depends on
landscape composition, but also on sample size.

In conclusion, we emphasize that scale effects rep-
resent an important and challenging issue that must
be considered explicitly in all landscape analysis.
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Based on this and previous studies it seems unlikely
to find “universal” rules that can be used to accu-
rately predict scale effects over a wide range of scales
or across different types of analysis and landscapes.
This is in part because scale effects are further com-
plicated by the choice of variables and the idiosyn-
crasy of particular landscapes. Yet, as this study
suggests, responses of the statistical relationship to
changes in analysis scale may exhibit simple (e.g.,
linear or monotonic) patterns over some ranges of
scale, implying that scale effects could be readily
predicted within these domains of scale. To find
scale domains where predictions or extrapolations
can be readily made, multiple-scale or hierarchical
analysis must be performed. This study further
supports that the modifiable areal unit problem is
common across the disciplinary boundaries of geog-
raphy, ecology and other earth sciences. Unravel-
ing the problem will not only improve our under-
standing of pattern and process in nature, but also
will have important implications for appropriate use
of remote sensing data and GIS.
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Abstract

This paper presents an approach to designing a spatial query language, called GeoSQL, in terms of the conven-
tional spatial query and implementation process. A critical factor to the design is how to accommodate spatial
operators in an appropriate form, while being compatible with the Structured Query Language (SQL) standard.
To achieve this, the FROM clause of SQL is restructured to contain spatial operators via a subquery so that the
results of spatial operations can be easily fed into both the SELECT and WHERE clauses. The subquery in the
FROM clause creates an intermediate relation, on which the selection in terms of certain criteria is conducted.
This is a distinct characteristic of GeoSQL. The syntax and semantics of GeoSQL are described, and a set of
examples for testing the expressiveness of the language is given. The interface of the language is also designed
with the introduction of visual constructs (e.g., icons and ListBoxes) to aid the entry of query text. This distin-
guishes GeoSQL’s interface from the previous extended SQLs, which only employ pure text for constructing a
query. After this, an implementation of GeoSQL is discussed. This paper finally suggests further extending
GeoSQL for temporal and fuzzy queries.
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I. INTRODUCTION

The need for a formal spatial query language has
been widely identified in GIS community [8, 10].
Therefore, several approaches to devising a spatial
query language have been developed [2, 4], Of them,
extending the relational database languages, pri-
marily SQL, is a major one.

SQL, very suitable for the retrieval of lexical data,
has been the standard query language for relational
databases [1]. However, based on the underlying
power of relational algebra, SQL has proved to be
insufficient for the queries involving spatial propri-
eties such as metric and topology [7]. Hence a vari-
ety of extended SQLs were addressed (e.g., [8, 12,
14, 16, 21]). For GIS requirements, the main exten-
sions to SQL include the introduction of spatial data
types such as point, line and polygon, as well as spa-
tial operators such as distance, direction, intersec-
tion and buffer. Given that spatial operators in these
languages are applied in either the SELECT or
WHERE clause, it becomes difficult to apply the

results of spatial operators occurring in one clause
(e.g., WHERE clause) to another clause (e.g., SE-
LECT clause), and to implement further conditions
on these operators such as temporality.

Different from the above approach, Gadia [11] pro-
posed a spatial SQL in the form of “SELECT ...
RESTRICTED TO - FROM ... WHERE”. The condi-
tion in the WHERE clause only includes non-spa-
tial attributes, while the condition in the augmented
RESTRICTED TO clause deals with the spatial
data. Huang [15] designed an extended SQL by in-
corporating spatial operators in the FROM clause,
while the other clauses remain intact. The modified
FROM clause creates a new relation with derived
attributes representing the results of spatial opera-
tions. These attributes, just as other attributes in
the source relations, can then be applied in both the
SELECT and WHERE clauses. The direct incorpo-
ration of spatial operators, however, does not com-
ply with the general representation of the FROM
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clause, as has been done by many variants of SQL.

In order to overcome this problem, this paper at-
tempts to redesign the FROM clause via a subquery
(i.e., a nested SQL), and in the meanwhile, incorpo-
rate more spatial operators including those for com-
plicated spatial analyses such as INTERSECTION,
UNION and DIFFERENCE. It should be clear that
the ongoing SQL/MM [17] and SQL3 do not impose
a unique form for representing spatial queries. The
design of GeoSQL is conducted strictly within their
framework.

The remainder of this paper is organized as follows.
Section IT describes the spatial data types and spa-
tial operators in GeoSQL. The syntax and seman-
tics of GeoSQL are discussed in Section III, with a
stress on the representation of the FROM clause.
Section IV gives several examples to illustrate how
spatial queries are represented by GeoSQL. The
interface of GeoSQL is presented in Section V, which
introduces some visual constructs such as icons and
ListBoxes, thereby increasing its user friendliness.
Following this is an implementation of GeoSQL in
Section VI. Finally, in Section VII, this paper con-
cludes with some comments on the characteristics
of GeoSQL and its future development.

II. SPATIAL DATA TYPES AND OPERATORS
Spatial Data Types

Generally, there are two kinds of spatial data mod-
els: feature-based and layer-based in GIS. The
former one models spatial features while the latter
one models map or a set of thematic maps [24]. The
feature-based data model is currently adopted by
many GIS packages such as ESRI's ArcView,
Maplnfo Inc.’s MapInfo and Intergraph’s Modular
Graphical Environment (MGE).

In a feature-based model, a spatial feature, e.g., a
road, school or region, is represented as a geometric
object with spatial attributes such as coordinates
and topological relationships, as well as non-spa-
tial attributes such as name, type and size. Usu-
ally, a class of features having a similar thematic
property (e.g., roads, rivers or landuse) is repre-
sented by a spatial relation, and a feature corre-
sponds to a tuple in the spatial relation. The spatial
relation extends the conventional relation with an
Abstract Data Type (ADT) , i.e., using GEO attribute
for spatial representation. In other words, spatial

attributes appear at the same conceptual level as
the non-spatial attributes [22]. The basic relational
operations such as projection and Cartesian prod-
uct are considered applicable to spatial relations.
The GEO attribute can be of point, line or polygon

type.

Using the above method, the following schemas re-
lated to Hong Kong region are defined:

region (ID, name, population, GEO)

landuse (ID, type, GEO)

parcel (ID, address, GEO)

road (ID, name, class, GEO)

building (ID, name, owner, GEO)

university (ID, name, studentnum, GEO)

The features of region, landuse, parcel, building and
university are of polygon type, while those of road
are of line type. These tables are to be used along
this paper.

Spatial Operators

Spatial operators are the methods pertaining to spa-
tial features, which are employed to extract infor-
mation from spatial features, as well as to create
new spatial features from existing ones [23].

Several sets of spatial operators have been defined
to query spatial database [2, 6]. Both SQL/MM and
Spatial Database Engine (SDE) [9] have also defined
their sets of spatial operators. Based on these, four
groups of typical spatial operators are defined to il-
lustrate how they are applied in GeoSQL.

(1) Unary spatial operators

The unary spatial operators are often used to ob-
tain a scalar value, arcs or centroid of a spatial fea-
ture such as
ARCS(Pgn) gets the arcs from the polygon Pgn
AREA(Pgn) calculates the area of the polygon
Pgn
LENGTH(I/Pgn) calculates the length of the line
L or the polygon Pgn (perimeter)
CENTROID(Pgn) gets the center point of the
polygon Pgn
VORONOI(Pnts) gets the VORONOI map of a
pointset Pnts
BUFFER(SP) gets the buffer area of a spatial
feature

Some of the above operators are type-specific, e.g.,
AREA, which can only take spatial features of poly-
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gon type as its operands while line and point type of
features are not applicable. But, some others are
generic, e.g., BUFFER(SP), which can operate on
one or more data types,. In this case, the spatial
data type is defined as SP.

(2) Binary geometric operators

The following are the two main geometrical opera-
tors:
DISTANCE(SP1, SP2) calculates the minimum
Euclidean distance between two spatial features.
DIRECTION(Pnt1, Pnt2) calculates the angle of
the line connecting the points Pntl and Pnt2.

(3) Binary topological operators

Topological operators determine the topological re-
lationship between two spatial features and return
a Boolean value. If the topological relationship de-
fined by an operator holds between its arguments,
the operator returns the value TRUE; else FALSE.

According to [5, 6], the topological relationships usu-
ally include DISJOINT, CONTAINS, TOUCH,
WITHIN, OVERLAP, CROSS, INTERSECTS and
EQUALS.

(4) Binéry construction operators

Construction operators may create new spatial fea-
tures if a certain topological relationship holds be-
tween two spatial features. The main construction
operators are:
UNION(SP1, SP2) gets all the primitive lines or
polygons
INTERSECTION(SP1, SP2) gets the common
part of two spatial features
DIFFERENCE(SP1, SP2) gets the different part
of two spatial features

This group of operators represent the most difficult
type of spatial operators to define directly in SQL
[14]. However, like other types of operators, these
operators in GeoSQL are represented in the way as
other operators. This is discussed below.

III. REPRESENTATION OF GEOSQL

Conventional Spatial Query and Implementa-
tion Process Using GIS

When a query involves several spatial operations,

[source rclation(s)]

spatial operations

unary binary
spatial spatial
operators operators

l

[ intermediate 1'clali011]
L
[qelecl in terms of cond]

&

project attributes }-—-—-—-

Figure 1. The conventional spatial query and imple-
mentation process using current GIS packages

WHERE

we often first do spatial operations using unary spa-
tial operators, binary spatial operators or both of
them, and obtain an intermediate result. Then a
selection in terms of certain criteria is carried out
on this intermediate result. Finally, the desired at-
tributes are projected. This procedure is shown in
the left part of Figure 1, which provides a basis for
the design of GeoSQL.

Syntax of GeoSQL

Generally, a SQL statement is as follows:
SELECT Ay, ..., Am
FROM Ri, veny Rn
WHERE F

It is described in relational algebra as

[1,. . (@R x..xR,)

Hence the FROM clause implies the Cartesian prod-
uct of the given relations. In any case, the FROM
clause needs to finally define a single relation, be-
cause it is the relation to which the selection in the
WHERE clause and the projection in the SELECT
clause are applied.

Enlightened from this, if the FROM clause is re-
structured to create an intermediate spatial rela-
tion resulted from spatial operations, the SQL state-
ment can then be easily adapted to the above spa-
tial query and implementation process (Figure 1).
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An approach to implementing this is to append new
attributes derived from spatial operations to the
Cartesian product of source relations. Since the di-
rect insertion of spatial operators into the FROM
clause will not be consistent with the ongoing SQL3
standard, it is necessary to employ a subquery, i.e.,
embedding a SQL statement, in the FROM clause.
The spatial operators are, therefore, applied in the
nested SELECT clause for projection of their results,
for example,
SELECT ......
FROM
(SELECT *, CONTAINS(r. GEO, u. GEO) AS
contval, AREA(urge) AS areaval
FROM region AS r, university AS u)
WHERE ......

The result of CONTAINS operation is represented
by the attribute “contval”, and the result of AREA
operation by the attribute “areaval”. The subquery
in the above FROM clause creates an intermediate
relation, whose schema is shown in Table 1. The
selection with certain conditions can then be car-
ried out on this intermediate relation. In effect, such
a relation is a virtual result because it can be opti-
mized in terms of projection items and selection con-
ditions during the implementation process.

This FROM clause can be described in geo-relational
algebra [13] as
region university product
extend [contval: CONTAINS(region.GEO,
university. GEO), areaval:
AREA(university. GEO)]
select [-]
project [-]

The “extend” operation above is to add new at-
tributes to the Cartesian product of region and uni-
versity.

The syntax of GeoSQL is based on the conventional
SQL, whose basic form is

SELECT <select-clause>

FROM <from-clause>

WHERE <where-clause>

Since only the FROM clause is different from that
in the conventional SQL, its BNF form is described
below:
<from-clause> :: = <relations> | <nested SQL>
<relations> :: = relation (, <relations>}
<nested SQL> :: = SELECT <sub-select clause>
FROM <relations>
<sub-select clause> :: = *, <spatially derived at-
tributes>
<spatially derived attributes> :: = <spatial op-
erators> AS <attribute name> {, <spatially de-
rived attributes> }
<spatial operators> :: = <unary spatial opera
tors> | <binary geometric operators>
| <binary topological operators> | <binary
construction operators>

Conceptually, the subquery in the FROM clause of
GeoSQL is just seen as an intermediate relation,
which includes new derived attributes representing
the spatial operation results. The derived attributes
are taken as the same as those in the source rela-
tions, and thus can be easily applied as constraints
in the WHERE clause, and referenced in the main
SELECT clause for further statistical analysis or
graphical display.

IV. QUERY EXAMPLES

A set of database schemas related to Hong Kong
region has been defined in Section II. The following
gives a group of examples to illustrate how spatial

queries are represented by GeoSQL.

Example 1, Display the commercial landuse in

Hong Kong.
SELECT GEO
FROM landuse

WHERE type = ‘commercial’
The GEO attribute occurring in the SELECT clause
is to display the selected features in a map.

Example 2. Find the residences less than 2KM
away from the Hong Kong Polytechnic University
(HKPU), and show the distance.

Table 1. The virtual schema of the above FROM clause

Attributes of region (r)

Attributes of university(u)

New attributes

r. T T. I. u. u.

1D name GEO | 1D

population

name

u. u. contval | areaval

GEO

studentnum
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SELECT b.name, distval
FROM
(SELECT *, DISTANCE(u.GEO, b.GEO) AS
distval
FROM university AS u, building ASb)
WHERE u.name = ‘HKPU’ and b.type = ‘resi
dence’ and distval <=2

The attribute “distval” derived in the FROM clause
enables it to be applied in both the SELECT and
WHERE clauses.

Example 3. Find the universities with more than
10,000 students, and indicate they are inside or out-
side the Kowloon region in Hong Kong.
SELECT u.name, contval
FROM
(SELECT *, CONTAINS(r.GEO, u.GEO) AS
contval
FROM region AS r, university AS u)
WHERE r.name = ‘Kowloon’ and u.studentnum
> 10,000

The derived attribute “contval” occurring in the
SELECT clause shows a Boolean value indicating a
selected university is inside or outside the specified
region.

Example 4. Display the built-up area in Kowloon
and New Territories, and sum the area.
SELECT IGEO, sum(areaval)
FROM
(SELECT *, INTERSECTION(rg.GEO,
Iu.GEO) AS IGEO, AREA(IGEO) AS
areaval
FROM region AS rg, landuse AS lu)
WHERE rg.name = ‘Kowloon’ or rg.name = ‘New
Territories’ and lu.type = ‘built-up’

Since landuse parcels and the regions may overlap,
an intersection operation is required. Its result is
specified by the spatial attribute “IGEO”.

Example 5. Display the residences in Kowloon re-
gion that are nearer to HKPU than other universi-
ties.
SELECT b.GEO
FROM
(SELECT *, VORONOI(u.GEO) AS VGEO,
INTERSECTION(VGEO, r.GEO) AS
IGEO CONTAINS(IGEO, b.GEO) AS
contval
FROM region AS r, building AS b, university
AS u)

WHERE r.name = ‘Kowloon’ and b.type = ‘resi
dence’ and u.name = ‘HKPU’ and
contval = TRUE

Voronoi operation, whose result is specified by the
spatial attribute “VGEO”, can meet the requirement
of “nearer” function.

Example 6. Which are the roads crossing Kowloon
region such that the total distance is between 30
KM and 50 KM?

SELECT rd.name, rd.GEO, lval

FROM
(SELECT *, INTERSECTION(rg.GEO,
rd.GEO) AS IGEO,
LENGTH(IGEO) AS lval

FROM region AS rg, road AS rd)
WHERE rg.name = ‘Kowloon’
GROUP BY rd.name
HAVING sum(lval) > 30 and sum(lval) < 50

This query shows that the result of spatial opera-
tion can also be applied to other clauses like HAV-
ING clause besides the SELECT and WHERE

clauses.

V. INTERFACE DESIGN

Although GeoSQL, an extended SQL, belongs to the
textual language that is often considered incompat-
ible with the visual language, the advantages of vi-
sual query languages such as intuitiveness and easi-
ness [3, 19] can still be introduced in the interface
design of GeoSQL to facilitate text input and reduc-
ing syntactic errors. In particular, with the devel-
opment of windows programming, various visual
constructs such as icons, ListBoxes and ComboBoxes
can be employed in building such a user interface
(Figure 2).

The interface is composed of five windows: (1) the
text window, (2) the control window, (3) the
ComboBoxes window, (4) the icons window, and
(5)the settings window.

The text window is where the user enters the
GeoSQL text following the SELECT ... FROM (SE-
LECT - FROM) ... WHERE block. The control win-
dow contains four command buttons. The execute
button passes the GeoSQL text to the implementa-
tion program. After execution, the map and attribute
table are popped up to show the query result. The
verify button checks the text with GeoSQL gram-
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Figure 2. Window layout of GeoSQL

mar. If there is any mistake, a message is shown in
a temporary pop-up window. The clear button clears
the text window, and causes the already selected
part of spatial objects to disappear in both the map
and attribute display windows.

The ComboBoxes window contains three
ComboBoxes. The “tables” stores both spatial and
non-spatial tables. Once an item of the table
ComboBox is selected, its corresponding fields will
be added to the fields ComboBox. If two or more
tables are selected, the field name will be in the form
of table_name.attribute_name.

The SQL Special ComboBox lists all the predicates
and operators in standard SQL. If any item in the
above four ComboBoxes is selected, its correspond-
ing text expression will occur in where the cursor
locates in the text window so that the user input by
keyboard is saved and the likely syntactical errors
are reduced (Figure 3).

The icons window lists spatial operators in GeoSQL.
The item in this ListBox differs from the ordinary
ListBox in that it can combine an icon with its tex-
tual description. The ListBox is scrollable so that
the user can select all the icons. It is apparent that
the icons window and the ComboBoxes window are

.

used together to assist the entry of GeoSQL text.

The settings window sets the graphical output of
the query with colors, patterns, linetypes or sym-
bols, which are realized by the four ComboBoxes
respectively. The patterns for spatial data output
are shown in Figure 3.

VI. AN IMPLEMENTATION

In our prototype system, GeoSQL is implemented
using Oracle, Open Database Connectivity (ODBC)
and Visual C** (VC). The user interface is pro-
grammed in Visual C** language (VC). The spatial
data are stored in the Binary Large Object Block
(BLOB) item in Oracle database, which are accessed
through the ODBC embedded in VC programs.

After checking syntactic errors in the query text and
optimization, the query processor including a spa-
tial ODBC executes spatial operators and yields
results. The spatial ODBC is composed of ODBC
Application Program Interfaces (API) and APIs for
implementing spatial operators. The whole imple-
mentation process corresponding to the “execute”
command in the user interface is shown in Figure
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Figure 3. The assistance of visual constructs for GeoSQL text entry and the settings for
graphical output

4. Using such a method, the example 4 in Section
IV is implemented and the result is shown in Fig-
ure 5.

VII. CONCLUSIONS

This paper describes a different approach to design-

Spatial
User Database

Interface
1 Load

Spatial
ODBC

'

[——
Result
(Map & Table
| DR ——

Query Processor

Parser &
Optimizer

GeoSQL
Query Text

Figure 4. An implementation of GeoSQL

ing an extended SQL in terms of the conventional
spatial query and implementation process. By in-
corporating spatial operators in the FROM clause
via a subquery, GeoSQL is well adapted to the con-
ventional SQL design principles. More importantly,
it becomes possible to apply the results of spatial
operations in the SELECT, WHERE and HAVING
clauses. Because the result of a spatial operation in
GeoSQL is treated as a derived attribute, the fur-
ther conditions such as temporality (e.g., valid-time)
and fuzziness (e.g. “very far” and “overlap signifi-
cantly”) can be acted on it. In this sense, GeoSQL
holds promise in expressing the spatio-temporal and
fuzzy queries.

The interface design of GeoSQL introduces a set of
visual constructs, which aid the entry of query text
and reduce the possible syntactical errors. Such an
approach overcomes the problems of previous ex-
tended SQLs, which compose a query only by pure
text input.

The implementation of GeoSQL is a non-trivial task.
Currently only part of the spatial operators can be
implemented. Since SDE is now available in our
laboratory, the spatial operators are to be realized




by it. The connection of SDE with our programs still
needs to be done. In addition, more attention is also
needed to the optimization of the language during
its implementation.
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Abstract

Most road network extraction algorithms developed are based on linear analysis methods. These methods
involve search of edges through edge filtering, morphological filtering, or gradient modelling. As image resolution
increases from 10-30 m to 0.5-2 m, road networks will appear to be narrow areas rather than thin lines. This
becomes a challenge for traditional linear analysis methods based on mask operations but creates an opportunity
for classification based methods. We experimented with an advanced linear analysis, gradient direction profile
analysis, and a few classification algorithms including a maximum likelihood classification, clustering and a
contextual classifier for road network extraction using airborne digital camera data acquired over Livermore,
California with approximately 1.6 m spatial resolution.

Results indicate that both the linear extraction and image clustering algorithms worked reasonably well. The
linear extraction method requires some preprocessing such as filtering of the original image. Best road network
results have been obtained by applying the linear extraction algorithm to a morphologically filtered image that
was generated by combining the near infrared (NIR) and red (R) image bands through NIR/R+NIR. With this
method, the correctly extracted road pixels account for 78.7% of the total road pixels obtained from image
interpretation with field verification. The image clustering method resulted in 74.5% correctly extracted road
pixels. The contextual classification resulted in relatively noise-free road networks in new residential areas but
omitted some roads at older residential areas. When experimenting with the images resampled at approximately
3 m and 5 m resolution, the best overall accuracies for road extraction decreased to 74.6% and 61.6%, respectively.
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I. INTRODUCTION

Road network changes constantly at many rural-
urban fringe areas due to urban expansion. Urban
planners and decision makers on land use
development often have obsolete land use
information because operational mapping methods
based on manual interpretation of aerial
photographs usually take a year or two to complete

from the time of aerial photography. Research
efforts have been made to develop computer analysis
algorithms for road network extraction (e.g., Wang
et al., 1992; Gruen and Li, 1995; Wang et al., 1996)
and land-use mapping (e.g., Gong and Howarth,
1992) from satellite images. On 10-30 m spatial
resolution satellite images, roads are linear features
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represented by valleys or ridges of brightness. Wang
and Liu (1994) grouped 4 types of line extraction
methods that could be applied to road network
extraction. They are (1) gradient operator and mask
convolution method, (2) gradient direction profile
analysis (GDPA) method, (3) mathematical
morphology analysis method, and (4) knowledge-
based method. Because the contrast between a road
and the image background varies both spatially and
spectrally, the use of multispectral data helps reduce
road ambiguity (Wang and Liu, 1994).

Among various satellite and airborne sensing
technologies, low-cost high spatial resolution digital
CCD (Charge-Coupled Device) cameras are
developing rapidly. The interest in multispectral
imaging with digital CCD cameras has been
increasing (King, 1995). High precision
georeferencing techniques are available through
integrating GPS (global positioning systems) and
INS (inertial navigation systems) with digital
photography (e.g., Schwarz et al., 1993). It is now
possible to have high geometric and radiometric
quality digital camera images on airborne platforms
with spatial resolutions at the sub-meter level. In
addition, 1-4 m resolution satellite imagery will soon
become available (Fritz, 1996) and high spatial
resolution digital image can be obtained by scanning
aerial photographs. In a study of road networks
extraction from scanned color-infrared films from
aerial photography, Benjamin and Gaydos (1990)
claim that 3 m spatial resolution is most suitable
for road network extraction in Cupertino, California.
They applied clustering and editing instead of the
more sophisticated line extraction algorithms to
scanned data resampled to different spatial
resolution (1-5 m). Since most roads in urban areas
are wider than 5 m, road networks become narrow
areas rather than brightness valleys or ridges on
images with pixel sizes smaller than 5 m by 5 m. At
a spatial resolution better than 5 m, it is possible to
extract road network with classification methods.

Our questions are:

* how well can traditional linear extraction
algorithms perform when applied to those
high spatial resolution images?

* to what extent, can classification methods be
used for road network extraction purposes?

* how can methods in the two different
paradigms be used to complement each other
for improved road network extraction and
land use classification?

This paper presents some of our efforts toward

answering the first two questions. The objective was
to compare classification methods with line
extraction algorithms for road network extraction
from digital camera images resampled at different
spatial resolutions. A supervised per-pixel
classification, a clustering, and a cover-frequency
based contextual classification method were applied
to classify an airborne digital camera image. A few
road cover types were included in each classification.
A gradient direction profile analysis algorithm was
also applied to the same image. Road extraction
results are presented and discussed.

II. STUDY SITE AND DATA

The study site is located on the east border (121°43'
W, 87°41' E) of City of Livermore, California (Figure
1). The 1:24,000 USGS topographic map was last
updated in 1981. Since then, new residential areas
and road networks have been built. On June 30,
1995, an imaging system consisting of 4 Kodak DCS-
200 cameras was used on board of an aircraft to
acquire multispectral images over the study area.
The four cameras simultaneously acquired images
at 450 nm, 550 nm, 650 nm, and 850 nm,
respectively, with a band width of 80 nm. The single-
band images from individual cameras were then
geometrically corrected and resampled to form a
multispectral data set. Part of the red band image
is shown in Figure 2. The spatial resolution is
approximately 1.6 m.

Roads in the study area are mostly asphalt paved.
Due to the fact that pavement ages are different,
the asphalt road surface looks different in
brightness. Older pavements appear brighter than
the background among the visible bands but darker
in the near-infrared band. Sidewalks are the
brightest in the green and red bands of the image.
There are also unpaved roads in the non-irrigated
grass land in the study area. Grass lands in the
build-up areas are usually irrigated.

III. ROAD EXTRACTION METHODS AND
ACCURACY ASSESSMENT

Road network extraction methods generally involve
five steps: image preprocessing, obtaining initial
road network, noise removal, thinning, and pruning
(Figure 3). The purpose of image preprocessing is
to enhance road network features for subsequent
analysis. This includes spatial filtering such as the
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Figure 1. 1981 USGS 1:24,000 topographic map
of the study area (note: presented map sacle may

not be 1:24,000)

use of a median filter to preserve edges and remove
speckle noise, morphological filtering, band ratioing
and linear transformation such as the use of
principal component analysis to enhance linear
features in the original image (Jensen, 1996).
Morphological filtering is usually conducted on
binary images (Wang et al., 1996; Destival, 1986;
Lee et al., 1987). We undertook grey-level dilation
filtering to the original image. It is essentially an
operation in search of maximum from a local
neighborhood defined by the structuring element
(Pratt, 1991; Sternberg, 1986). Moving a 3 X 3
kernel over a grey-level image, we assign the
maximum grey-level value to the pixel at the kernel
center. This is equivalent to a special version of the
dilation filtering using a 3 X 3 structuring element
with all its kernel values being 1. Noise removal is
to remove from the initial road networks relatively
small patches of pixels that have been identified as
road segments. Pixel patches smaller than a certain
size are removed from the initial road network
image. Thinning reduces the detected road network
from a few pixels wide to one pixel in width. Pruning
removes short-branches of dead-end roads according
to their lengths.

Gradient Direction Profile Analysis

The GDPA algorithm used in Wang et al. (1992) was

Figure 2. Digital camera image acquired over Livermore, California on June 30, 1995. (a) Red band, and

(b) Near infrared band.
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Figure 3. Procedures used in this study.

selected for use in this study. This algorithm first
finds the greatest gradient direction for each pixel
using the brightness values in a 3 by 3 neighborhood.
A pixel is considered as a candidate road pixel if its
greatest gradient exceeds a limit, T, specified by
the analyst. The algorithm then searches among
the candidate road pixels for pixels at ridge tops or
valley bottoms of grey levels by modeling grey level
profiles along the greatest gradient direction
centered at each candidate pixel. The modeling is
achieved through polynomial curve fitting along the
gradient direction profile. The grey-level ridge top
or valley-bottom positions are found through profile
derivative and curvature analysis. The length of a
profile, L, is specified by the analyst and the
curvature of the polynomial function must be greater
than a specified value, T,. An initial road network
is extracted from an image by adjusting the three
parameters, T,, L and T,.

Details on GDPA is found in Wang et al. (1992).
When applied to Landsat Thematic Mapper (TM)
and SPOT multispectral and panchromatic data, the
GDPA algorithm produced best road network results
using visible spectral bands such as the green or

red bands (Wang et al., 1992; Wang and Liu, 1994).
This algorithm has also been successfully applied
to extract various linear features from scanned
topographic maps (Wang and Zhang, 1996).

Image Classification and Clustering

To classify roads from the digital camera image, we
employed a clustering algorithm, a supervised
maximum likelihood classifier and a cover-frequency
based contextual classifier. The clustering algorithm
is ISODATA (iterative self organizing data analysis
technique) (Duda and Hart, 1974). The cover-
frequency based contextual classifier is found in
Gong and Howarth (1992). It first converts the
original image to a land-cover map using a regular
per-pixel maximum likelihood classification (MLC)
algorithm, or a grey-level vector reduced image with
a grey-level vector-reduction algorithm, or a cluster
map through clustering. The algorithm then
extracts frequencies of land cover, cluster, or grey-
level vector from a neighborhood of a pixel and uses
the frequencies in classification of land uses or
diserimination of road types for that pixel. The size
of the pixel neighborhood is specified by the analyst.
The contextual classification requires supervised
training to determine the frequencies for each class.
The same training set was used for both the
maximum likelihood classification and the
contextual classification.

We used 8 classes in the supervised classification.
They include four types of road covers according to
different road surface colors and materials, new
asphalt, older asphalt, concrete and railroad. The
other 4 cover types are residential, industrial, well
irrigated grass land and dry grass land. We selected
training areas for the 8 land-use classes and used
the maximum likelihood classifier and the
contextual classifier to classify the imaged area.

Image Resampling

All image resampling methods can be achieved
through image convolution. To resample the 1.6 m
resolution data to coarser resolutions, one may use
image averaging, nearest neighbor, bilinear or cubic
convolution resampling methods (Shlien, 1979).
These different methods can be realized through
different design of weighting factors. For example,
with image averaging a convolution kernel with
equal weights is usually employed (Benjamin and
Gaydos, 1990; Pratt, 1991). With nearest neighbor
a unit weight is applied to the pixel closest to the

~
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newly transformed pixel location while a triangular
function is used to determine the weights for the
two pixels closest to the newly transformed pixel
location along the row and column direction
respectively.

In this study, we compared the four different image
resampling methods. As expected image averaging
had the greatest effects in blurring the edges or
linear features as image resolution degrades. Edges
and linear features were better preserved in the
resampled images generated by the remaining three
resampling methods and those resampled images
looked very similar. Therefore, we tested the linear
extraction algorithms using the images resampled
to 3 m and 5 m resolutions with the nearest neighbor
method. We did not apply classification methods to
the resampled images because as discussed in the
introduction images with coarser spatial resolution
would be less useful for road network classification.

Accuracy Assessment

In order to compare the performances among the
various road network extraction algorithms, we
conducted field study and manually traced the road
networks in the image. The manually traced road
networks were used as the truth image (Figure 3).
Three measures can be calculated for the
quantitative comparison (Wang and Liu, 1994).

Let N_ be the number of correctly extracted road
pixels; N, be the number of true road pixels; and
N, be the total number of extracted road pixels:

overall accuracy =N/ N,

commission error = (N, -N,_) / N,

omission error=1-N_/ N,

The overall accuracy is the fraction of pixels correctly
extracted as roads. The commission error is the
number of pixels incorrectly extracted as road pixels
divided by the number of true road pixels. The
omission error is one minus the overall accuracy.
Since it is not independent, we will only report the
overall accuracy and commission error. Obviously
a smaller number is better with the commission
error and a larger number is better with the overall
accuracy.

IV. RESULTS

We applied the GDPA algorithm to each band of the
original image. Among the visible bands, the road

F

is relatively brighter than the background
vegetation. We used a ridge-searching algorithm.
However, the sidewalks are readily observable and
are the brightest in the scene. Therefore, the road
networks extracted from the visible bands are mostly
sidewalks and are far from perfect. In the near
infrared band, road networks and house roofs are
the darkest. Since the roads are a few pixels wide,
we applied grey-level dilation filtering to the original
image using a 3 X 3 structuring element for 5 times
(Pratt, 1991; Sternberg, 1986). This filtering
expanded bright component in the image such as
vegetation while shrank the dark components such
as the road and the house roofs. We then applied
the GDPA algorithm to the filtered image by
searching for valleys (Td=3.0, L=3, Tk=5.0). The
road network result has been considerably improved.
However, a lot of house roofs have been extracted
as roads and they are too big to be removed using
the noise removal method. The final road network
extraction results after thinning and pruning are
shown in Figure 4. Similar results have been
achieved by applying the GDPA algorithm to the
second principal component image obtained from the
original 4 bands.

The best result with the GDPA algorithm has been
achieved using an image that combines the ratio
between the near infrared and red band with the

Figure 4. Final road networks obtained using
GDPA from the NIR band.
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Figure 5. The image obtained through NIR R+NIR.

near infrared band, [band 4/band 3] + band 4 (Figure
5). The newly generated image suppressed the
shade and shadow in the original image through
image ratioing, while the brightness of the
vegetation portion of the image was enhanced. We
then applied dilation filtering to the band
combination image for 3 iterations (Figure 6). The
initial road network was extracted from the dilated
image (Td=1.0, L=5, Tk=3.0). The final road
extraction result is shown in Figure 7.

With the image classification approaches, no
preprocessing was applied to the original images.
The four bands of image were clustered using
ISODATA resulting in 49 clusters. After a cluster
by cluster examination, we selected those clusters
corresponding to road networks. All road network
clusters were merged to form an initial road network
map, which was further processed by noise removal,
thinning and pruning, and resulted in a final road
map (Figure 8). Supervised MLC classification was
also performed on the original four bands. Similarly,
noise removal, thinning and pruning were applied
to produce a final road map. The final road network
results obtained from MLC and from the clustering
algorithm are similar. The clustering algorithm
picked up more road details, particularly the rail
roads, than the MLC method. It also included more
non-road artifacts in the final result.

Figure 6. The image after 3 iterations of dilation
filtering from the image shown in figure 5.

The cluster map was also used as the basis for the
contextual classification. Classified road results
were used as the initial road networks for
subsequent noise removal, thinning and pruning.
The final road network results obtained from the
contextual classification are shown in Figure 9. We
used a 9 by 9 pixel neighborhood size to generate
cover frequencies in the contextual classification.
We did not attempt to find an optimal window size
for the classification. Generally, a large window size
would remove more road details particularly when
the road is relatively narrow. While a small window
size would results in more unwanted details. At
the relatively new residential area, the contextual
classifier resulted in the cleanest road network.
However, like the MLC results, the algorithm did
not pick up roads on the upper left corner of the
image. The roads are within the oldest residential
area at that particular section of the image where
roads are narrower than the newer residential
sections. Some trees cover part of the road network
causing the difficulties for the contextual
classification methods. The supervised MLC method
and the contextual classification methods may also
be sensitive to training sample selection.

Table 1 lists some of the accuracy assessment
results. With the 1.6 m resolution image, the best
overall accuracy, 78.7%, is obtained by the GDPA
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Figure 7. Final road networks obtained using
GDPA from figure 5.

method from the image specially enhanced (b4 + b4/
b3). The second best is achieved by the clustering
method (74.5%). However, both methods have
relatively high commission errors. The lowest
overall accuracy is from the contextual classification
results but the commission error is the lowest.

For the 3 m and 5 m resolution images, we conducted
similar experiments as for the 1.6 m resolution data
using the GDPA method. For each resolution, better
accuracies have been achieved with the band 4 image
and the specially enhanced image by taking the sum
of band 4 and the ratio between band 4 and band 3.
These were obtained from the preprocessed images
with only 1 iteration of grey-level dilation. With
the 3 m resolution, we obtained better overall
accuracy and smaller commission error from the
band 4 image in comparison with the 1.6 m
resolution data. An overall accuracy of 74.6% has
been achieved with the specially enhanced image.
The commission error (0.832) from this image is
smaller than that (0.984) obtained from the 1.6 m
image with the same enhancement. When the
resolution decreases to 5 m, the overall road network
extraction accuracies are considerably lower.

Figure 8. Road networks obtained from clustering-
based method.

V. DISCUSSION AND CONCLUSIONS

With the gradient direction profile analysis
algorithm, previous studies using 10 - 30 m
resolution Landsat TM or SPOT images indicated
that visible spectral bands are more effective than
the near infrared bands for the purpose of road
network extraction . As the spatial resolution of
digital imagery improves to 1 - 3 m, road networks
are no longer lines of one pixel in width but narrow
areas of several pixels wide. This makes it harder
to directly apply line extraction algorithms to high
spatial resolution images. In order to effectively use
line extraction algorithms, it is necessary to
preprocess the original image. Due to their spectral
similarity with road networks, house roofs and drive
ways are the primary disturbing factors to road
network extraction. It would be desirable to
completely remove the house roofs while keeping
the road network at narrow widths. We found that
a morphological filtering based on a dilation process
applied to the near infrared band can accomplish
this to a large extent. The visible spectral bands
may not be the most effective bands for road network
detection. The near infrared band exhibits the
greatest contrast between road networks and their
background. The best result using the GDPA
method was achieved using an image produced by
summing up the near infrared image and the ratio
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Figure 9. Road networks obtained from the
contextual classification method.

between the near infrared and the red band.

We had expected that better accuracies might be
obtained by line extraction algorithms such as the
GDPA method if the original high spatial resolution
of the data was degraded. This expectation was not
met in our experiments with 3 m and 5 m resolution
images resampled from the 1.6 m resolution data.
The best overall accuracy achieved with the 1.6 m
data is only 4.1% higher than that from the 3 m
data, while the commission error is also higher. We
consider the best road network extraction results
are comparable with the 1.6 m and the 3 m
resolution data. However, the best overall accuracy
obtained with the 5 m data drops considerably in
comparison with those obtained from the 1.6 m and
3 m data. For similar types of landscapes, it seems
to us that the procedure developed for the GDPA
method would perform consistently well if image
resolution is better than 1.6 m. If the resolution is
finer than 1.6 m, all one needs to do is to apply the
morphological dilation for a few more times. In
conclusion, for similar types of landscapes the GDPA
in combination with the preprocessing methods
developed in this research works well for images
with resolutions better than 3 m. For road network
extraction 3 m resolution images may be more
desirable from a computational point of view than
finer resolutions because the image file is smaller.

Table 1. Performance evaluation of different road

network extraction results

Images Overall accuracy(%) Commission error

band4
clustering
contextual
MLC
b4+b4/b3
band4 (3m)
b4+b4/b3 (3m)
band4 (5m)
b4+b4/b3 (5m)

59.8
74.5
49.5
68.4
78.7
66.0
74.6
53.5
61.6

1.010
0.845
0.476
0.659
0.984
0.951
0.832
0.882
0.693

With the classification based approaches, road
networks can be obtained reasonably well,
particularly with the clustering method. The
variability among different road surfaces makes it
impossible to treat road as a single class in image
classification. Training must be carefully done if
supervised classification is used. A large number of
clusters is needed if clustering is used to extract road
networks. With the cover-frequency based
contextual classification algorithm, the most noise-
free road networks are obtainable for relatively new
residential areas. It works less effectively in older
residential areas where trees block the visibility of

road surfaces.

To help understand the performance of different road
network extraction methods, the study area was
purposely selected not to be as complicated as many
old built-up areas could be. Old areas with high
density of tree coverage present a problem to all road
network extraction approaches. As an important
component on large scale urban land use maps, road
networks also have the potential in improving
classification accuracies. It is worthwhile to explore
the complementary roles that classification and
traditional line extraction methods could play for
improving both the road network extraction and

image classification results.

The procedure described here may not work well
for non-residential areas as can be seen from the
industrial area in the image. The preprocessing
method works well only when there are vegetation
surrounding houses in relatively newer suburban
areas. The morphological dilation procedure will
not work well in areas where trees covering road
surfaces and leaving the road networks to be imaged
in different widths. For high resolution image data,
image preprocessing is necessary and different

—
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procedures are needed for different areas.
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I. INTRODUCTION

Increasing public and political concern for proper
environmental assessment and management, land-
use conflicts, the issues surrounding ecologically
sustainable development and biodiversity are result-
ing in a demand for high quality data on Australia’s
natural resources.

Due to the diversity of natural resources informa-
tion, the metadata required to describe these re-
sources are equally diverse. Over time an array of
metadata formats have evolved which enable vari-
ous organisations, agencies, academic, community
or private industry to tailor metadata to specific
needs. In most cases, the capture of metadata is
easily and more readily achieved at the highest level,
simply because summaries of datasets require less
description and more general, while at lower levels,
additional information is recorded. The development
of any metadata standards must recognise this com-
plex and multi-layer relationship and provide a fa-
cility to permit the capture of metadata at different
levels and at different times.

In order to achieve a better understanding towards
the complexity and rulti-layer relationship associ-
ated with the capture of metadata, it’s necessary to
have a brief description of the spatial data direc-
tory systems in Australia. Using this as a starting
point, metadata strategy for national, jurisdictional,
theme-based and custodian agency data directory
can be explored.

II. TERMINOLOGIES OFTEN USED IN AUS-
TRALIA

Metadata: refers generally to dataset descriptions
and is equivalent to ‘meta-information’ (which is
possibly a better term to use because ‘metadata’ is
commonly used in data management to refer to data
dictionaries).

The popularly used metadata is normally fea-
ture-based, cover-based, project-based and
dataset-based. There are also metadata about
hardware and software.

Directory: refers to a collection of descriptions of
datasets together with subject and spatial index-
ing. There are three types of directories most com-
monly seen in Australia:

National directory: directory managed by Com-
monwealth government of Australia and func-
tions as the repository of the master keyword
thesaurus and gazetteer of spatial objects. An
example of national data directory developed
at an early stage is: National Directory of Aus-
tralian Resources (NDAR), and ASDD at a
later stage by National Resource Information
Centre (NRIC)(1).

Jurisdictional directory: directory managed at
State/Territory level. Considerable efforts have
been undertaken in Queensland, Western Aus-
tralia, New South Wales, South Australia,
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Victoria to develop their spatial data directory.
For example, in August 1995 Department of
Land and Water Conservation(DLWC) in the
State of New South Wales published the first
NSW Natural Resources Data Directory.
This directory was published in CD-ROM/Disk
form for use on IBM PC computers and included
an easy to use graphical search capability.

Theme-based directory: directory developed by
theme-based organisations. For example, Aus-
tralian Coastal and Marine Directory (Blue
Pages), or Australian National Geoscience In-
formation System (NGIS)(2).

Custodian agency: an organization which has the
custodianships to take responsibility for collecting
and maintaining of the dataset.

ITII. NATIONAL CONTEXT

It is estimated by the Economic Studies and Strate-
gies Unit of Price Waterhouse ™ that for the period
1989-94 approximately $1 billion has been spent in
Australia on investment in geospatial data. This
investment produced benefits within the economy
in the order of $4.5 billion. The study also found
that this investment has saved users approximately
$5 billion.

The US Government have long recognized the man-
agement of geospatial data as an important national
issue and as early as April 1994 an Executive Or-
der was made by President Clinton on “Coordinat-
ing Geographic Data Acquisition and Access: The
National Spatial Data Infrastructure”.

In Australia there is a widespread support within
Government and industry for the development of
an Australian Spatial Data Infrastructure (ASDI)(3)
in order to support decision making, facilitate timely
access to and share reliable consistent geospatial
data by government agencies and community, and
maximize integration of datasets . Development of
the ASDI is being managed by the Australia New
Zealand Land Information Council (ANZLIC).

This emerging ADSI will comprise a distributed
network of databases, linked by common policies,
standards and protocols to ensure compatibility. It
will eventually become an information window to
Australia’s physical, natural and administrative
environment.

IV. EVOLVING ‘directory’ CONCEPT

An important component in this emerging ASDI is
the implementation of a “national directory system”
with a distributed network structure to help access
Commonwealth and State/Territory spatial data.

The concept of national directory is evolved from
‘central databanlk’, a facility first initiated by the
National Resource Information Centre in 1988
(NRIC, a branch of Bureau of Resource Sciences,
federal Department of Primary Industries and En-
ergy (DPIE)(4) ). By 1990, it is widely accepted that
‘national directories/indexes’ for land informa-
tion management are necessary to facilitate deci-
sion making. The original design for a national di-
rectory was for a single centralised system with
NRIC carrying out all the metadata collection and
maintenance, which later turned out to be a large
task far beyond the resources of NRIC.

Under the recognition that a dataset description is
best maintained by that dataset’s custodian, this led
to a concept of ‘node model’. Each State/Territory
directory would form a node with State/Territory
being responsible for the maintenance of the direc-
tory entries at that node. Ideally, these node direc-
tories would then be accessed from one or more user
interfaces. The node provides periodic updates to
the national directory, creating an accumulation of
all relevant information held at the node level —
thus forming a ‘distributed directory system’.

The optimum fully distributed system is currently
being evaluated by the ANZLIC Metadata Working
Group and is expected to be progressively imple-
mented from February 1998.

Prior to full implementation of a fully distributed
system, a process common software has been devel-
oped by NRIC to facilitate the transfer of dataset
descriptions between State/Territory installation
and the national centre. This is FINDAR direc-
tory software the prototype Australian Spa-
tial Data Directory (ASDD) system (Facility for
Interrogating the National Directory of Australia
Resources)(5). FINDAR prototype ASDD allows
metadata records from subordinate nodes, which
have been flagged as suitable for transfer to the
national node, to be uploaded to that node. The soft-
ware comprises three main components: tables of
attribute, keyword and spatial data for the direc-
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tory entries; a gazetteer of geographic entities for
spatial indexing and searching; and a thesaurus of
standard terms for subject indexing and searching.

In addition to the distributed directory system
model(NDAR ASDD), a number of high-level spa-
tial data directories have been developed at national,
jurisdictional level independent of each other, with
some of them theme-based. An example is the Aus-
tralia Land Information Group(AUSLIG) metadata
directory(6).

V. ANZLIC GUIDELINE ON CORE
METADATA ELEMENTS

A critical step towards the implementation of a na-
tional directory system for spatial data is the
development of “ANZLIC Metadata Guidelines
on Core Metadata Elements”(7). The Australia
and New Zealand Land Information Council
(ANZLIC), is the peak intergovernmental body re-
sponsible for spatial data management for Austra-
lia and New Zealand. It currently manages a Na-
tional Strategy for land and geographic information.
To support the adoption of the Guidelines ANZLIC
also produced and freely distributes a Microsoft
Access Metadata Entry Tool.

This is a guideline consistent with the Content Stan-
dards for Digital Geospatial Metadata developed by
US Federal Geographic Data Committee(FGDC),
and with the Australia New Zealand Standard on
Spatial Data Transfer AS/NZS 4270. However,
Australia’s approach for the mandatory metadata
items is deliberately less ambitious than what has
been attempted in the US. The US counterpart con-
sists of some 220 items (elements) which are in-
tended to describe digital geospatial datasets ad-
equately for all purposes, while in ANZLIC Guide-
lines, 31 core metadata items (grouped into 9 cat-
egories) are identified as generally common for all
types of data. (Table 1).

The International Standards Organization (ISO) has
a draft Metadata Standard developed through its
Geomatics Technical Committee ISO/TC 211 which
has been developed with input from FGDC, ANZLIC,
Dublin Core and other metadata guidelines. This
will have two levels, a “Cataloguing Metadata” level
similar to ANZLIC and Dublin Core and a complete
level which includes some 300 elements. It is ex-
pected that ANZLIC will adjust the ANZLIC core
elements to the ISO Level 1 when finalized.

At the national level, one of the natural resource
data directory which has adopted ANZLIC Metadata
Guidelines is the Prototype Australian Spatial Data
Directory (ASDD)(8) managed by National Resource
Information Centre (NRIC) on behalf of ANZLIC, a
prototype of the new version of national directory
system which consists of updated description of Key
Commonwealth and State/Territory datasets. It su-
persedes the former National Directory of Austra-
lian Resources (NDAR).

The optimum fully distributed system is currently
being evaluated by the ANZLIC Metadata Working
Group and is expected to be progressively imple-
mented from February 1998.

The national programs provide the framework for
any corresponding activities at State/Territory level.
In State of New South Wales, NSW Metadata work-
ing group was formed in March 1997 to take advan-
tage of national activities. The NSW Natural Re-
sources Data Directory data collection and conver-
sion to the ANZLIC Metadata Entry Tool is now
close to completion and the ANZLIC Tool has been
supplied for use in several key NSW natural re-
source agencies(9).

VI. ANZLIC ‘PAGES’ CONCEPT ADOPTED BY
DIFFERENT LEVELS OF NATURAL RE-
SOURCE AGENCIES AND INDUSTRY

In order to include additional meta-information
which is not included in the National Metadata Di-
rectory System, ANZLIC metadata has adopted a
‘Pages’ concept as the basis for a national metadata
framework, where more general information is re-
corded at the highest level (Page 0) and additional
information is recorded at lower levels (Page 1, Page
2). A conceptual indication of how the Pages Con-
cept is the foundation of the national directory sys-
tem is shown in Figure 1.

This ‘Pages’ concept has been adopted by the
RACAC (Resource and Conservation Assessment
Council) in the Regional Forest Agreements Project
(RFA) of NSW for documenting additional metadata
on datasets, software and hardware used by stake-
holders of the project.

Subsequent pages (i.e. Page 1, Page 2, etc.) provide
the opportunity for data custodian agencies at the
national, state, local government, academic, com-
munity or private industry levels to include addi-
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Table 1. Core Elements: A Summary

Category Element Comment
Dataset Title The ordinary name of the dataset.
Custodian The organisation responsible for the dataset.
Jurisdiction The state or country of the Custodian.
Description Abstract A short description of the contents of the dataset.
Search Word(s) Words likely to be used by a non expert to look for the dataset.
Geographic Extent A picklist of pre defined geographic extents such as map sheets, local
Name(s) government areas, catchments, that reasonably indicate the spatial
OR coverage of the dataset.
Geographic Extent ~ An alternate way of describing geographic extent if no pre-defined area
Polygon(s) is satisfactory.
Data Currency  Beginning date Earliest date of data in the dataset.
Ending date Last date of information in the dataset.
Dataset Status  Progress The status of the process of creation of the dataset.
Maintenance and Frequency of changes or additions made to the dataset.
Update Frequency
Access Stored Data Format The format or formats in which the dataset is stored by the custodian.
Available Format The formats in which the dataset is available, showing at least, whether
Type the dataset is available in digital or nondigital form.
Access Constraint  Any restrictions or legal prerequisites applying to the use of the dataset, eg.
licence.
Data Quality Lineage A brief history of the source and processing steps used to produce the dataset.
Positional Accuracy A brief assessment of the closeness of the location of spatial objects in the
dataset in relation to their true position on the Earth.
Attribute Accuracy A brief assessment of the reliability assigned to features in the dataset in
relation to their real world values.
Logical Consistency A brief assessment of the logical relationships between items in the dataset.
Completeness A brief assessment of the completeness of coverage, classification and verifi
cation,
Contact Contact Ordinary name of the organisation from which the dataset may be obtained.
Information Organisation
Contact Position The relevant position in the Contact Organisation.
Mail Address 1 Postal address of the Contact Position.
Mail Address 2 Aust and NZ: Optional extension of Mail Address 1.
Suburb or Place or ~ Suburb of the Mail Address.
Locality
State or Locality 2  Aust: State of Mail Address.
NZ: Optional extension for Locality.
Country Country of the Mail Address.
Postcode Aust:Postecode of the Mail Address. NZ: Optional postcode for mail sorting.
Telephone Telephone of the Contact Position.
Facsimile Facsimile of the Contact Position.
Electronic Mail Electronic Mail Address of the Contact Position.
Address
Metadata Date  Metadata Date Date that the metadata record for the dataset was created.
Additional Additional Reference to other directories or systems containing further information
Metadata Metadata about the dataset.
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Figure 1, The Pages Concept

tional information not required in Page 0. This ad-
ditional information may be in the form of sub-ele-
ments of specific Page 0 core metadata elements or
entirely new and unrelated metadata elements.
However, in order to ensure uniformity, it is sug-
gested that any new metadata elements should be
consistent where possible with corresponding
metadata elements in the FGDC Content Standards.

VIIL. FEATURE-BASED METADATA SYSTEM
AS BASIC META-INFORMATION

In order to retain corporate knowledge of the char-
acteristics and processing history of datasets that
an agency uses, the most detailed level of metadata
is needed to ensure the efficient management and
effective utilization of data within a custodian
agency.

A feature-based metadata system is developed
by the GIS Branch of the State Forests of NSW,
with ESRI Australia Pty Ltd providing consulting
services. The system is built on the top of Arc/Info
GIS software and maintained by State Forests of

NSW. The design of the metadata system is to tag
every arc in an Arc/Info coverage with a metadata-
id, which is stored in metadata table(.MDA). This
.MDA table is linked to arc attribute table(.AAT)
with metadata-id as common item. Therefore this
allows the attributes in the .MDA to appear to be
part of the .AAT. The tagging of arc with metadata-
id is carried out during the process of data capture
and literally built in the process of data capture,
making this a compulsory step in data collection.

With this metadata system to provide the detailed,
comprehensive information on data characteristics
and data processing history, metadata required for
higher level directory systems can be summarized
or rolled up from the feature-based system.

VIII. CONCLUSION

There is a close link between metadata standards
and the structure of spatial data directory system.
Metadata standards and directory management
software should be designed to provide flexibility in
describing datasets which exist in a wide range of
formats and in meeting the needs of different us-
ers. It should also facilitate the capture of metadata
at different levels and different times.

It is widely recognized that metadata is best col-
lected and maintained by custodian agency. Data
custodian is also at the best position to summarize
low level metadata (such as the feature-based
metadata) into higher levels, for example, cover-
based, project-based and dataset-based. These
higher level metadata can then be submitted to
nodal data directory. Here the items that are suit-
able for parent directory be tagged and uploaded
into data directory above. Through the transfer of
information towards higher levels, a summarisation
of information has been achieved. At the peak, na-
tional data directory holds an accumulation of
metadata stored at its subordinate directories and
duplication of data storage is avoided. It also leaves
the metadata maintenance to node/custodian, thus
facilitate timely update of national data directory.

The distributed data directory system endorsed by
ANZLIC is th= directory model that could facilitate
the flow and accumulation of metadata information.
Combining with directory management software as
interface, data summarisation, keyword indexing
and spatial searching can be automated.
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From ANZLIC experience, it is advisable to keep
compulsory metadata items to the generally com-
mon, basic items that are common for all types of
datasets. With the “Page” structure, additional
metadata information can be accommodated by add-
ing “pages” when more detailed information is re-
quired. The ‘Pages’ approach endorsed by ANZLIC
is an important step towards the forming of
metadata standards with flexibility as well as uni-
formity and consistency.

In order to ensure the speedy implementation of
metadata standards, metadata entry tools should
be produced by peak government organisations and
freely distributed to all the major government agen-
cies.

As stated in draft ASDI, the future trend is to de-
velop a distributed network of databases, linked by
common policies, standards and protocols to ensure
compatibility and timely update of spatial informa-
tion.

IX. HOW TO GET MORE INFORMATION
ABOUT METADATA ACTIVITIES IN AUSTRA-
LIA?

Here is a List of Useful Web Sites and Metadata
On-Line Directories (by the sequence they appear
in the text). The Environmental Resources Infor-
mation Network (ERIN) internet site supports a col-
lection of pointers to “standards” servers and is a
good starting point for surfing the internet for data
standards. Please check it up in reference (10).

(1) National Directory of Australian Resources
(NDAR) developed by National Resource Infor-
mation Centre(NRIC):
http://www.nric.gov.au/nric/data/
ndar_overview.html

(2) ANZLIC www sites of Related Interest supports
a collection of pointers to various jurisdictional,
and theme-based natural resources data direc-
tories:
http://www.anzlic.org.au/anz_site.htm

(3) Commonwealth Spatial Data Committee(CSDC),
Draft Commonwealth Position Paper on the Aus-
tralia Spatial Data Infrastructure(ASDI), Draft
4, 17 November 1997.
http:/www.auslig.gov.au/pipc/csde/sdid.htm

(4) Bureau of Resource Science (BRS):
http:/www.brs.gov.au

(5) Johnson, B.D., Shelley, E.P., Taylor, M.M., &
Callahan, S., 1991 — The FINDAR directory sys-
tem: a meta-model for metadata. In Medyckyj-
Scott, D, Newman, I, Ruggles, C, & Walker, D,
1991 (Eds) — Metadata in the Geosciences.
Group D Publications Ltd, Loughborough, UK.

(6) Australia Land Information Group(AUSLIG)
Metadata: http://www.auslig.gov.au/meta/
meta.htm

(7) ANZLIC Metadata Guidelines on Core
Metadata Elements from ANZLIC (Australia
New Zealand Land Information Council):
http://www.anzlic.org.auw/metaelem.htm
http://www.anzlic.org.aw/anz_sdts.htm
http://www.anzlic.org.aw/anzstrdd.htm

(8) Prototype Australian Spatial Data Directory
(ASDD), supersedes NDAR, currently being
populated with records which follow the ANZLIC
Core Metadata Guidelines, managed by National
Resource Information Centre(NRIC), supercedes
NDAR in reference (1):
http://www.nric.gov.au:80/nric/data/data.html
http:/purl.nla.gov.au/net/asdd

(9) Draft New South Wales Natural Resources
Metadata Management Strategy, 1997, NSW
Natural Resources Information Management
Steering Group (NRIMS) NSW Metadata Work-
ing Group.

(10) A collection of pointers to “standards” servers
from Environmental Resources Information
Network(ERIN):
http://www.environment.gov.au/gis/
gis_standards.html

(11) A discussion forum on ANZLIC Guideline: Core
Metadata Elements supported by ERIN:
Subscribe by sending an email containing the
message, “subscribe ozmeta-1", to
majordomo@erin.gov.au
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Abstract

In order to better manage large quantity of environmental and spatial information, US EPA has built up Spatial
Data Library Systems (ESDLS), Envirofacts and Spatial Data Clearinghouse. ESDLS is a repository for the
Agency’s new and legacy geospatial data holdings. It enables Agency access to its geospatial data in ARC/INFO
format, integrates these data in a standardized, framework. Environfacts was developed as an enterprise data
repository for Agency data systems. It is a relational database implemented in the Oracle Relational Database
Management System and contains seven EPA’s program system databases. Geospatial Data Clearinghouse
provides a pathway to find information about geospatial data used at EPA. Although ESDLS can be accessed
through several GIS applications, it is mainly for EPA internal uses. Meanwhile, Environfacts can be accessed
by the public through Internet. Spatial Data Clearinghouse currently provides public access to its metadata.
However, it is promised that public can access its geospatial data via the Internet in the future.
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