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Abstract

Global warming and climate changes can lead to the movement of plant species as they find their original habitats are no longer suitable
to their needs. It is often an urgent task to establish a mathematical model to catch up the trajectories of the endangered species to
effectively manage environmental protection under the inevitable biodiversity changes taking place. However, as it often happens
with the environmental data, within the study area, some areas are well sampled, while other areas are not sampled. Even the collected
data are often just species presence or categorical data. This makes very difficult to a spatial analysis, and impossible to do a kriging
prediction map. In this paper, we use the partial differential equation motivated regression (PDEMR) model, to model Protea species
in the population size of 1 to 10, in the Cape Floristic Region, from 1992 to 2002, in South Africa.
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I. INTRODUCTION

Global warming and climate changes are changing the
environment and therefore changing the distribution and
behaviour of the plant species. Plant species often move and
change their distributions as they find their original habitats
are no longer suitable to their needs. The question that
concerns us is: are the plant species distributions changing
and how? It is therefore important to establish a mathematical
model to catch up the movement and patterns of the
endangered species in order to effectively manage
environmental protection under the inevitable biodiversity
changes that are taking place.

In reality, when plant samples are collected, it is often done
with other important environmental and scientific purposes in
mind, and was not intended for spatial predictions in the first
place. Since the plant samples are not designed for spatial
predictions, the samples are not well spread over the study
area, and can not be used for spatial predictions, such as
kriging. Another problem is that quite often the data collected
are just species presence data or categorical data, and this
makes very difficult to model the plants, and impossible to do
a kriging prediction map.

In this paper, we will model the Protea species in the population
size of 1 to 10, in the Cape Floristic Region, from 1992 to 2002,
in South Africa. We are faced with two problems here: presence
data only, and incomplete sample data. To solve first problem,
we will use a simple technique in order to look at occurrence
counts or frequency distributions of the Protea. To solve
second problem, we will use the partial differential equation
motivated regression (PDEMR) model, to fill in missing

samples within the Cape Floristic Region. This paper will show
the detailed steps and workings of the PDEMR model and
how it helps in modelling plant distributions.

II. PROTEAS IN THE CAPE FLORISTIC REGION

The Cape Floristic Region is located at the southern tip of the
Africa, and it covers parts of Western and Eastern Cape
provinces of South Africa. It is home to some 9030 plant
species, and nearly 70% of which are found nowhere else.
Fynbos is the predominate ecosystem in the Cape Floristic
Region, and it is under serious threat (Freeth et al., 2007).

The Protea Atlas Project collected samples of Fynbos’s flowering
Proteas in the Cape Floristic Region, South Africa, from 1992 to
2002. These sample data provides valuable information on the
distribution and change in the Proteas. In this case, we are
focusing on the category of Proteas, which have the estimated
population size from 1 to 10, per sample site.

Figure 1 below shows the location of the Cape Floristic Region
within South Africa, and Figure 2 shows the locations of
Proteas occurrence of the population size of 1 to 10, in the
Cape Floristic Region, from 1992 to 2002.

As one can see from Figure 2, the sample locations are not
well spread, since its original purpose was spatial predictions,
but for scientific and biodiversity knowledge. The samples
tended to focus in certain areas, while other areas are entirely
un-sampled. This creates a problem for kriging predictions.
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Figure 1. The cape floristic region within south africa
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The Protea data are presence only data, and not numerical,
which creates another problem for spatial analysis.

III. FREQUENCY COUNTS OF THE OCCURRENCE
OF PROTEAS

To solve the problem of presence data only, this being a
categorical data issue, a simple technique of using frequency
counts is used. The Cape Floristic Region is divided into 243
grid cells, and within each cell, the presence of Protea species
is counted, and the resulting value is attached to each centroid
point of each cell. The centroid point is needed in order for
kriging prediction maps to be produced. See Figure 3.

In Figure 4, the pink color are 0 in value, it shows the cells that
does not have any frequency counts at all. In other words, the
pink point cells show the un-sampled locations within the
Cape Floristic Region. It is clear that a lot of the areas are
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Figure 2. The sample locations of proteas in the population size of 1-10, in the cape floristic region, 1992-2002
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Figure 3. The grid cell division of cape floristic region

un-sampled, and these locations vary from year to year.  Definition 1: A pair of equations:
In order for an accurate kriging prediction map to be

produced, the missing cells must be filled. This means that d( p)x d( p- 1)\_ d( p—2)x
the PDEMR model must be used in order to predict the un- =@ _1' , =" x,0 (a)
sampled cells. dr” d? dr”

) 1 = 1 )
IV. THE CONCEPT OF DEMR MODEL AND THE )7 &P (k)= ¢(F a? )(k)’hp—_z &),
COUPLING PRINCIPLE
In engineering theory, particularly, in modern control theory, x(k);Hj +6; k=23,0m ®)
itis often convenient to utilize a differential equation to describe
the dynamic law of a continuous system. However, the \
unknown parameter vector 6 associated with system ’ D
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Figure 4. The Sampled Frequency Counts of Proteas in the Population Size of 1-10, in the Cape Floristic Region, 1992-2002
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is called a p™-order univariate differential equation motivated
regression model, abbreviated as (p”-order univariate) DEMR
model. Eq. (la) is called the motivated differential equation
and Eq. (1b) is called the (first) coupled regression model,
where /1 is the grid size for the first difference A. As to the term
X(k) is the approximation to primitive function x(¢) at r=k.

If the observation on the system is at the first difference level,
denoted as AX={Ax(1),Ax(2),---,Ax(n) } where Ax(k)=x(k)-x(k-
1). Note that the relation between summation operator z and
difference operator A, define Akx(l) A x(1), then:
x(k) = ) (Ax(i) @)
i=1
It is often using:

1
§0k) = (k) + x(hk = 1] 3)

as a first approximation to x(f) at f = k. Finally, {g, k=2,3,~,n}
is the error terms of the coupled regression model in Eq. (1b)

paired in the above equation system Eq. (1). The nature of
errors in Eq. (1) will be discussed later. For a better
understanding, let us examine a simple example.

Example 2: Equation system:

. =0+ fx ®
- @)
Ax(k) =0+ (k) +e, k=23--n (b)

is the simplest first-order univariate DEMR model. Eq. (4b) is
called as the coupled regression (abbreviated as CREG) model
because its form strictly follows a “translation rule” based on
the form of the motivated differential equation. We call this
translation rule as the coupling principle in DEMR.

For an overall intuitive picture of DEMR model, we list the
components and the translation rule in terms of the coupling
principle in Table 1.

Table 1. Coupling rule in univariate first-order DEMR model

Term Motivated DE Coupled REG
Translation rule between MDE and CREG
Intrinsic feature Continuous Discrete
Independent variable k

1*-order derivative dx(r)/dt Ax(k) = x(k)-x(k-1)
p-order derivative d®x(r)/de Ax(k) = A™'x(k)-A""x(k-1)
Primitive function x(1) x(k)

Model formation de () = a + fx(t) Ax(k) = a+ pi(k) +&

dr

Parameter coupling

Parameter

(N0

(a,b)

Dynamics(Solution)

x(r) = |:.\'(O) - i}e/ﬂ + Z
B p

Fk+1) = .\~(1)—i e o=
b b

Filtering(Prediction)

dy(t)/dr =[o —

ARk +1) = &k +1) — 2(k)

Bdx(0)/ drle”

A fundamental note is made here that the original observations
are treated as the approximated derivatives of the dynamic law
x(t), however, after the rule finding, the modelling is still
required to return back to the derivative level because that is
the observational one.

V. PARTIAL DIFFERENTIAL EQUATION MODEL

It is often the case that a variable (or a group of variables, i.e.,
vector) under investigation relates to multi-factors and the
functional relationships are specified by a system of partial
equations. Similar to DEMR modelling cases, we may also
face the sparse data availability. Therefore, it is necessary to

investigate the partial differential equation (system) motivated
(multivariate) regression (abbreviated as PDMR) modelling.
As a necessary, let us review the partial differential equation
(system) theory.

A. A family of partial equation model

The family of partial differential equation system under
investigation takes its form:

9 _ f(zx)i=12

=—= sX)p1 =12, ,m

T 5)
;(._\‘0):;0
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where,
4] x|
2y )
= A=
(6)
Zp Ym
and
@ 0=( [, 9, £, 20, £, 0)" (N
B. A Linear Partial Equation System Model
A linear partial differential equation system takes its form:
oz .
— =A(X)z+Db(x),i=12,--,n
0ox;
i B ®)
z(x )=z

where,

A,' (x) = (a,"jk (;Y))::r')tr ©)

The solution to a partial differential equation system is not
necessary to exist. The following consistent theorem is a
necessary condition for a partial equation system to have a
solution.

Theorem 1: Frobenius (1877) Assume that functions f(z.x)
are continuously differentiable with respect to x and z
respectively in a domain G ¢ R" xR" . Then the equation
system has a solution for arbitrary initial data if and only if the
following consistency conditions are satisfied

; . of; Of;
aﬁ % i Z—Q—Féfi,Viij:l,Z,m,n
ox; 0z— 0Ox 0z~
In addition, the solution is unique on the domain where it is
defined. In the linear case, the solution is defined on the whole
domain D c R", where the coefficients and free terms are
defined, provided the domain is surface-simply connected.

(10)

Corollary 2: For a linear partial differential equation system,
the consistency conditions can be stated as:

0 0
AiAj +TA’. = A]A., +§Aj (a)
X j X;

0 0 (11)

. L

1

where i = j=1,2,---,n.

C. The consistency conditions for a bivariate PDE model

Let a bivariate PDE takes the form:

0

= = (x, )2+ Fi(x,y)
0x
3 (12)

=a,(x, )2+ Br(x,y)

o

Now let us investigate the formation of Eq. (12) satisfying the
Corollary to Forbenius Theorem. Note that:

A =a(x,y)

A; =a,(x, )

b, = B (x,y) (13
b =P,(x,y)

.\'i =X

X, =y

j
For condition (117):

9 ?
AA; +——A = A A +—— A,

ox; X;
0 14
LHS: o (x, y)a, (x, y) + a—al (x,y) (14)
)I
0
RHS : a, (x, y)a,(x, y) +;a2(.\', V)
which leads to condition: !
L a0 3) =2ty (5, 3) s
P 16 y) =220 (53 (15)
As to condition (11i7):
0 0
Ab.+—b =A.b+—Db,
L ox; I g =L
(16)

0
LHS: o, (x, y) 3, (x,y) + gﬂl(l‘, y)

0
RHS: a, (x, y) 8, (x, y) +gﬂ2(x, y)

which leads to a fairly complicated condition:
0
oy (x, y) f, (x, y) + gﬂl (%, y) = ay (%, Y) By (x, y) +

0
—p,(x 17
ax_ﬂz(\,}’) ( )

Combine Eq. (15) and Eq. (17) together, the consistency
conditions can be expressed by:

0
—a(x,y)=—a,(x,y)
) Oox

0
o, (x, Y) B, (x, y) + gﬂl (x, ) = oy (x, )i (x, y) + (18)

0
—pr(x,y)
ox
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VI. THE PDEMR MODEL FORMATION

Similar to DEMR model, PDEMR model is also constituted by
two components: motivated partial differential equation
(abbreviated as PDE) systems and coupled (multivariate)
regression model. Let us use the linear PDE motivated
regression for the basic definition.

Definition 1: Coupled equation system:

= A (x)z+b(x),i=12,-,m

ax; '
i _ 0
z(x') =z (19)
DY yz= A (xk))z(k) + b(x(k;)
where:
G
A.\'i(k,)_z. = Z('\‘l (kl ), R (kz )t i (kl ) A (km )=
2(x; (ky), xy (ky), ooy X (k= 1)y, x, (k) (20)
denotes the (first) partial difference of z(x,, x,, --- ,x,,) with

respect to exploratory variable x; at point (x,(k,), x,(k,), -,
’\‘i(ki)’ ’xm(km))'

VII. A PDEMR MODELLING OF PROTEA FREQUENCY
COUNT SPATIAL DISTRIBUTION

A. A bivariate partial differential equation for log-count

Bear in mind that we intend to develop a counting model
for filling those sites where the counts of a particular class
was recorded as zero, typically is in the design note for
observation and sampling data collection, however, was
not attended for some technical reasons. The count z is a
(integer) scalar function of coordinate (x, y) and thus it
may be appropriate to us the log-transformation, i.e.,
u(x, y)=In z(x, y). Note that:

du(x,y) 1 9z(x,y)

ox z(x,y)  ox
u(x, y) 1 9dz(x,y)

dy  axy) oy
To obtain the insight of bivariate PDE model, we start with a
bivariate partial differential equation system in the form of

Eq. (22):

1)

ou
> =) +205x+ 0,y
du
— =, toyx+205y

It is obvious that:

A(x,y)=o+205x+a,y
Aj(,\‘, y) =0, +ox+205y
/Bl ('\-7 V) = 0
Br(x,y)=0

Accordingly, a homogeneous equation system is obtained
and it is easy to check that the homogenous equation system
Eq. (22) satisfies the consistency conditions set up in Corollary
522,

(23)

The matrix form of Eq. (22) can be written as:

L} I
ox o 20, «
Xl 3 4l 24)
ou o, o 205
o v
or taking the transpose for both sides of Eq. (24),
o o
ou 0
[l —”J:[l x oyl 20« 25)
dx dy
oy 205
Let the parameter matrix be:
o o
L=|205 o (26)
o, 2o
the design matrix (a vector) is denoted as:
1
X=|x @7
)7
And the partial derivative vector is denoted as:
du
ou | ox
8_5_ au (28)
dy

Finally we have a matrix representation of the bivariate partial
equation system Eq. (22):

T
RS
dx

B. The divided difference and its application in
approximating partial derivatives

29)

The key step for PDEMR model setting is the translation from
partial derivatives into partial differences. It is often the case
that the observations are not equal-gap taken, but on the
contrary. In bivariate circumstances, the way for defining
difference for unequal-gapped data is even more complicated
than that in one-dimensional case. Therefore, we intend to
develop a scheme of the obtaining “best” partial difference
for approximating the corresponding partial derivatives.
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(i) Divided difference
Definition 1: Given a function f(x) on the interval [a,b]. Let
the sequence {x,, x,,,x;} with Vx; € [a,b] and x,<x; for any
i<j Then the quantity:

S = f(x)

i = Xi

A fA (30)
is called the (first) divided difference for function f(*) at x;.

(ii) Partial divided difference

Definition 2: Given a bivariate function w(x,y)on D c R>.
Let (x;,y;) € D, then:
WO,y Y;)
A.a\,‘w= = m (31)

! X i
is defined as a (first) partial difference of w(:,-) with respect to
exploratory variable x at (x;, y,). Similarly,
w(x:, y —-w(x;, Vi )
0 gy MO
"J Yi=Yja
is defined as the partial difference of w(:,") with respect to
exploratory variable y at (x;, y,).

(32)

(iii) Using directional derivative for least-square estimated
partial divided difference

Let D be a sub-space of a 2-dimensional space, RxR , any
point of D, denoted as M(x, y) corresponds to the value of a
scalar function s (x, y), if the position of M could be represented
by a vector r, then scalar function can be regarded as a function
of variable vector r, i.e., s =5 (r).

Definition 3: Let:
Os. Os
ad s=VsA—i+—j
& =Py 8yj (33)
be the gradient of scalar field s(x,y) at point (x,y). Let ! be a

unit directional vector with directional angular 6, and 6, such
that:

l| = cosz(Qx,) + cos2(0_\,) =1 (34)
Then:
%:l.glads :%COS(Q\_)#—%COS(G),) (35)

is called the directional derivative with respect to directional
vector [ at point (x, y).

Let k,(x,y)c D be a neighborhood of radius r, i.e., for any
(x,y;) €k, (x,y) the distances of (x;,¥;) from point

(6. 3) =0+ (y;=9) <7

However, unless the functional form of the scalar field is
available, then we can not obtain the accurate values of the
directional derivatives. However, for each direction,
(x,y) = (x;,¥;), an approximate directional derivative can

be calculated as:
o SCry)=s(x.y;)
o 2 +y-y;)?
Furthermore, the cosines of the directional angular are also
calculated as:

(36)

X=X
cos(8,) = — =
Ja—x)? (-, 3
@37
)7 —_ .\’J
cos(6,) =

Jo=x)? + (=3,
Therefore, the (x, y) = (x;, ¥y j) pair of point will generate an
equation:

A?s cos(d, )+ Ai),s cos(f,) =

al
In general, there will be k(k-1)/2 equations in total if there are
k points in k. (x, y) < D, which overspecify the two unknown
partial differences, A(\ and A(‘ at (v, y) respectively. As a matter
of fact, the partial differences will be least-square estimate.

—\ (x.5;)
0
“0) (39)

(x,y)

C. The coupled bivariate regression model

Once the partial differences, either direct divided estimate or
. " . ) C

the least-square estimate defined in B, A’ and A , are ready for

further analysis, let:

7] a
Ayu Ay u I x »n
0 0
A = Agu Ay u ¥ I x, ¥y
nx2 — : i nx3 =
ol 0
Acu A u L x, »,
L un sn (39)
r € €
ap
621 6'72
A3><Z: 2(13 a4 En><2 :
| oy 2as
€nl €n2

Then the coupled regression model in matrix form will be:

A=XA+E (40)
Finally, the bivariate PDEMR model for the log-count will be:

G &
ou Ou 1 x| /

oy 2o
A=XA+E

As to the error structure of the PDEMR formation in Eq. (42),
the error ¢; ~ N(fi,ciz),i =1,2,---,n; j=1,2 are assumed to be

independent normal random fuzzy variables. For details, see
Liu (2004,2007).
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Protea. Figure 5 shows the PDEMR model predicted frequency
VIII. PDEMR PREDICTED PROTEA FREQUENCY counts of Proteas in the population size of 1 to 10, in the Cape
COUNTS Floristic Region, from 1992 to 2002. The figures show a general
range of predicted values, but in fact the actual predicted values
Using the predicted results from the PDEMR model, the un-  are numerical, and have predicted the sample values of where
sampled cells are predicted with frequency counts of the  there were zero samples.
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Figure 5. The PDEMR model predicted frequency counts of proteas in the population size of 1-10,
in the cape floristic region, 1992-2002
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Finally, we can produce kriging prediction maps of the Proteas,
using the predicted results from the PDEMR model. Figure 6
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shows the distribution and patterns of frequency counts of
Proteas. One can see the changes in the density of occurrence
of the Proteas in the Cape Floristic Region over the 11 years.
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Figure 6. The kriging prediction maps of frequency counts of proteas in the population size of 1-10,
in the cape floristic region, 1992-2002
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One must recognise that this category of Proteas only has the
population size of 1 to 10, so that it is very sensitive to
environmental changes. Therefore, the Proteas between the
11 years have changed dramatically in frequency count and
spatial distribution patterns. It is however clear that in 1992
there were more high frequency count areas, and in 2002 there
were much less high frequency count areas. This could indicate
habitat fragmentation for the Protea species. The final map in
Figure 6 shows the difference between 1992 and 2002, one can
see that there has been some high magnitude negative
changes as shown by blue and green colours, and while the
positive changes covers a large area but the changes are
smaller in value as shown by the orange colour. This could
indicate that under the changing climatic conditions, the Protea
species is expanding its habitat, but only by a increase in
count, I to 13 over some areas. However, on the west coast,
large areas of Proteas are decreasing in numbers.

IX. CONCLUSION

In this paper, we solved two crucial problems with regard to
the environmental dataset, presence data only and incomplete
sample data. We used the partial differential equation
motivated regression (PDEMR) model, which merges the
partial differential equation theory, (statistical) linear model
theory and credibility measure theory together. The coupled
regression component in a PDEMR model is in nature a special
random fuzzy multivariate regression model. We developed a
bivariate model for prediction of the Protea species in the
population size of 1 to 10, in the Cape Floristic Region, 1992 to
2002, in South Africa. The model has produced very good
results, which helped to produce kriging prediction maps. The
spatial distribution and pattern are clear to see and understand
in the kriging maps.
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APPENDIX: THEORY OF RANDOM FUZZY VARIABLE

First we need to review the fuzzy credibility measure theory
foundation proposed by Liu (2004), and then state the concept
of random fuzzy variable. The theory of Liu (2004, 2007) is
different from that initiated by Zadeh (1965, 1978).

Let © be a nonempty set, and 29 the power set on ©. Each
element, letus say, A c @, A € 29, is called an event. A number
denoted as, Cr{A},0 < Cr{A}<1,is assigned to event A € 29,
which indicates the credibility grade with which event A e 29
occurs. Cr{A} satisfies following axioms given by Liu (2004):
Axiom 1: Cr{®}=I.

Axiom 2: Cr{-}is non-decreasing, i.e., whenever
A c B,Cr{A} < Cr{B}.

Axiom 3: Cr{-}is self-dual, i.e., forany Ae 2, Cr{A}+Cr{Ac}
=],

Axiom 4: Cr{U;A}A0.5=sup[Cr{A;}] for any{A;}with
Cr{A;}<0.5. t

Definition A.1: Liu (2004) Any set function Cr:2° —[0,1]

satisfies Axioms 1-4 is called a (\/, /\) -credibility measure (or
classical credibility measure). The triple (Q,29,Cr) is called the
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-credibility measure space.
Definition A.2: Liu (2004) A fuzzy variable &is a mapping from
credibility space (Q,29,Cr) to the set of real numbers, i.e.,

£:(0,2°,Cr) > R.
Definition A.3: Liu (2004) The credibility distribution
@ : R —[0,1] of afuzzy variable & on (Q,2°,Cr) is:

D(x)=Cr{f €O1£(0) <x} (1)
Now we are ready to state the random fuzzy variable concept.
Definition A.4: A random fuzzy variable, denoted as

£E= {Xﬂ(g,,ﬁ € @}, is a collection of random variables X,

defined on the common probability space {£2, &, Pr} and
indexed by a fuzzy variable (6) defined on the credibility
space (Q,2°9,Cr).

Definition A.5: Liu (2004) Let xbe arandom fuzzy variable, then

the average chance measure denoted by ch{x}, of a random
fuzzy event {§ < x}, is:

1
ch{¢ <x}= f Cz'{ﬁe@lPr{x(q)g,\'f§a}da' )
0

Then function Y {x} is called as average chance distribution
if and only if:

Y (x) =ch{¢ <x} 3)
Now, it is time to find the average chance distribution for a
normal random fuzzy variable x*: N(z, 5*), where { is a triangular
fuzzy variable and ¢ is a given positive real number. The
fuzzy mean is assumed to have a trapezoidal membership

function: -
wea a<w<b
b—a
1 b<w<c
m_(w) =1 d
W e<w<d )
d—c
0 otherwise
and ( 0 w<a
w—a a<w<b
2(b—a)
D(w)=Cr{€ < w}=1 % b<w<c
®)
M CS“)<({
2(d—c)
1 otherwise

which gives the credibility distribution for the fuzzy mean, ¢.

Then the critical steE is to derive the expression of Cr{{(0) €
O 1Pr{{(w,0) < x} > a}. For normal random fuzzy variable
with a triangular fuzzy mean, note that:

{C(0): Pr{C(w,0) < x} > «
. ©
S{0c0)<x—0d () )

Then the range for the integration of the integrand Cr{0 € o:

((®) <x—0® ' (a)} with respect to is listed in Table Al.

Table A1: Integration range with respect to o,
where { = g(0) = x—0 ®'(0)

8la)

Range for o

=1
a6 6:46) x @ ()}

—w<gla)<a

a<gla)<b ‘D(

b<gla)<c cp(

c<gla)<d CD(

gla)<d

X=

o2

a
q)( )<a<l
x—>b x—a
<a<®
x—c x
<a<®
o
x—c x—d
— | <a<®

x—d
O<a<®
o

x - ocD_l(a) -a
2(b —a)

1

2

y—o® (@) +d -2¢
2(d —c¢)

Then we obtain the average chance distribution:

)"E = ch{é(w,0) <x}

X—da

= 2(b—a)

x+d—2c
2(d—c)

et el

o
2(b—a)

fehafe2)-
a1+

P

0]

a

f up(u)du —

x—b

a
2(d—).

ag

7 up(u)du

x—d
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