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Abstract

Nonpoint source (NPS) pollution caused by human activities is difficult to manage not because of the deficiency of
water- or land-treatment technologies, but because the sources of NPS pollutants are diffuse and the landscape
across which NPS problems occur are spatially heterogeneous. Landscape ecology. which is concerned with the
interaction between landscape structure and spatial processes such as water flow, could provide guidelines for
NPS management. This research investigated how landscape ecology and NPS management can be cross-fertilized
by reviewing principles for landscape decomposition and examining existing practices in NPS monitoring and
modeling. It concludes that, on the one hand, hierarchy theory has suggested useful spatial frameworks for
conducting NPS monitoring and modeling. On the other hand, NPS management that deals with diffuse sources
from multiple scales could provide practical feedback to the evolving theory of landscape ecology.

I. INTRODUCTION

Nonpoint source (NPS) pollutants such as sediment,
nutrients, pesticides, heavy metals, and pathogens
have impaired the quality of U.S. water (USEPA [45]).
NPS pollution is a human-induced problem. Although
naturally occurring events such as forest fires and
volcanic eruptions yield NPS pollutants, human
activities including construction, transportation, and
agricultural production are the major contributors of
nonpoint source problems. These land-based or
airborne pollutants of water are difficult to identify
and control unless the interactions between human
activities, terrestrial landscapes, and aquatic
ecosystems are well understood.

Links between people, land, and water are not easy to
establish due to the complexity of the environmental
systems. Prior to any land-water relationship being
established, changes in land uses and water quality
need to be monitored or modeled. Because both
monitoring and modeling are expensive and NPS
pollutants are diffuse across the entire landscapes,
issues as to what, where, and how to monitor or model
are critical to the cost-effectiveness of NPS control.
Ideally, information learned from field studies can be
extrapolated to a larger geographical area, so that
monitoring and modeling only need to be implemented
at representative sites for particular problems.

Nonetheless, the validity of translating the land-water
relationship from a field plot to a watershed across
whichNPS problems occur is challenged by the scale
problem, because the environmental systems

including the land, the water, and human society do
not behave linearly. Information obtained from a field
scale often is not applicable to a broad scale. As with
concerns over the fragmentation of habitats, depletion
of the ozone layer, and global warming, to address the
question of how human daily activities that are
conducted in farms or metropolitan areas cause water
pollution downstream demands water quality
professionals and environmental scientists to think
locally and globally.

In response to the need for understanding the
interactions between spatial patterns and processes
across a broad scale, landscape ecology has emerged
as a new discipline (Urban et al. [42]; Turner et al.
[41]; O’Neill et al. [35]). Landscape ecology is
characterized as scientifically immature, however, and
is seeking for unifying concepts and methodology
(Wiens [47]). The experiences of dealing with nonpoint
source problems could provide valuable insights into
how environmental systems interact across the
heterogeneous landscape over a range of temporal and
spatial scales. On the other hand, management of
nonpoint source problems requires scientific
guidelines for accurately assessing the severity of NPS
problems, which are negligible at the source areas but
collectively significant at watershed levels. Landscape
ecology is promising in providing theoretical
frameworks for monitoring and modeling designs.
Both landscape ecology and nonpoint source
assessment could cross-fertilize from each other.
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The attempt of applying landscape ecology to nonpoint
source assessment has been made without much
success. For example, the use of landscape metrics
such as diversity and contagion in water quality
prediction is not reliable yet, although landscape
indices are theoretically promising to “link small-scale
ecological information with patterns at the landscape
level” (O'Neill et al. [34]; Hunsaker and Levine [14]).
To establish relationships between people, land, and
water, as well as to make NPS problems manageable,
most of NPS control programs are piecemeal and
restricted to small areas. The small-scale information
is hardly transferable to other areas due to spatial
heterogeneity and non-linearity of the environmental
systems. Improvement of cost-effectiveness of
nonpoint source control lies in a better design of spatial
monitoring and modeling. This review thus aims to
investigate new avenues for cross-fertilizing landscape
ecology and nonpoint source assessment by focusing
the implication of hierarchy theory to NPS monitoring
and modeling.

II. MULTIPLE-SCALE HETEROGENEITY IN
LANDSCAPES

Landscapes perceived by human beings consist of a
variety of natural and man-made features, such as
topography, soil, vegetation, farms, commercial cen-
ters, and traffic flows. Although these landscape com-
ponents are interwoven and interact with one another,
they are most distinctive at various spatial and tem-
poral scales and form different spatio-temporal pat-
terns. Our ability to discern characteristic patterns
and their underlying processes and to organize them
into hierarchical levels are essential to understand-
ing the complexity of landscape systems (Kotliar and
Wiens [17]; Wu [50]; Malanson [24]).

A.Decomposing a landscape into multiple-scale
systems

Although it has never been the case in which one can
clearly identify the operational scales of individual
landscape components and separate them crisply as
demonstrated in Figure 1, it is possible to decompose
interacting components hierarchically in time and
space and construct a scaling ladder across multiple
scales. Landscape systems are assumed to be hierar-
chically structured and decomposable, because nature,
like biological and ecological systems, is hierarchically
structured to foster evolution and to enhance the sta-
bility of systems (Wu and Loucks [49]; Wu [50]).

Landscape components within a hierarchically nested
system hold the property of part/whole duality. Ac-
cordingly, subsets of the landscape that comprise a
particular hierarchical level act as “wholes” for those

components below, but as “parts” for those components
above (Urban et al. [42]; Jensen et al. [15]; Wu [50]).
Take the example of hydrological hierarchy. A water-
shed of 1 km? can be treated as the overall size of a
case study, if the focus of this study is to investigate
how water molecules are transported between veg-
etation and soil within a relatively homogeneous field.
On the other hand, the same watershed can also be
treated as one of thousand sampling units, if the study
is designed to evaluate how diversity in land uses
within each sampling unit collectively affects water
quality of the entire drainage area, which encompasses
an area of 1,000 km?.

Components of hierarchically structured systems not
only interact horizontally with other elements that
operate at the same level, but also interact vertically
with those operating at upper and lower levels. Even
though the vertical interaction provides an avenue to
extrapolate information on spatial patterns, processes,
and their interactions across a range of scales, the
extrapolation is not straightforward, because the
multiple-scale systems do not behave linearly. Evi-
dence has shown that besides dominant pattern and
process, the mechanisms that control pattern-process
interactions vary with scale. For instance, soil ero-
sion is controlled by overland flows, topography and
vegetation, as well as climate and lithology at the field,
the catchment, and the national scales, respectively
(Kirkby et al. [16]).

Because spatial patterns and processes are reproduc-
tive and positively correlated, dynamics of hierarchi-
cally structured systems vary with scale (Malanson
[23]& [24]). Components at the top level generally
operate across a broader spatial scale over a longer
period than those below (See Figure 1). For example,
climate changes exert impact over the entire world,
but a detectable change may take centuries to occur.
In contrast, treefalls occur frequently, but their im-
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Figure 1. Hierarchical organization of environmen-
tal factors
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pact on natural systems is limited to a local scale. The
differences in dynamics in turn differentiate the roles
played by components at varying hierarchical levels.
Components that operate at higher-level are slow and
appear as constants to phenomena occurring below.
They provide context and impose top-down constraints
to levels below. Conversely, components at lower-level
are fast and appear as average conditions to phenom-
ena taking place above. They provide mechanism and
impose bottom-up constraints to those above (Urban
et al. [42]; Wu and Loucks [49]). Nonetheless, to effec-
tively deal with a multiple-scale system, one needs
not to take care every single level equally, because
interaction between components across a hierarchy
decrease as the number of intervening levels increases.
It is therefore suggested by hierarchy theory that si-
multaneously studying three adjacent levels includ-
ing the focal level at which the phenomenon inter-
ested dominates and two immediately upper and lower
levels will be sufficient to understand the behavior of
complex systems (O’Neill [33]; Wu and Loucks [49];
Wu [50]).

Obviously, one would have to decompose a complex
system into multiple scales before s/he can identify
where the focal and adjacent layers are. The hierar-
chical structure of complex systems is a function of
natural heterogeneity in the system, the extent of
study area, data grain, and criteria used for classifi-
cation (Kotliar and Wiens [17]). Criteria used to de-
fine the hierarchy levels could be a single component,
such as temperature, elevation, and concentrations
of nitrogen in water or a combination of multiple fac-
tors. For example, concerned with resource produc-
tion capability and response potential to natural pro-
cesses, Zonneveld [52] and Balley et al. [1] recom-
mended using functional units, which are mapped by
integrating several environmental factors, to charac-
terize landscapes. Once criteria for classification are
determined, statistical techniques including analysis
of variance, spatial autocorrelation, semivairograms
and analysis of fractal dimension can be used to to
identify breaks in the data. Discontinuities in the data
suggest changes in the system’s behavior and indi-
cate potential locations for the boundaries of charac-
teristic scales (Bellehumeur and Legendre [4]; O’'Neill
and King [53]).

B. Relating Landscape Patterns and Spatial
Processes at Multiple Scales

Case studies that deal with scaling issues expicitly
will be reviewed to demonstrate the challenge of scale
problem in resources manaement. For instance, to
explore the relationships between landscape patterns
and stream water quality, Hunsaker and Levine [14]
first characterized landscape patterns by computing

dominance, contagion, edge numbers, and the
proportion of each land-use type within an Illinois
watershed. These landscape indicators were then used
as explanatory variables to predict concentrations of
total nitrogen, total phosphorus, and conductivity in
water. The result showed that both land-use
proportions and indices of spatial pattern were useful
in predicting water quality, but landscape metrics
didn’t account for much of the variation in water
quality. Based on the same modeling approach, the
authors constructed another set of regression models
using land-use proportions and landscape indicators
computed for 200- and 400-meter buffer zones and
hydrological active areas around the stream corridors
as the explanatory variables. R? values for buffer areas
were found to be 10% lower than those for the entire
watershed. The finding was contradictory to a
conventional wisdom, which believes that land use
types close to streams strongly influence water quality.

To examine the effect of scale on the statistical
modeling, Hunsaker and Levine [14] went on and
implemented a spatially distributed model to nested
watersheds (ranging from 44 — 1000 km?) in Texas. In
contrast to the previous finding, the spatially
distributed models indicated that proximity to streams
was a critical factor in predicting annual nutrient
loadings at the outlets of watersheds. The authors
concluded that the discrepancy between watersheds
in I1linois and in Texas mainly resulted from different
modeling approaches and data resolutions used in
each case study. A spatially distributed modeling
approach based on fine-resolution data is necessary
to model the interaction between stream quality and
landscape characteristics surrounding the stream
corridors. Hunsaker and Levine [14] thus suggested
combining both lumped and distributed modeling
approaches for modeling non-point source pollution
in large river systems. The two-stage approach
includes first implementing multivariate modeling to
identify significant contributors of NPS pollution and
then implementing distributed models for watersheds
identified in the first stage to pin-point critical areas
for NPS control.

Hunsaker and Levine’s study [14] raised an inquiry:
how can landscape indicators be used to improve the
cost-effectiveness of nonpoint source management, if
it is believed that land-cover types are closely related
to water quality? In addition to questioning whether
existing landscape indices adequately capture
properties that are critical to nonpoint source
pollution, the key issue that requires further
exploration to address the above inquiry is the
problem of scale. As demonstrated in the Wabash
River study site in Illinois, spatial extent of the study
area influences the quantified relationships between
water quality and landscape patterns. Nevertheless,
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how scale influences the interaction between
landscape patterns and stream quality is an on-going
debate. Up to date, results of a series of studies on
this topic show either stream corridors or the entire
watershed is a better predictor for stream water
quality (Lammert and Allan [19]; Roth et al. [39];
Omernik, et al. [29]).

In addition to the extent of study area and resolution
of data, the size of sampling units is critical to scaling
issues and deserves our special attention. Sampling
units, whose size is between data resolution and the
extent of study areas, serve as moving windows for
the computation of landscape metrics. For instance,
the Environmental Monitoring and Assessment Pro-
gram (EMAP) initiated by the EPA to monitor the
current status and trends in ecological resources
across the nation, uses 40-km? hexagons as sampling
units based on grid data that have cell size of 200 m
on a side (Hunsaker, et al. [13]). For a case, in which
resolution has been dictated by exiting databases, and
specific extent is required to achieve research objec-
tives, how sampling units are chosen may determine
whether or not a hypothesis is supported or rejected.
Obeysekera and Rutchey [28] coined the term “Model
Grain” to emphasize the importance of choosing the
optimal computational unit for ecological modeling.

No theoretical basis or elegant guidelines are avail-
able to guide the decision of sampling units (O’Neill,
et al. [35]; Obeysekera and Rutchey [28]). Instead,
experiments are conducted to help determine the so-
called optimal model grain. For example, Obeysekera
and Rutchey [28] analyzed the behavior of landscape
across a range of scales in order to determine the op-
timal scale for implementing a landscape model in
the Everglades. They first aggregated data produced
by SPOT satellite, which has an original resolution of
20-by-20 m, to a 40-by-40 m resolution and continu-
ally increased by 40 meters up to 1000-by-1000 m.
Secondly, they computed landscape indices including
the proportion of land-cover types, diversity index, and
fractal dimension for each of the 25 data resolutions.
Upon seeing a rapid change in fractal dimension tak-
ing place around the resolution of 100-by-100 m, the
authors suggested using 100 meters as the critical
scale for patch characterization, because the rapid
change in the relationship between parameter and
area indicated the dominant process had changed
(Obeysekera and Rutchey [28]). Likewise, summa-
rizing from their experiences, O’Neill et al. [35] sug-
gested that an ideal calculating unit should be 2 to 5
times greater than the largest patch on the landscape
to prevent sampling biases.

ITI. APPLICATION OF LANDSCAPE ECOLOGY
TO NONPOINT SOURCE POLLUTION
ASSESSMENT

Nonpoint source (NPS) pollution, as defined by the
Environmental Protection Agency (EPA), is a problem
caused by diffuse sources that are not regulated as
point sources, and normally is associated with human
activities including agriculture, silviculture, and urban
development (USEPA [43]). NPS pollutants
originating from the terrestrial environment are
generally carried into surface or ground water through
diffuse transport paths including precipitation,
atmospheric deposition, land runoff or percolation.
The characteristics of watersheds therefore will
influence the quality of surface or subsurface flows
(Poiani, et al. [37]; Omernik [32]). Forman [11] thus
suggested that a landscape urologist can diagnose the
health of a drainage basin by analyzing the contents
of a bottle of stream or lake water.

Forman’s analogy [11] pointed out that site-specific
sampling is an important tool for water quality
assessment. However, the question has to be asked
as to the geographic extent to which the information
contained in a bottle of water can be extrapolated. The
impact of rainfall on stream water quality differs
vastly among landscapes because of heterogeneity in
their structure and function. Extrapolation of water
sampling should only apply to areas having similar
hydrological response potential. Consequently, to
enhance the cost-effectiveness of monitoring design,
one has to understand the relationships between
water quality and land attributes, as well as to know
where the relatively homogeneous land areas are
located.

In addition to monitoring, water quality modeling at
a watershed scale is deemed as a powerful tool for
nonpoint source pollution management. Unlike
traditional water quality models, which are developed
mainly to address the transport process of pollutants
at a homogeneous field, nonpoint source pollution
(NPS) models are designed to explore the interaction
between landscape characteristics and water quality
from a watershed perspective. Accordingly, NPS
models are more spatially explicit than traditional
models. In addition to representing the physical
process of NPS pollution using mathematical
formulae, NPS models require a detailed description
of the terrestrial attributes so that link between land
and water may be discovered. How to partition the
spatially heterogeneous landscape into computational
units that are meaningful to the phenomena being
studied thus becomes the issue for NPS modeling.

The concepts of landscape classification and principles
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of hierarchy theory discussed above provide spatial
frameworks for monitoring design and modeling
implementation. I will explore the potential of
applying landscape ecology theory to NPS assessment
by examining the rationale that underlies existing
monitoring and modeling practices. Prior to discussing
spatial frameworks for monitoring and modeling I will
review case studies to stress the interactions between
terrestrial landscapes and aquatic environments.

Relationship between Land Characteristics and
Water Quality

Stream water that collects nonpoint source pollutants
from its drainage areas provides a good indicator of
the cumulative impact of the entire watershed
(Hunsaker and Levine [14]. Evidence has shown that
patterns of water quality vary with terrestrial
characteristics. For example, Larsen et al. [20] found
that the highest water quality had consistently
occurred in the southeastern region of Ohio
throughout a 16-month sampling study. In contrast,
the northwestern part of Ohio had consistently shown
the lowest water quality. The differences in water-
quality variables were attributed to varying land
forms and land-use types. Due to past glaciation, the
northwestern part of Ohio is dominated by flat land
surface and a high proportion of cropland, which
contributed to higher concentrations of nutrients and
iron strength in stream water. Southeastern Ohio, on
the other hand has a relatively high quality of stream
water because of hilly land forms that in turn were
mainly covered by woodland. Based on the
correspondence between landscape characteristics and
water quality, Larsen et al. [20] advocated the need
for a land classification system and regionalized
standards for water quality management.

Phillips and Bachman [36] presented another case
study to demonstrate that correspondence between
water quality and terrestrial characteristics exists not
only among regions but also within a region. They
sampled 29 basins in the Delmarva Peninsula during
the spring of 1991 and found that areas where soils
were poorly drained had higher concentrations of
calcium, magnesium, potassium, alkalinity, chloride,
and nitrate. In contrast, well-drained areas having a
thick aquifer and long ground-water flow paths had
higher concentrations of sodium and silica. The
authors attributed this water-quality pattern to local

geology.

Spatial heterogeneity that is inherent in landscapes
exists within a smaller land area, and the watershed
as well. A variety of nonpoint source pollution models
such as ANSWERS, Areal Nonpoint Source Watershed
Environment Response Simulation (Bingner [6]),

AGNPS, Agricultural Nonpoint-Source-Pollution
Model (Young [51]), and TOPMODEL, a topography-
based hydrologic model (Nemani, et al. [27]), have been
developed and widely used to identify critical areas
within a watershed for NPS control. Cases of model
application are presented in Moore and Nieber [26],
Tim et al.[40] and Lo [21]. One of the assumptions
underlying nonpoint source models is that interaction
between environmental constraints, biotic processes,
natural disturbances, and human activities make
some sites more prone to nonpoint source pollution
than others. Modeling is expected to distinguish areas
that are more prone to pollution from those that are
more sheltered.

In summary, water quality is closely related to
terrestrial characteristics, which are spatially
heterogeneous at varying levels of the landscape
systems. Realistic goals for nonpoint pollution
management should vary with the characteristics of
the landscape surrounding the receiving water instead
of enforcing a nation-wide water quality standard.
Regionalization of the continental United States is
deemed necessary to improve the management of
nonpoint source pollution.

Ecoregions — Spatial Frameworks for Nonpoint
Source Pollution Monitoring

Realizing the need for defining spatial frameworks
for resource management, the Environmental
Protection Agency (EPA) was motivated to delineate
ecoregions throughout the conterminous United
States in the late 1970s (Omernik and Griffith [31]).
Ecoregions are defined as areas within which
ecosystems, in terms of their types, quality, and
quantity of environmental resources, are generally
similar (USEPA [44]). The primary purposes for
delineating ecoregions are to develop regional
biological criteria and water quality standards, as well
as to set management goals for nonpoint source
pollution (Omernik [32]).

Because ecoregions are designed to reflect the overall
response to natural or manmade phenomena, they are
identified on the basis of perceived patterns of a
combination of biotic and abiotic factors exerting
influence on specific areas (Omernik [30]; Balley et
al. [1]). Factors being considered and analyzed include
climate, geology, vegetation, soils, hydrology, wildlife,
and land use (Omernik [32]). Expert’s judgment, in
addition to map analysis and literature review, is
sometimes helpful in determining the final boundaries
of ecoregions (Bryce and Clarke [8]).

In response to the hierarchically nested ecosystems,
ecoregions at a higher level are subdivided into several
sub-regions to capture spatial variability missed at
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coarse scales (Bryce and Clarke [8]). Consequently,
the conterminous United States has been divided into
three levels of ecoregions. Levels I, II, and III contain
nine, 32, and 78 classes, respectively (USEPA [44]).

To meet localized needs, parts of the United States
have recently further divided the existing ecoregions
into Level IV classification. For instance, the state of
Towa has further divided the Western Corn Belt Plains
Ecoregion within Iowa into six subregions to facilitate
the development of biological criteria for streams
(Griffith et al. [12]).

Differing levels of ecoregions provide spatial
frameworks for NPS management. Within each
ecoregion, for example, principles regarding terrestrial
and aquatic ecosystems established from site-specific
studies can be reasonably extrapolated to the same
ecoregion. This kind of extrapolation could greatly
reduce the cost of NPS management, because six to
ten years of monitoring data are required to establish
relationships between changes in landscape and water
quality, due to the nature of NPS problems and the
environmental systems (Dressing, et al. [9]).

The delineation of ecoregions also helps
environmental agencies define attainable goals of
water quality management for each ecoregion. This
definition is accomplished by referring to the least-
disturbed stream conditions within the same ecoregion
(Omernik [32]). By so doing, one takes the variability
in landscapes into consideration so that water quality
standards are achievable. On the other hand, to
protect special resources, water quality standards may
be set higher than the national average for some
regions where water quality is exceptionally good.

The concept of applying hierarchy theory to
delineating ecologically homogeneous land units has
reinforced the necessity to define attainable water
quality for individual ecoregions.

Computational Units — Spatial Frameworks for
Nonpoint Source Pollution Modeling

Nonpoint source pollution modeling encompasses two
major tasks: using equations to represent hydrologic
processes and using maps to describe the spatial
context within which hydrologic cycling takes place
(Maidment [22]). Both hydrologic process and spatial
context are complex and difficult to represent precisely
in a modeling setting. Model developers have to decide
either to emphasize physical process by simplifying
spatial complexity or vice versa.

Due to the development of geographic information
systems (GIS) and spatial data bases, as well as the

availability of existing models, the priority of
hydrologic modeling has recently been reversed
(Maidment [22]). Spatial complexity, which used to
be lumped, has gained increasing attention from
hydrologic modelers. In contrast to traditional
process-based modeling, Maidment [22] referred to
spatially explicit hydrologic modeling as map-based
modeling (Figure 2). In map-based modeling it is
possible to depict the spatial process of nonpoint
pollution. Map-based modeling therefore is regarded
a promising tool for improving NPS management.

As previously mentioned, identifying critical areas
within a watershed for treatment, and establishing
links between landscape attributes and water quality
are two of the primary objectives for implementing
nonpoint source pollution models. However, the
effectiveness of NPS modeling depends on how the
modelers parameterize the watershed being studied.
As with the classification of landscape units, the
principles derived from hierarchy theory can provide
insights into watershed parameterization. I will
review existing case studies in NPS modeling to
examine the discrepancy between theory and practical
application. In particular, the following discussion will
focus on three complementary aspects of model
implementation. They are: 1) defining computational
units, 2) determining optimal size of computational
units, and 3) identifying controlling factors at different
levels of the landscape hierarchy.

Defining Computational Units

Computational units are defined to create spatial
frameworks for watershed parameterization. As
different landscape patterns are perceived through
different observation distances and tools, the shape
and size of computational units could produce different
model results that might confuse environmental policy
makers.

A variety of spatial frameworks have been tested and
applied in hydrologic modeling. Nonetheless, no
absolute guideline exists for defining the optimal
shape and size of computational units (Engel [10]).
In terms of shape of computational units, for example,
grid-cell, hillslope, triangulated irregular networks
(TIN), and hydrologic response units (HRUs) have
been developed to sample landscape attributes within
watersheds. Each data type was designed to facilitate
hydrologic modeling by improving the efficiency of
data storage, the flexibility of resolution, the
maintenance of linear features including channels and
divides, or the capture of spatial variability in
topography, soils, vegetation, or land use (Rokos [38]).

Each data representation type is strong in some
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Figure 2.Shifting paradigms of hydrologic modeling

aspects, but weak in others. Modelers have to choose
the one most suitable for a given model. As a result,
each of the data models has been used in different
hydrologic models. For instance, ANSWERS and
AGNPS require users to partition watersheds into
grids. Users overlay a grid of uniform cell size into
thematic data layers such as topography, slope, or soils,
and then extract a single value for each parameter in
each cell. On the other hand, the hillslope, defined by
Band and others [3] as “the drainage area contributing
flow to a stream link from one bank,” has been widely
used to represent the spatial variability in
mountainous landscapes. Hillslope is regarded as the
most effective data type for modeling mountainous
watersheds, where rapidly changing topography
controls the characteristics of vegetation, soil, and
microclimate because of its well-defined hydrologic
and geomorphic boundaries (Band [2]).

Parallel to the way ecologists decompose the landscape
into numerous functional units, computational units
ideally should be defined based on their ecological
function. In other words, ecological homogeneity, in
addition to ease of computation, should be taken into
consideration in watershed parameterization.
Irregular shapes such as TIN, HRU, or hillslope all
explicitly express the attempt to construct ecologically
homogeneous land units for modeling. The grid-cell
data type, although it was not originally designed to
capture functional units, can be manipulated to
minimize spatial heterogeneity in each cell by
subdividing the grid into a finer cell size.

In addition to manipulating cell size, ecologically
homogeneous computational units can be defined by
using diagnostic criteria such as climate, soil,
topography, or by examining the overall response of a
system. The former can be exemplified by Rokos’ [38]
study; the latter by Wood et al.’s [48] study. Rokos
used topography, vegetation, and soil as diagnostic
criteria to construct TINs for a mountainous
watershed in California. In contrast, Wood and others
defined Representative Elementary Areas (REAs), the

fundamental building blocks for watershed modeling,
by analyzing the trend of runoff generation, which
represented the overall response of a catchment to
rainfall events.

As mentioned earlier, computational units are defined
for parameterization. In order to account for spatial
heterogeneity within a watershed, each parameter in
each computational unit is represented by a single
value. Whether the single value is representative of
the actual condition is critical to the success of
modeling. Therefore, the optimal size of computational
units needs further consideration based on the spatial
variability in the study fields.

Determining the Optimal Size of Computational
Units

In any landscape, the larger the land units, the more
heterogeneous they become. However, it is not cost-
effective to parameterize a watershed into tiny units.
An optimal size that compromises the costs of
modeling and variability in landscape should be
determined for parameter inputs.

From the perspective of landscape ecology, the optimal
size for computational units can be determined by
looking for boundaries that can minimize variability
in ecological responses within, but maximize it
between computational units (Band, et al. [3]; Nemani,
et al. [27]). However, distinct boundaries seldom exist,
because natural phenomena are not always
decomposable (Urban, et al. [42]). In practice, NPS
professionals commonly use the criteria of (a) goodness
of fit, (b) diagnostic components, (c) trend of overall
response, or (d) threshold values to determine “the”
optimal scale for partitioning a watershed.

Goodness of fit here is used to measure the difference
between modeling results and field data. Modelers
may explore the optimal model grain through a trial
and error process. Such an exploration includes the
following steps. First, a set of grids that is divided into
uniform but varying cell-sizes is designed. Second,
each grid is overlaid onto individual layers of
landscape attributes. Third, a single value
representing the average condition of each landscape
attribute within each cell is extracted and assembled
into the format required by a particular model. Fourth,
the selected model is realized at each cell-size. Fifth,
results attained from each model simulation are
compared with field data and the cell-size that
generates the best-fitting result is chosen as the
optimal computational size. Examples applying such
a trial and error approach are presented in Brown et
al. [7] and Vieux and Needham [46].
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Rokos [38], as mentioned previously, used diagnostic
components to determine the size of TIN for a
mountainous watershed in California. The steps that
Rokos took to generate TINs are as follows. (a) Using
a topographic map to delineate watershed boundary
and channel network. (b) Overlaying maps of soils
and vegetation to define uniform polygons. (c)
Determining elevation to the vertices of uniform
polygons derived from soils and vegetation. (d)
Constructing TINs using elevation points, drainage
lines, and soil-vegetation polygons. The sizes of TINs
generated through the above steps are virtually
unique, and reflect the variability in soils, vegetation,
and topography within the mountainous watershed.

Unlike Rokos, Wood et al. [48] used the overall
response of a catchment to rainfall events to determine
the size of Representative Elementary Areas (REAs)
for a 17 km2 catchment in North Carolina. Wood et
al. [48] implemented TOPMODEL to the watershed
and realized models for five rainfall events. They
traced the changes in cumulative runoff volume
calculated from TOPMODEL for each event as the
size of subcatchment increased. Model results showed
that the behavior of the subcatchment response
changed at about 1200 pixels (about 1 km2). For
average areas under 1200 pixels, cumulative runoff
volume fluctuated greatly, but runoff generation
became stable for average areas above 1 km2. Wood
et al. [48] therefore determined 1200 pixels as the
model grain.

Applying threshold values to determine the size of
model grain presents a promising approach to
examining scaling effects on hydrologic modeling.
With the assistance of GIS, one can change the size of
computational units within a stream network that is
hierarchically nested by declaring different threshold
values. For example, Band et al. [3] extracted different
sizes of hillslope for modeling from DEM data. Prior
to delineating hillslopes, which are the drainage areas
contributing flow from one bank to a stream link, one
has to extract stream networks from a DEM by
computing the drainage area upslope of each outlet
in the DEM. ARC/INFO computes drainage areas
according to a threshold number of cells that is
specified by the users. The threshold number of cells
will be used to determine drainage areas, length of
stream segments, and density of stream networks. As
illustrated in Figure 3, a threshold of 100 cells
generated a denser stream network than a value of
1000 cells. Assisted by GIS technology, one can easily
compare the effects of scale on parameterization and
model simulation.

Identifying Factors Controlling Hydrologic
Processes at Different Scales

The generation and transport of NPS pollutants are
influenced by a group of environmental factors that
operate over various temporal and spatial domains.
Knowing the operating domains associated with
individual environmental factors will help establish
cause-effect networks for nonpoint source problems,
identify the extent to which a model can be reasonably
extrapolated, and signal the need for model
modification (Meentemeyer and Box [25]; King [18]).
Moreover, different but complementary management
goals can be developed for hierarchically organized
environmental agencies, so that redundancy can be
avoided and the cost-effectiveness of NPS
management can be improved.

In general, controlling factors for a lower-level natural
phenomenon are more complex than those for an
ecological process operating at the top level of the
landscape hierarchy. For example, the discharge of
nitrogen at the watershed level was controlled by land
use, fertilizer application, slopes, and soil types, while
precipitation alone could explain most of the variation
in nitrogen discharge at the continent level
(Meentemeyer and Box [25]). Likewise, Nemani and
others [27] found that evapotranspiration (ET) rates
at the regional level were controlled by precipitation
and temperature, while they were additionally
controlled by microclimate and lateral distribution of
soil water at the watershed level.

Environmental scientists inspired by hierarchy theory,
which suggests that controlling factors vary with
scales, strive to distinguish dominant controlling
factors at different levels of the environmental
hierarchy through experiment. Three empirical tests
are commonly used to match patterns of spatial
processes and agents of pattern formation They
include:

(a). Performed Sensitivity Analysis. Wood et al. [48],
for example, to identify dominant factors that control
the size of the Representative Elementary Areas
(REASs) in a 17 kmZ2 catchment in North Carolina.
They began by holding soil and rainfall data constant
and then ran the hydrologic model TOPMODEL to
evaluate the effect of topography on model results.
Subsequently, they held topography constant and ran
the models repeatedly while altering the input values
for soil and rainfall. They finally concluded that
topography was the dominant factor that controls the
size of REAs in the catchment studied.

(b). Arbitrary Thresholds. As mentioned earlier,
Nemani et al. [27] investigated scaling by arbitrarily
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Figure 3. Stream density varies with threshold number of cells

partitioning the Seeley-Swan valley in Montana into
5 and 170 computational units representing the
regional and watershed levels, respectively. They then
implemented the Regional Hydrological Simulation
System (RHESSys) to calculate evapotranspiration
(ET) for the watershed using these two spatial
configurations. After examining the variations in ET
and individual parameters at both regional and
watershed scales, the authors concluded that variation
in ET at the regional scale was controlled by
precipitation and temperature, while soil water
content was the dominant factor for ET variation at
the watershed scale.

(c). Trend Analysis. To examine the relationship
between biomass index and elevation at varying scales,
Bian [5] compared the patterns of both parameters in
a series of scales by successively increasing grain size
and data aggregation. She first derived the biomass
index from remotely sensed images of the Glacier
National Park, Montana, and elevation data from
1:24,000 digital elevation models (DEM) for the same
area. Secondly, she performed simple linear regression
models using biomass as the dependent variable, and
elevation as the independent variable at each scale to
test whether their spatial patterns match well. R2 of
the biomass index and elevation increased from 0.46
to0 0.68, and 0.71 as data resolution changed from one-
pixel (30-by-30 m) to 33-pixel, and 75-pixel,
respectively. Bian’s [5] example not only concluded
that elevation became the dominant factor controlling
biomass at a specific scale, but also illustrated the roles
of additional factors that operate at smaller scales.
Due to the property of containment that is inherent
in hierarchical systems, the dominance of elevation
was not clear until the agents operating at low-levels
were filtered out as the scale of investigation
increased.

The empirical studies reviewed above testify that
there exists a close relationship between scales and
controlling factors. However, efficient guidelines for
investigating this relationship are not available now.
Fortunately, GIS with its capability of data input,
aggregation, and retrieval provides a powerful tool

for future pursuit of this relationship.

IV. CONCLUSION

Nonpoint source (NPS) pollution that deteriorates the
US water quality is a multi-scale problem. NPS
pollutants generated from human activities are diffuse
and negligible at their origins, but they are collectively
significant at a watershed level, because they are
accumulated across the terrestrial landscapes.
Correctly assessing the cumulative impact of human
activities taking place at the local scale on the nation’s
water quality requires strategic monitoring and
modeling on both terrestrial and aquatic ecosystems.

A key issue involved in the strategic monitoring and
modeling is how to decompose the landscape into
functional land units. Theoretical basis for defining
functional units and principles for partitioning the
landscape can be found in hierarchy theory. I will
thus conclude this study by summarizing principles
of hierarchy theory and their application to the

assessment of nonpoint source problems.

Principle one is to define functional units based on
ecological homogeneity. Application of this principle
includes the attempt to delineate ecoregions at varying
hierarchical levels around the country to establish
attainable goals for water quality management.
Similarly, NPS modelers strive to construct -
ecologically homogeneous computational units by
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scrutinizing the distribution of diagnostic factors, or
examining the overall response of a watershed to
ecological events.

Principle two is to seek the optimal scale to isolate
functional units so that heterogeneity can be
minimized within a land unit, but maximized between
units. Optimal scales can be considered in terms of
extent and grain. Grain is the smallest land unit for
data collection, while extent is the area over which
information is collected or extrapolated. Because
distinct functional units barely exist, NPS
professionals usually determine the optimal scale
through experiments.

Principle three is to identify controlling factors of
ecological functions at varying scales of the landscape
hierarchy. Individual environmental factors operating
at different temporal and spatial scales exert different
influences on ecological phenomena. In general,
landscape components operating at levels that are
lower than the one of interest serve as average
conditions, while those operating at higher levels serve
as constant. Both average and constant components
have influences on the phenomena investigated but
they are not controlling factors. Correctly identifying
controlling factors and domains over which they are
operating can help define boundaries for functional
units, and optimal scales for data collection and
information extrapolation. Similar to the choice of
scales, controlling factors for spatial processes
operating at varying levels are mainly identified
through empirical experiments.

These three principles suggest spatial frameworks for
decomposing the hierarchically nested landscape into
functional land units that are manageable and
conducive to establishing links between spatial
patterns and spatial processes. The same principles
thus provide guidelines to NPS practitioners for
monitoring design and modeling operation. A common
interest in understanding the interaction between
landscape structure and spatial movements across the
landscape has laid a foundation for cross-fertilization
between landscape ecology and NPS assessment.

Cross-fertilization between landscape ecology and
NPS management can be realized by tackling the
challenge of “scaling up”, i.e., extrapolating ecological
information from local scales to landscape scales (King
[18]). As previously mentioned, constrained by
implementation costs, existing NPS monitoring and
modeling are restricted to smaller watersheds. A
promising way to improve the cost-effectiveness of
NPS management is to translate the information
gained from local studies across scales in the
landscape. According to hierarchy theory, one can

extrapolate information from local scales to a larger
spatial extent by manipulating the grain and extent
of observation (King [18]). Quantitative methods for
data aggregation across scales exist. Yet, more
applications of hierarchy theory and data aggregation
are needed to consolidate the theoretical basis for
scaling up. Given the common interest, the practice
of assessing nonpoint source problems at different
scales is possible to provide feedback on the
applicability of theory.

In addition to decomposing the landscape into
meaningful functional units, NPS professionals could
endeavor to test the applicability of landscape indices
to the problem of scaling up. As discussed in the
context, landscape metrics are regarded as promising
to establish quantitative relationships between spatial
pattern and process, so that extrapolation of
information can be safely exercised within a landscape
hierarchy. However, the use of landscape indices in
scaling up is limited due to the lack of full
understanding of the association between landscape
pattern, process, and measurement. The multi-scale
issue of nonpoint source pollution again provides a
wonderful example to improve our understanding of
landscape indices, structure, and process.
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