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Abstract

Given the increasing rate of landscape change, researchers have realized that managing natural resources
sustainably requires knowledge about ecosystems over more than one temporal and spatial scale. Monitoring
ecosystem integrity implies sampling over long periods of time and space to identify any significant changes.
Subsequently, remote sensing has become integral to many large-scale monitoring efforts. Nonetheless, there
remain aspects related to scaling which limit the ability to detect landscape change with a maximal amount of
inference. While successive analyses can be used to estimate errors, it is not clear how spatial reorganization
resulting from scaling has diluted the signal of the processes embodied within the observed patterns. To achieve a
maximal amount of inference, it is first necessary to match three scales: spatial heterogeneity, the scales of the
ecological processes creating landscape heterogeneity, and the spatial and temporal resolutions of the image used
in the analysis. We discuss the relationship between scale of spatial pattern, image analysis, and scale of process
and how their interactions affect large-scale monitoring quality. In particular, we assert that the interactions
between pattern and process need to be considered explicitly when designing large-scale monitoring to accurately
describe ecological change. This study and others further support the suggestion that monitoring be coupled with
spatio-temporal models to elucidate the mapping from pattern to process across scales. It is stressed that future
research efforts be directed to understanding the characterization of space-time relationships implicit in pattern

and that we move beyond the space-time duality approach to analysis.

I.INTRODUCTION

Currently, there is a concerted effort to develop inte-
grative methods for the assessment and inventory of
ecosystems across large spatial scales (see Jensen and
Bourgeron [1], Stevens [2]). Indeed, given the increas-
ing rate at which landscapes are changing (Ojima et
al. [3]), scientists and managers have realized that
managing natural resources sustainability requires
knowledge about ecosystems over more than one tem-
poral and spatial scale. Monitoring ecosystem integ-
rity implies sampling over long periods of time using a
series of indicators that reflect ecosystem composition
and structure in order to identify any significant
changes (Noss [4]).

One way to detect such changes is by monitoring land-
scape spatial pattern using remotely sensed data
(O'Neill et al. [5]). Over the past decade, many con-
straints to acquiring the necessary spatial coverage
have been alleviated with technical advances. Satel-
lite imagery now forms the basis for most large-scale
inventory and monitoring programmes whose foci
range from regional deforestation studies to canopy
physiology (Quatttrochi and Goodchild [6], Ehrlinger
and Field [7]) and biodiversity (Miller [8]). Modern

sensor technology spans over five orders of magni-
tude affording resolution and spectral flexibility to
tailor to specific needs (Atkinson and Curran [9]). The
wide variety of available sensor platforms (e.g., air-
plane, helicopter, ultralight) offer affordable ways to
capture spatial variability characterizing a variety of
terrains and scales (e.g., riparian corridors; intertidal
systems; gopher mounds). Computer technology has
improved geographical data manipulation by remov-
ing much of the drudgery and obstacles associated
with map digitization and data handling. In addition,
an entire generation of landscape indices, time series,
and spatial statistical methods such as spectral analy-
sis, wavelet analysis, fractals, and geostatistics are
commonly employed for quantification of pattern
(Turner and Gardner [10], Powell and Steele [11],
Rossi et al. [12], Fortin [13], Schneider [14]).

Despite these advances, there remain certain puzzles
which limit our ability to detect landscape change with
a maximal amount of inference. In order to extract the
maximal amount of inference from imagery, it is nec-
essary to match three scales which describe a given
landscape: spatial heterogeneity, the scales of the eco-
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logical processes creating landscape heterogeneity, and
the spatial and temporal resolutions of the image used
in the analysis. While innovations in remote sensing
technology and signal processing have improved our
abilities to quantify landscape patterns, there is less
certainty when it comes to making inference about the
processes which govern these patterns. We discuss the
relationship between scale of spatial pattern, image
analysis, and scale of process and how their interac-
tions affect the quality of large-scale monitoring plans.
In particular, we assert that the interactions between
pattern and process need to be considered explicitly
when designing large-scale monitoring to describe eco-
logical change accurately.

II. MATCHING LANDSCAPE HETEROGENEITY
AND SAMPLING SCALES

The major challenge to landscape ecology is the iden-
tification of the appropriate scales that govern and
describe ecological phenomena (Wiens [15]). Scaling
issues have figured predominantly in the ecological
literature over the past decade. Entire books continue
to be devoted to this subject (e.g., Ehleringer and Field
[7], Allen and Hoekstra [16], Edwards et al. [17],
Quattrochi and Goodchild [6], Peterson and Parker
[18] Levin [19]). Generally, scaling refers to how in-
formation is aggregated and translated from one spa-
tial scale to another with a change in extent and grain
(Csillag et al. [20]). In the context of landscape moni-
toring, scaling is implicit in the process of sampling
design; an aggregate of samples are collected at one
scale (e.g., plot or image resolution) to represent the
state of a unit at another scale (e.g., watershed). In
most cases, the monitoring targets are considered to
be reasonably well understood at the fine-scale (e.g.,
single tree) but their pattern and behaviour over a
larger extents is generally less well defined and un-
derstood (e.g., watershed; Bradshaw [21], Stohlgren
et al. [22]).

To maximize the analyst’s abilities to make such in-
ference at the landscape level and minimize bias, it is
important to select imagery which will capture land-
scape patterns most accurately. In the instances where
the landscape varies smoothly or is relatively homo-
geneous, selecting the best image resolution is fairly
straightforward. The “best imagery” is the one whose
resolution or pixel size, corresponds most closely to
the grain of the landscape, where we define grain as
the finest spatial resolution at which observations are
made and which constitute ecologically meaningful
information (Csillag et al. [20]).

Potential error is first introduced with organization
of the on-the-ground information into geometric units;

pixel shape and size are unrelated to the nature of
the vegetation and landforms of interest. Unless the
on-the-ground objects are identically proportioned to
image resolution, pixels and polygons represent vari-
ous compositions (Costanza and Maxwell [23], Hess
[24], Bradshaw and Garman [25], Heuvelink and
Goodchild [26]). Roughly speaking, though, if the reso-
lution of the image is less than or approximates the
grain of the landscape pattern, little error is intro-
duced (Van der Knapp [27], Woodcock and Strahler
(28]).

In many cases, however, the landscape under consid-
eration is spatially heterogeneous and composed of a
mosaic of patches and patterns of various grains which
cannot be matched with image resolution. Large ar-
eas generally encompass a range of landscape habi-
tats and geomorphology that result in a variety of
spatial patterns. Even small areas such as low-order
watersheds can be quite heterogeneous because of the
interactions of climatic, geologic, and topographic gra-
dients that generate large differences in vegetation
patterns. Subsequently, selecting the “right” resolu-
tion is not always so straightforward nor sufficient.
For these reasons, it is generally assumed that using
imagery automatically introduces a source of error
because it involves changing unit and resolution dif-
ferent from the constituents parts of the landscape
(Rastetter et al. [29], Quattrochi and Goodchild [6]).
The question becomes what steps to take to minimize
error propagation. Some of these problems can be
ameliorated with classification and smoothing algo-
rithms.

Image classification and smoothing are used to orga-
nize the image into ecologically meaningful units such
as plant communities. Smoothing is effected to elimi-
nate “noise” where noise is regarded as ecologically
unimportant information. Noise is usually regarded
as single to small sets of pixels that result from
misclassification or the misfit of the landscape pat-
tern to the pattern of the pixels. Ideally, the smooth-
ing procedure eliminates scattered, misclassified pix-
els and retains only ecologically significant features.
However, the degree to which these algorithms in-
crease or decrease accuracy still depends on landscape
heterogeneity.

Like image resolution, classification and smoothing
change the original on-the-ground relationships by
imposing an artificial correlation structure on the
data. This mismatch can either mask inherent or gen-
erate artificial spatial heterogeneity. The patterns cre-
ated from image processing may even impose an ad-
ditional scale of pattern. Depending on the resolution
of this window and the scales of landscape heteroge-
neity, more or less data will be smoothed and reclassi-
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fied; more specifically, the amount and type of reclas-
sification depends on the fine-scale (i.e., window size
or less) spatial distribution of classified pixels and its
interaction with the selected smoothing algorithm
(Milne and Johnson [30], Milne and Cohen [31]).

Given the inevitability of error introduced by the use
of imagery, the selection of the most appropriate sam-
pling dimensions (i.e., pixel resolution, classification
and smoothing procedures) argues for making apriori
assumptions regarding the scale of spatial
autocorrelation intrinsic to the landscape under study
(Fortin [13]) and the use of various segmentation al-
gorithms which can be applied prior to classification
or as part of the classification process (e.g., (Schroder
et al. [32]). Others have proposed methods which try
to circumvent the intrinsic problem of pixels. Such
methods include rescaling techniques that use a geo-
graphic window (i.e., irregular area) based on the
variogram range, rather than geometric window (i.e.,
pixel), to segment remotely sensed images (Franklin
et al. [33]).

In any case, the successive rendering of the data from
ground information to pixel to polygon propagates
errors, the magnitude of which depends on the inter-
actions between landscape heterogeneity and sam-
pling scales (Rastetter et al. [29], Bradshaw [21]).
However, while successive image analyses can be used
to estimate errors resulting from a mismatch between
landscape patterns and the image (Rastetter et al.
[29]), there is a further issue: it is not clear how this
spatial reorganization has diluted the signal of the
processes embodied within the observed patterns
(Milne and Johnson [30], Bradshaw [21], Milne and
Cohen [31]). To infer ecological process from an image
accurately, it 1s necessary to understand the meaning
of ecological function of these new units and patterns
created by scaling using imagery.

III. MATCHING SPATIAL PATTERN, SAM-
PLING, AND PROCESS SCALES

It is generally assumed that the scaling which occurs
during image analyses retains spatial information as
well as the relationship between pattern and the pro-
cesses which have created them. However, the mosaic
of vegetation and landforms observed across a land-
scape are actually a tangle of overlapping spatially
and temporally constrained processes. The degree to
which ecological patterns and processes can be related,
and have feedback effects on one another, depends on
several factors which interact to increase or decrease
landscape connectivity, that is, how landscape ele-
ments are related to one another over space and time.
We define this connectivity as the spatio-temporal

coherence of a given landscape. The spatio-temporal
coherence reflects the interactions between the dis-
turbance regime and intrinsic characteristics of a land-
scape such as geology or the presence of topographic
gradients.

Space and time are coupled in the term to emphasize
the linked relationship between the spatial and tem-
poral character of a landscape. For example, in the
case of desert ecosystems, segments along a stream
which are spatially proximal may be quite isolated or
disconnected from each other in periods of drought.
In contrast, connectivity increases at other times such
as periods of high flow: two distal points in the land-
scape become more connected and their spatio-
temrporal coherence increases. Similarly, while the
immediate effects of disturbance may occur at one
locale (e.g., clearcut), the effects can propagate or
emerge across a range of spatial and temporal scales
(e.g., sedimentation, fish mortality). As such, these
translated disturbance effects can produce significant
impacts which are both spatially and temporally dis-
tal or displaced relative to the initial disturbance event
(Hunsaker and Levine [34], Bradshaw and Garman

(25)).

As illustrated in the example below, the relationship
between an observed spatial pattern and the processes
which have generated it, involve a range of spatial
and temporal scales which may or may not congru-
ent. Subsequently, the scale of observed pattern is not
necessarily commensurate with the scale at which the
responsible processes have acted (Allen and Hoekstra
[16]) and it will not always be possible to neatly map
pattern to process within the image. This problem is
not only an image processing puzzle but a conceptual
issue as well. The ability to derive inference is ham-
pered by the fact that inference involves an intrinsic
discrepency: spatial information (pattern) is used to
infer temporal information (process). This means that
to infer causality, it is necessary to first evaluate the
significance of spatial pattern relative to the context
in which it is derived, namely, the process dynamics,
which is defined in the temporal domain. Because it
is not possible to have continuous coverage of time,
image “snapshots” and ecological knowledge are used
to interpolate and infer how processes have created
the particular change in landscape pattern. The chal-
lenge for imagery-based monitoring is to understand
how to identify and quantify the degree of spatial and
temporal coherence to help to detect change in spatio-
temporal patterns.

This challenge becomes more apparent in the pres-
ence of multiple patterns where the rates and types
of disturbance occur at very different scales. Such is
the case for anisotropic (e.g., spatial pattern varying
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with direction) or gradient-dominant landscapes such
as mountainous terrain and riparian networks. As
discussed below, the patterns between stream, ripar-
lan and terrestrial ecosystems comprising a water-
shed are usually very different because the dynamics
driving these patterns are characterized by distinct
temporal variability (e.g., flooding events in the case
of aquatic systems, and fire in the case of hillside
slopes). The presence of landscape gradients not only
changes spatial pattern but also the temporal infor-
mation stored within a spatial pattern.

IV.EXAMPLE: SAMPLING IN GRADIENT-DOMI-
NANT TERRAIN

To illustrate more specifically how time and ecologi-
cal processes can affect sampling design and strength
of inference, we look at the problem of sampling
downed wood recruitment in two different landscapes.
The sampling may be accomplished using high-reso-
lution imagery (e.g., ADAR) or field methods. Consider
first a landscape composed of flat terrain (i.e., an ab-
sence of topographic gradients) occupied by standing
forest where gravity is considered the only force af-
fecting wood recruitment. Assuming no other factors,
the amount of downed wood intercepted at a sample
point derives from standing trees and vegetation in
the surrounding area, the zone of influence (Figure
1). The contribution to the sample point decreases in
an ever? decreasing probability in the radial direc-
tion. The area or volume of input is limited by maxi-
mum distance, such as maximum tree height, beyond
which no wood will be recruited. Under this scenario,
it is assumed that when a tree falls within the zone of
influence, it is immediately detected at the sample

zone of influence

Xi=tree length
= zone of influence radius

Figure 1. A diagram of the zone of influence at a
sample point A for flat terrain.

point. Change in downed wood volume at the sample
point will vary as a function of the growth and mor-
tality rates of vegetation and local and regional dis-
turbance regimes which affect the area within the zone
of influence (e.g., fire, blowdown).

In contrast, consider downed wood recruitment in a
second landscape where there is a topographic gradi-
ent such as that characterizing a riparian ecosystem.
For the present discussion, downed wood is consid-
ered to be primarily derived from the riparian zone.
The first striking difference between the two land-
scapes is that the zone of influence is asymmetric in
the riparian zone (Figure 2; Higashi and Burns [35]).
The presence of the topographic gradient alters the
shape and size of the zone of influence (Figure 3).
Further, the sources of downed wood are more com-
plex. The presence of the nested topographic gradi-
ents extends the effective source area to the riparian
network above the sample point. This pattern builds
according to the hierarchical structure of the basin
network (Figure 4). For example, wood deriving from
areas in the upper reaches of the basin eventually
contribute to points lower downstream; wood recruited
from the banks in the basin midsection serves as in-
put to stream sections downstream, and so forth. Sub-
sequently, the rate at which downed wood accumu-
lates at a sample point within the basin is influenced
by processes at several temporal scales: those that are
responsible for creating downed wood at the sample
point and those that are responsible for creating
downed wood upstream and transporting wood down-
stream (e.g., landslide and flood events, respectively).

Transport is a potentially complex term because it
includes mitigating factors beyond the simple distance

zone of influence

Xi=tree length
= zone of influence radius

Figure 2. A diagram of the zone of influence at a given
sample point along a stream illustrating elliptical
shape due to the asymmetry introduced by topo-
graphic gradients.
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sample area

source area
(zone of influence)

source area

sample area (zone of influence)

gradient

Figure 3. The presence of a topographic gradient cre-
ates a spatio-temporal displacement between the
sample and source points.

between the sample or detection point and location of
wood input. It is related to the spatio-temporal coher-
ence of the landscape which is a function of system
attributes such as wood retention (e.g., restricted pas-
sage by geological formation) and flow variability gov-
erned by local and regional climatic regime. For ex-
ample, several different scenarios may be envisioned.
A tree may fall in the water and float downstream
immediately to be detected within a very short time
period assuming relatively unobstructed movement.
On the other hand, a tree may fall or be pulled in by
landslides but be retained within the channel until a
sufficiently large flooding event occurs and moves it
downstream to the point of detection. This is an ex-
ample of pattern-process feedback effects where land-
scape heterogeneity (channel pattern) affects the pro-
cess intensity (transport capacity).

As described in these simple case studies, the concept
of spatio-temporal coherence has significant implica-
tions for monitoring design and making ecological
inference based on spatial patterns. First, as the ri-
parian example described above illustrates, the pres-
ence of gradients not only changes spatial pattern but
also the temporal information stored within a spatial
pattern. Depending on the landscapes spatio-tempo-
ral coherence, much of the source area may lie out-
side the image. In the riparian landscape, changes in
spatial pattern are connected temporally by transport
rates to upper reaches and potentially lie outside the
image extent (Figure 5). Subsequently, the power to
detect ecologically-meaningful change and the abil-
ity to infer causality using image-derived spatial in-
formation requires that the spatial coverage be suffi-
cient to encompass the temporal connectivity emerg-
ing from the processes. Second, the rates of change at
a given monitoring site will depend on landscape
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Figure 4. Hierarchical structure of a stream network
creates a nested set of gradients and temporal inter-
actions, hence spatio-temporal coherences. The nota-
tion B1, B2, and B3 refer to hypothetical sub-basins
within the watershed.

spatio-temporal coherence. As such, strength of infer-
ence is not consistent across scales; there is a concur-
rent decrease in the ability to detect change in pat-
tern as spatio-temporal coherence increases. The
power to detect pattern can be increased if the period
over which sampling occurs is extended (Figure 6).

V. DISCUSSION

The extension of ecological studies to larger-than-tra-
ditional scales has necessitated a careful re-examina-
tion of the relationship between what is understood
about ecological processes and their representation
as pattern. Since, in most cases, it is not tractable to
census the entire landscape extent, ecologists must
choose appropriate sampling designs which represent
the landscape most accurately. This requires estimat-
ing the sources of variance and choosing sampling
units reflecting these processes’ dynamics. However,
while inference about landscapes characterized by
simple spatial patterns may be fairly straightforward
and its associated errors manageable using standard
image segmentation techniques, inference becomes
much less transparent in spatially complex cases. In
the case of spatially heterogeneous landscapes, par-
ticularly in the presence of landscape gradients, in-
ferring ecological process from image patterns neces-
sitates an explicit treatment of spatio-temporal inter-
actions. The translation of information across spatial
scales will vary with landscape heterogeneity and af-
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Figure 5. While the distance between points may be
the same, the time between onset of change and its
detection may differ. The time at which disturbance
occurs and is detected is the same for the isotropic
case (spatio-temporal coherence is zero), and nonzero
for the anisotropic case (spatio-temporal coherence is
non-zero).

fect the ability to infer pattern from process (Figures
7 and 8). To this end, we have argued that space and
time need to be “re-united” in order to accurately in-
fer process from pattern. This is not a new argument
(see Olsen and Schreuder [36], Kareiva [37]) but is
less often discussed in the context of remote sensing
and GIS studies. The goal of this analysis was to bring
the importance of time and its relationship to spatial
pattern to the attention of image analysts.

Using concepts such as spatio-temporal coherence,
monitoring designs can be calibrated to historic dis-
turbance patterns and intrinsic landscape properties
and used to frame the appropriate sampling dimen-
sions necessary to detect change (i.e., range of natu-
ral variability; Landres et al. [38]). In this way, spatial
pattern, as described by the sampled information, is
directly related to process which is captured by the
interactions between climate mediated flow and geo-
logically mediated wood retention. By including the
intricately related domains of space and time, the com-
monality, rather than differences between the spec-
trum of landscapes, including lacustrine, upland, ri-
parian, and aquatic ecosystems and others, is empha-
sized. The introduction of such concepts as spatio-tem-
poral coherence contributes to building an ecologically-
based framework for designing large-scale monitor-
ing which can accommodate the diversity of ecosys-
tems. A common framework for sampling design fa-
cilitates an integrated monitoring approach to coor-
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Figure 6. Depending on the degree of anisotropy and
sampling duration (i.e., how long a given sampling
scheme is implemented), the power to detect pattern
change will vary. For example, the power to detect
change in the low-order sub-basin BI will be greatest
when calibrated those disturbances affecting the sub-
basin. In contrast, the power to detect change in B3
may require longer duration of the sampling period
in order to capture changes that occur when large
flooding events occur connecting the upper and lower
basins by transport. The sampling time is represented
as an area which corresponds to the range of natural
variability.

dinating across ecosystems and scales. In this light,
the following suggestions are offered.

Data comprising spatial patterns created by multiple
scales or sources, should be analyzed using quantita-
tive methods and algorithms that retain these quali-
ties. In the case of applying smoothing algorithms to
raster or vector data, it is suggested that algorithms
be selected to reflect across or multiple-scale interac-
tions (Schroder et al. [32]). In the simplest case, an
additional coverage derived from topographic data
could be used to weight pixels of varying temporal
relatedness. To estimate variables such as downed
wood recruitment in a stream network, information
is required for sources, processes and rates that are
responsible for wood movement. Source information
may be derived from of imagery using various plat-
forms (e.g., ADAR) or other surveys as discussed above.
Information regarding transport processes and rates
may be derived from hydrologic models or records
describing streamflow regimes. Sampling may be fo-
cussed at a limited set of points within the basin
coupled with coarse-scale coverages that describe
changes in recruitment sources. Under this scenario,
monitoring of wood flux within a basin may be ac-
complished by integrating plot-scale samples, whose
sampling design is calibrated to the range of natural
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A)

©) (D)

Figure 7. Four simulated landscapes with varying
composition and pattern: (A) Homogeneous and by de-
fault isotropic; (B) Heterogeneous and isotropic; (C)
Heterogeneous and isotropic with nested pattern; (D)
Heterogeneous and anisotropic generated by land-
scape gradient. The distribution of individual cells was
stochastically generated with a weighted gradient
function.

variability, with basin-scale inventory of standing
wood form imagery.

In the absence of information on the processes and
rates of change, sampling will have to rely more
heavily on fine-scale spatial information that retains
information on temporal relationships and seeks to
build a quantitative description, both in space and in
time, of the rates and patterns of basin dynamics gov-
erning wood flux. However, many analyses and sam-

.- D

s c
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1 4 16 32 64

Resolution (# cells)

Figure 8. The amount of information changes as a
function between the interaction of scaling resolution
(i.e., aggregation cell size) and pattern for the four
cases in Figure 7. Information is defined in the most
general way, as the averaged difference in pixel val-
ues between resolution levels.

pling efforts are exploratory in nature with the ex-
press intent to identify such process interactions
through the patterns embedded in the data; the scale
and interactions themselves are poorly defined. This
study and others further support the suggestion that
monitoring be coupled with spatio-temporal models
to aid in elucidating the mapping from pattern to pro-
cess across scales: in particular, develop a more rigor-
ous understanding of “landscape-level processes”
(Olsen and Schreuder [36], Kareiva [37]). Finally, it is
stressed that future research efforts be directed to
understanding the characterization of space-time re-
lationships implicit in pattern and that we move be-
yond the space-time duality mode of analysis which

has dominated western science for centuries
(Bradshaw and Bekoff [39]).

ACKNOWLEDGEMENTS

The authors would like to thank the editors and two anony-
mous reviewers for their comments on an earlier draft of
the manuscript. The research was supported in part by a
grant from the Centre for the National Marine Fisheries
Service (USA) and the Environmental Protection Agency
to G.A. Bradshaw and NSERC Research Grant (Canada) to
M.-d. Fortin.

REFERENCES

[1] Jensen, M.E. and P.S. Bourgeron (eds.) 1993. Eastside
Forest Ecosystem Health Assessment. Volume II. Eco-
system Management: Principles and Applications. U.S.
Forest Service Pacific Northwest Research Station,
Portland, Oregon.

[2] Ojima, D.S., K.A. Galvin and B.L. Turner II. 1994. The
global impact of land-use change. BioScience, 44: 300-
304.

[3] Noss, R.F. 1999. Assessing and monitoring forest
biodiversity: a suggested framework and indicators.
Forest Ecology and Management, 115: 135-14.

[4] O'Neill, R. V, C.T. Hunsaker, K.B. Jones, K.H. Riitters,
J.D. Wickham, P.M. Schwartz, I.A. Goodman, B.L. Jack-
son, W.S. Baillargeon. 1997. Monitoring environmen-
tal quality at the landscape scale using landscape in-
dicators to assess biodiversity, watershed integrity, and
landscape stability. BioScience, 47: 513-519.

[5] Stevens, D.L.J. 1994. Implementation of a national moni-
toring program. Journal of Environmental Management
42:1-29.

[6] Quattrochi D. and M.F. Goodchild (eds.) 1997. Scale in
remote sensing and GIS. Lewis Publishers, Boca Raton,
Florida, USA.

[7] Ehleringer, J.R. and C.B. Field. (eds.) 1993. Scaling physi-
ological processes: leaf to globe. Academic Press.

[8] Miller, R.I. (ed.) 1994. Mapping the biodiversity of na-
ture. Chapman and Hall.

[9] Atkinson, P.M. and P.J. Curran. 1997. Choosing an ap-
propriate spatial resolution for remote sensing inves-



68 Bradshaw and Fortin: Landscape Heterogeneity Effects on Scaling and Monitoring Large Areas

tigations, Photogrammetric Engineering and Remote
Sensing, 63: 1345-1351.

[10] Turner, M.G. and R.H. Gardner (eds.) 1991. Quantita-
tive methods in landscape ecology. Springer-Verlag.

[11] Powell, T,M. and J.H. Steele (eds.) 1995. Ecological Time
Series. Chapman & Hall.

[12] Rossi, R.E., D.J. Mulla, A.G. Journel and E.H. Franz.
1992. Geostatistical tools for modeling and interpret-
ing ecological spatial dependence. Ecological Mono-
graphs, 62: 277-314.

[13] Fortin, M.-J. 1999. Spatial statistics in landscape
ecology. Pp. 253-279. in: Klopatek, J. M. & R.H. Gardner
(eds). Landscape Ecological Analysis. Issues and
Applications. Springler-Verlag.

[14] Schneider, D.C. 1994. Quantitative Ecology. Spatial and
Temporal Scaling. Academic Press, San Diego.

[15] Wiens, J.A. 1989. Spatial scaling in ecology. Functional
Ecology, 3: 385-397.

[16] Allen, T.F.H. and T.W. Hoekstra. 1990. The confusion
between scale-defined levels and conventional levels
of organization in ecology. J. Veg. Sci., 1:5-12.

[17] Edwards, P.J., R.M. May and N.R. Webb (eds.) 1994.
Large-scale ecology and conservation biology. Blackwell
Scientific Publication, Oxford.

[18] Peterson, D.L. and V.T. Parker (eds.) 1998. Ecological
scale: Theory and Applications. Columbia University
Press.

[19] Levin, S. 1992. Concepts of scale at the local level. pp.
7-20. In. Ehleringer, J.R. and C.B. Field, editors. Scal-
ing Physiological Processes: Leaf to Globe. Academic
Press, New York, New York, USA.

[20] Csillag, F., M-J. Fortin, and J, Dungan, 2000. On the
limits and extensions of the definition of scale. Bulle-
tin of the Ecological Society of America, 81: 230-232.

[21] Bradshaw, G.A. 1998. Defining ecologically relevant
change in the process of scaling up: implications for
monitoring at the “landscape” level. Ecological scale:
Theory and Applications. Pp.: 227-249. In: Peterson, D.L.
and V.T. Parker. Columbia University Press.

[22] Stohlgren, T.J., G.W. Chong, M.A. Kalhan abd L.D. Schell.
1997. Multiscale sampling of plant diversity: effects of
minimum mapping unit size. Ecological Applications,
7: 1064-1074.

(23] Costanza, R. and T. Maxwell. 1994. Resolution and pre-
dictability: an approach to the scaling problem. Land-
scape Ecology, 9: 47-57.

[24] Hess, G. 1994. Pattern and error in landscape ecology:
acommentary. Landscape Ecology, 9: 3-5.

[25] Bradshaw, G.A. and S.L. Garman. 1994. Can the tem-
poral order of fine-scale disturbance in forested eco-

systems be detected by large-scale patterns? EIM Sym-
posium, Albuquerque, New Mexico.

[26] Heuvelink, G.B.M. and M.F. Goodchild (eds.) 1998. Er-
ror propagation in environmental modelling with GIS.
Taylor & Francis, London.

[27] van der Knaap, W.G.M. 1992. The vector to raster con-
version: (mis)use in geographical information systems.
Int.J. G.I.S., 6: 159-170.

[28] Woodcock, C.E. and A.H. Strahler. 1987. The factor of
scale in remote sensing. Remote Sensing of Environ-
ment, 21: 311-332.

[29] Rastetter, E.B., A.W. King, B.J. Cosby, G.M. Hornberger,
R. O'Neill and J.E. Hobbie. 1992. Aggregating fine-scale
ecological knowledge to model coarser-scale attributes
of ecosystems. Ecological Applications, 2: 55-70.

[30] Milne, B.T. and A.R. Johnson. 1993. Renormalization
relations for scale transformation in ecology. Lectures
on Mathematics in the Life Sciences, 23: 109-128.

[31] Milne, B.T. and W.B. Cohen. 1999. Multiscale
assessement of binary and continuous landcover vari-
ables for MODIS validation, mapping, and modeling
applications. Remote Sens. Environ., 70: 82-98.

[32] Schroder, M. et al. 2000. Gibbs random field models: a
toolbox for spatial information extraction. Computers
and Geosciences, 26:423-432

[33] Franklin S.E., M.A. Wulder, M.B. Lavigne. 1996. Auto-
mated derivation of geographic window sizes for use in
remote sensing digital image texture analysis, Com-
puters & Geosciences, 22: 665-673

[34]Hunsaker, C.T. and D.A. Levine. 1995. Hierarchical ap-
proaches to the study of water quality in rivers. Spa-
tial scale and terrestrial processes are important in
developing models to translate research results to man-
agement practices. BioScience, 45: 193-203.

[35] Higashi, M. and T.P. Burns (eds.) 1991. Theoretical stud-
ies of ecosystems. The network perspective. Cambridge
University Press, Cambridge.

[36] Olsen, A.R. and H.T. Schreuder. 1997. Perspective on
large-scale natural surveys when cause-effect is a po-
tential issue. Environmental and Ecological Statistics,
4:167-180.

[37] Kareiva, P. 1995. Ecology-Predicting and producing
chaos. Nature, 375: 189-190.

[38] Landres, P.B., P. Morgan and F.J. Swanson. 1999. Over-
view of the use of natural variability concepts in man-
aging ecological systems. Ecological Applications, 9:
1179-1188.

[39] Bradshaw, G.A. and M. Bekoff. 2000. Integrating hu-
mans and nature: reconciling the boundaries of science
and society. TREE, 15: 309-310.



