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Abstract

We used multiple resolutions of remotely sensed data to explore the relationship between grain size and landscape
pattern. Holding extent constant, we aggregated fine grained and coarse grained data to provide a continuum of
grain sizes ranging from 5 m to 30 m on a side. Landscape metrics were calculated for each image and varied
widely between grain sizes. Finer grained images appeared to be more fragmented and complex than coarser
grained images for the same landscape. Most metrics varied smoothly as a function of grain size and were fitted to
nonlinear models. Results showed that the models failed to accurately predict the metrics for the second landscape,
although the metrics did display similar scaling patterns as in the first image. Further research using additional
images of landscapes and a greater range of grain sizes is necessary to determine whether general scaling laws

can be determined.

L. INTRODUCTION

A central goal of landscape ecology is to understand
the relationship between pattern and scale and how
that relationship affects ecological processes [1], [2],
[3]. In order to link patterns to ecological processes
we must first recognize that a landscape contains
multiple scales of heterogeneity [4], [5]. A landscape
is considered to be a large, heterogeneous area
containing a mosaic of interacting ecosystems or
patches [6], [7]. A patch is defined as a homogeneous
unit within that landscape which differs from its
surroundings [8]. Each patch exists within a mosaic
of other patches or within a homogeneous matrix
which together make up the landscape pattern [6].
These patterns occur as the result of complex
interactions between climate, terrain, soil, water
availability, and biota which create a dynamic
patchwork of ecosystems across the landscape [9], [6].
These patterns form a feedback loop with ecological
processes by affecting the exchange of energy and
materials at multiple scales, both within and between
patches [10]. At a fine scale, within a forest stand, a
patch might consist of a different species or a wind
throw. At a coarser scale, the stand could be considered
a patch set among a mosaic of different aged stands
or other vegetation types. Thus scale is inherent in
the delineation of patches in the landscape and the
characterization of landscape pattern depends on both
the resolution (grain size) and the extent of the data

(8.

The identification of scales of landscape patterns and
examination of the effects of changing scales on
pattern analysis (which are intrinsically related) are

but two aspects of the pattern-scale problem in ecology
[3]. The dependence of pattern on scale adds a level
of complexity to the study of landscapes that is poorly
understood. Scale usually refers to the resolution at
which a pattern is measured [11]. Resolution is most
commonly used to refer to the grain or pixel size of
the data. However, it must be remembered that the
spatial and temporal extent of the study can also affect
the patterns perceived.

Ecologists have long been aware of the need for
multiple scale analyses because many characteristics
of landscapes vary with scale, such as vegetation [12],
animal density [13], patch geometry [14], and resource
availability [15]. Indeed multiple scale patterns have
been described in a number of different in plant
communities, including a semiarid grassland in New
Mexico, a series of calcareous openings in a deciduous
forest in Tennessee, a shrub-steppe system in
Washington, and a juniper woodland in eastern
Oregon [16], [17]. In addition, scale effects have been
shown to be important in disturbance regimes [18],
forest dynamics [19], biodiversity [20], and global
change [21].

A number of studies have been carried out on detection
and characterization of spatial patterns [22], [23], [24],
[25], [26], [27] and, as a rsult, numerous metrics have
been developed. However, many of the metrics and
indices used to describe spatial pattern are scale
dependent. For example, individual patches reveal
scaling behavior in patch shape, patch boundary, and
fractal dimension [14]. Mosaics of patches also reveal
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fractal scaling in total patch boundaries, patch centers
of mass, and patch area distribution [28]. Diversity,
dominance, contagion, and autocorrelation indices
have been shown to be sensitive to changes in spatial
scale across a landscape [3], [29], [30]. Despite these
dependencies, few studies have specifically addressed
the question of how changing scale affects the results
of spatial analysis [3], [29]. Most ecological studies
occur at a fine scale and small extent. Nonetheless,
ecologists are being challenged to scale up to broader
extents and scales. Particularly, in order to understand
the complex interactions between land and the
atmosphere, ecologists must convey information about
fine-scale ecological patterns and processes to broad-
scale applications [31]. Although problematic, the
issue of scaling can be addressed through purposeful
manipulation of the scale of observation or
renormalization to discover how phenomena change
steadily, and predictably, with scale [11].

Remotely sensed data are available at a number
spatial and temporal resolutions, and as such, are
appropriate for studying scale effects, with changing
resolution. Also, remotely sensed data are synoptic,
allowing us to observe large areas at a time and obtain
consistent measurements [8]. Cullinan et al. [17]
found remotely measured scales of pattern to be highly
correlated with those detected in field-based
measurements. Thus, satellite imagery can be a useful
tool for detecting ecological change associated with
changes in scales of vegetative patterns provided it is
spatially explicit enough to detect those changes [17].
However, this leads to another question: what is the
appropriate grain size to look at ecological processes?
As grain size decreases, the volume of data increases
geometrically and can lead to limitations in storage
and computer processing. Thus, the use of very high
resolution remotely sensed data may be limited to
small regional studies [8].

In addition, as resolution increases so does variability
lending complexity to analysis of the data [8], [30].
For example, at very large pixel size, only broad
vegetation classes can be distinguished. As resolution
increases, each pixel represents a smaller area on the
ground. At a grain size equal to or below the size of a
tree canopy, individuals can be detected. At even
smaller grain sizes, each pixel can be a mixture of
individual leaves and gaps within a single canopy.
Waring and Running [8] suggest that choosing the
largest grain size possible is the best answer to this
problem. However, doing this can lead to missing finer
scale patterns. What are needed are the tools
necessary to scale from one grain size to another.
Ecological studies addressing this problem are limited
although it has been addressed more strongly in the
geologic literature (for an example see Openshaw and

Taylor [32]).  One approach to this problem is to
aggregate data systematically and examine changes
in pattern as scale changes. As demonstrated by
Jelinski and Wu [30] aggregating real data does not
change the mean but decreases the variance.
Aggregation has a smoothing effect resulting in the
loss of spatial heterogeneity representing fine scale
patchiness. We would thus expect that as resolution
decreases there will be a reduction in the number of
patches while their sizes increase. If landscape
metrics change solely as a function of grain size they
should change smoothly as grain size increases .
Turner at al. [29], however, demonstrated the existence
of thresholds in spatial patterns in keeping with the
predictions of hierarchy theory. Hierarchy theory
postulates that ecological processes occur at distinct
scales due to the nonlinear interactions between biotic
and abiotic components of the system that result in
distinct scales of spatial patterning [31], [34]. This
suggests that as grain size changes, there will be
discrete changes in spatial patterns reflecting similar
changes in ecological processes. Thus, landscape
metrics should exhibit a stair step pattern as grain
size changes reflecting a hierarchical pattern.

From the above, we can arrive at two opposing
hypotheses: landscape metrics will vary smoothly with
changing grain size as pixels are aggregated reflecting
a decrease in variability. Or, landscape metrics will
show discrete changes as grain changes reflecting a
hierarchy of ecological processes. We addressed these
two hypotheses by investigating changes in landscape
metrics as a function of the grain size of remotely
sensed data. Additionally, we wanted to determine if
these changes could be modeled and, if so, could these
models predict scale change effects on landscape
metrics at either finer or coarser scales.

II. METHODS
Study Area

The research area is located north of Flagstaff, Arizona
on the leeward side of San Francisco Mountains. The
region 1s semiarid with a bimodal precipitation
pattern. Two separate study sites were chosen based
on the availability of remotely sensed data (Figure.
1). The first site is located along Deadman’s Wash
and represents a gentle topographic gradient. This
study area was the source of data for model
development. The second, more topographically
diverse site is located to the north and was used for
model verification. Both sites have a variety of
vegetation types ranging from Great Basin desert
scrub in the lower elevations, through pinyon-juniper
woodlands, ponderosa pine forests and spruce-fir
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Figure 1. False color infrared Landsat thematic mapper image of the study area overlaid by the two NS001
images used. Site A was used to develop the models and site B to test the models for predictive capability. Site
B is more topographically diverse than site A, including a number of cinder cones.

forests at the higher elevations.
Remote Sensing

In July of 1995 a NS001, a thematic mapper simulator,
was flown over the study area in a C-130 airplane.
The NSO001 records radiance in eight wavelength
bands, seven of which are analogous to the Landsat
thematic mapper bands and an additional band in the
mid infrared. The pixel size of NS001 data in this
study was approximately 5 m on a side. In addition,
we used a summer, 1996, Landsat thematic mapper

scene of the study area with pixel size of 30 m (Figure.
1).

Each image was georectified to within 1.4 pixels using
differentially corrected GPS control points and
atmospherically corrected using a dark-object
subtraction technique developed by Chavez [33].
Image processing was done in ER Mapper version 5.5.
We extracted equal area plots from the two NS001
images and used those to clip the same areas from
the TM image. Bands 3 and 4 (red and near infrared)
were exported as ASCII files from ER Mapper. A Unix
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script file was used to convert the ASCII files from
space to comma delimited to export them as tables to
ArcView. ArcView was used to convert the files to
ARC/Info shape files, that were converted to grid files.
The net result was two grid files (bands 3 and 4) for
each of the TM and the NS001 images.

The NS001 grids were resampled to pixel sizes of 10
m, 15 m, 20 m, and 25 m on a side using bilinear
interpolation. Bilinear interpolation resamples the
grid by distance weighted averaging of the nearest
four neighboring pixels of each pixel in the grid. We
felt this method best approximated the smoothing that
would occur if a sensor with a larger instantaneous
field of view had recorded the data.

The resulting grids were recombined into normalized
difference vegetation index (NDVI) images. NDVI is
a commonly used vegetation index which is based on
the differential reflectance of vegetation to red and
near infrared light (e.g. [36], [37], [38], [39]). The ratio
of these two bands is indicative of the amount of
chlorophyll present. NDVI is calculated as:

(NIR - R)/(NIR+R) and is high when vegetation is
dense and low over sparse vegetation.

NDVT of images collected at different times have been
shown to vary seasonally and annually [38]. However,
NDVT is a less subjective measure of vegetation
patterns than classification schemes that depend on
the interpretation of the user. We classified the NDVI
values into three classes based on dividing the
histograms of the images in thirds to minimize

differences in NDVI between the NS001 images and
the TM images which could be due to inter annual
variation. The three classes represent low, medium,
and high vegetation coverage on each image which
also served to reduce noise from soil reflectance. The
resulting classified NDVI images with resolutions of
5m, 10 m, 15 m, 20 m, 25 m, and 30 m, were exported
from ARC/INFO as ASCII rasters.

It should be noted that the range of scales, from 5 m
to 30 m, is limited. Initially we planned to include
AVHRR data with 1 km pixels. However we chose a
study area that covered approximately 550 by 2200
pixels in the finest resolution NS001. This was the
most that we could analyze using the available
computers. Although this data set consisted of
1,210,000 pixels it only corresponded to an area of 30
km? on the ground. Hence an AVHRR scene of the
same size wold only consist of 30 pixels, not enough
for this analysis. We chose, therefore, to limit the range
of resolutions we would look at to those defined by
NSO001 and Landsat thermatic mapper sensors
recognizing that we might miss some ecologically
important scales by doing so.

Spatial Analysis

We used FRAGSTATS software to analyze each
vegetation map and to quantify landscape structure
with a number of metrics [40]. We investigated the
scale dependency of a subset of the available metrics,
especially how patch and edge indices change with
spatial scale. This analysis concentrated on metrics

Tablel. Landscape analysis of NS0001 image and the corresponding area clipped from a thematic mapper

image.
NS001 ™ % Change

Total Area (ha) 11685.855 11898.407 1.8
Largest Patch Index (%) 14,436 49.312 70.7
Number of Patches 118191 1600 -7286.9
Patch Density (3/100 ha) 1011.402 13.447 74214
Mean Patch Size (ha) 0.099 7.437 98.7
Patch Size Coeff. Of Variation 8218.227 2072.610 -296.5
Total Edge (m) 8806446 972705 -805.4
Edge Density (m/ha) 753.599 81.751 -821.8
Landscape Shape Index 220.072 23.625 -831.5
Mean Shape Index 1.266 1.323 +.3
Mean Patch Fractal Dim. 1.063 1.043 -1.9
Area-weighted Mean Fractal Dim. 1470 1.284 14.5
Shannon’s Diversity Index 0.907 0.975 7.0
Simpson’s Diversity Index 0.536 0.585 8.4
Modified Simpson’s Diversity Index 0.767 0.878 12.6
Patch Richness Density (#/100 ha) 0.026 0.025 -+0
Shannon’s Eveness Index 0.826 0.888 7.0
Simpson’s Eveness Index 0.803 0.877 8.4
Moditied Simpson’s Eveness Index 0.698 0.799 12.6
Interspersion/Juxtaposition Index (%) 88.653 87.750 -1.0
Contagion (%) 30.564 36.642 16.6
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Figure 2. The classified NS001 (NS) and thematic
mapper (TM) images. Light gray represents areas
with low NDVI’s, medium gray with medium NDVT’s
and dark gray with high NDVT’s.

such as the amount and distribution of patch types
and of corresponding edges. This emphasis was
designed to determine how level of resolution affects
the perception of landscape structure and habitat
fragmentation. The results of the metric calculations
were regressed against the grain of the image using
nonlinear curve fitting routines (Sigmaplot version
4.0). The regression equations were used to model
changes in landscape metrics as a function of grain
size. We then applied these models to a different,
independent landscape to determine if they were
generally applicable.
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Figure 3. Regression analysis of patch indices as a
function of grain size. The dots indicate actual data
and the lines indicate the values predicted by the non-
linear regression. The R? values are adjusted for the de-
grees of freedom.

III. RESULTS
Images

Figure 2 shows the classified NS001 and thematic
mapper images with a classification scheme of low,
medium and high NDVT’s. This classification scheme,
although not directly determined by analysis of the
spectral signature of the vegetation, does roughly
represent the location of different vegetation types.
Thus, the low NDVI values occur in areas consisting
of grass and shrublands, the middle NDVI values occur
in pinyon-juniper woodlands and the high values in
ponderosa pine and mixed conifer forests.
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Figure 4. Three grain sizes of the clipped NS001 image. The top image (A) is the original NS001 image with
a grain size of 5 m. The middle (B) and bottom (C) images show the NS001 resampled to a grain size of 10 m

and 20 m respectively.

Visual analysis of these two images confirms that
although grain size changes from 25 m? to 900 m2, the
spatial distribution of the classes across the landscape
is consistent. Different total areas were calculated
for these two images because of the irregular shape
of the images, making precise clipping of the TM
difficult and that imprecision was compounded by the
different pixel sizes. The images were clipped to
rectangular shapes for the rest of the analysis to

minimize the problem. Three grain sizes of the clipped
NSO001 image are shown in Figure 4. Resampling the
data results in a smoothing effect as detail is lost but
the general landscape pattern remains the same.

Landscape Metrics

An analysis of the two landscapes resulted in
significantly different landscape metrics (Table 1). The
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Figure 5. Regression analysis of edge metrics as a
function of grain size. Actual data is depicted as dots
and predicted values as a line. The R? values are
adjusted for the degrees of freedom.

number of patches and edge metrics changed in a
dramatically nonlinear fashion while others, such as
the diversity indices, remained somewhat robust. The
results of the analyses of patch metrics are shown in
Figure 3. All of the patch metrics fitted a smooth curve.
Both the number of patches and patch density display
inverse quadratic behavior as a function of grain. The
similarity of results is not surprising, as these two
metrics are directly correlated. However, the
quadratic behavior is not entirely expected. We
expected that the number of patches would be
determined by the square of the resolution because
as pixels are aggregated the size of the pixel increases
as a square function. Thus, the smoothing of the data
would also be expected to be a square function. Mean
patch size also increased with resolution again as a
quadratic function, the inverse of number of patches.

Edge metrics are depicted in Figure 5. Both total edge
and edge density display inverse quadratic behavior
as a function of grain size. Thus, perceived edge and
edge habitat decrease smoothly with increasing grain
size. Mean patch fractal, on the other hand, is a
negative exponential function of grain size (Figure.
6). This result is interesting because the fractal
dimension is indicative of the degree of complexity of
the edge of the patch. These results show that as grain
size increases, patch shape seems to become
exponentially less complex. Thus as individual
patches (i.e., trees in this analysis) are aggregated into
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Figure 6. Regression analysis of patch fractal
metrics. The dots indicate actual data and the lines
indicate the values predicted by the nonlinear regres-
sion. The R? values are adjusted for the degrees of
freedom.

larger patches (indicative of stands) the overall fractal
dimension of the landscape becomes smaller. For this
reason, the area weighted mean patch fractal which
displays a nearly linear behavior with regards to grain
size (Figure. 6) may be a better indicator of the changes
taking place with aggregation. Area weighted mean
patch fractal is the fractal dimension of individual
patches weighted by their size and averaged over the
landscape. This metric takes into account the
increasing size of the patches relative to the
complexity of their edges and is indicative of the
smoothing effect associated with aggregating pixels.

The mean shape index (Figure. 7) measures the
complexity of patch shape relative to a square for
raster data and increases as patches become less
square [40]. This metric does not behave as a smooth
curve as a function of grain size (Figure. 7). Rather, it
shows discrete jumps between grain sizes of 10 m and
15 m and between 25 m and 30 m. This stair step
pattern is expected if the metric is following a
hierarchical pattern. However, more data points are
necessary to determine that this is a discontinuous
curve. On the other hand, landscape shape index,
which measure the perimeter to area ratio for the
entire landscape [40], behaves as expected. As pixels
are aggregated, patches become larger patches with
fewer edges thus the landscape shape index decreases
with increasing grain. The final metric examined was
mean nearest neighbor (Figure. 7). This metric
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measures the edge to edge difference between patches
of the same type. This distance increases smoothly as
grain size increases reflecting the aggregation of
different patches such that patches become large and
the distance between patches centers also becomes
greater.

Model Predictions
All of the metrics tested, with the exception of the

mean shape index, varied smoothly as a function of
grain size and were modeled to test whether or not

Figure 8. The classified NS001 images of the two
study sites. Site Bis north of site A and includes two
cinder cones located near the center of the image.
Light gray indicates low NDVI, medium gray medium
NDVI, and dark gray high NDVI.

these models were applicable to another landscape.
A second study site was chosen north of the first that
represented a very different landscape (Figure. 8).
Study site A, used to develop the models, represents
an elevational gradient with generally higher
elevations on the left side of the image. The vegetation
reflects this gradient such that higher NDVI values
occur in the higher elevations in both site A and site
B. However, site B is more topographically diverse
incorporating rapid changes in elevation. For example,
two cinder cones occur side by side near the center of
the image and each has patches of high NDVI near
their apexes. As a result of this topographic
heterogeneity the different classes tend to occur in
discrete patches throughout the landscape as opposed
to the progressive change from one class to another
seen in landscape A.

This difference in landscape structure may partially
explain the lack of fit of the models to the data from
study area B (Figure. 9). However, the data do fit the
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Figure 9. Patch Metrics for study site B compared to predictions made from models developed for study site
A. The dots represent actual data from study site B and the lines predicted values.

same general trend of that predicted by the models.
For example, number of patches and patch density
still fit an inverse quadratic curve although they are
shifted to the right. The model underestimates the
number of patches and patch density while
simultaneously overestimates mean patch size. This
general pattern fit all of the metrics tested although
only a few are shown.

IV. DISCUSSION

We analyzed the behavior of a variety of commonly
used landscape metrics as a function of grain size
while holding extent constant. All of the metrics
investigated displayed a strong scale dependence.
Aggregating pixels to ever increasing grain size
resulted in a loss of spatial heterogeneity in the data.
The landscape appears less patchy at coarser grains
with fewer but larger patches. In other words, the
landscape appears more fragmented at finer scales.
Total edge and edge density also decreased with
increasing grain size due to the aggregation of
individual patches into larger patches. Edge effects
are important to many ecological studies since edges
represent an area of rapidly changing conditions such
as light intensity, moisture availability and wind
intensity. The physical conditions along such edges
support specialized associations of species [41]. In
addition, edges may act as amplifiers or filters for the
transfer of energy, matter, organisms, and disturbance
between adjacent patches [10], [7]. Thus perception

of the amount of edge habitat available in a landscape
may have important ramifications in conservation
biology and in the design of refuges. The mean patch
fractal dimension is related to the amount of edge in
the landscape as it is a function of relationship
between the perimeter and area of each patch. Soitis
not surprising that the mean patch fractal dimension
also decreases with increasing grain size. Fractal
dimension, however, is an indicator of the complexity
of the landscape so a landscape examined at a coarse
grain appears to be less complex than the same
landscape examined at a finer grain. Interestingly,
the mean shape index, which is based on the average
perimeter-to-area ratio for all patches in the
landscape, showed just the opposite behavior and was
the only metric to display hierarchical behavior. Mean
shape index increases with increasing grain size
suggesting that the shape of patches becomes more
complex as grain size increases. This is exactly the
opposite effect expected from smoothing the data but
is similar to that found by Strand et al. [43].

All of the metrics except the mean shape index varied
smoothly as a function of grain size. This is what we
had expected due to the smoothing effect of pixel
aggregation. However, given the small range of scales
examined, we cannot discount the possibility of
hierarchical patterns at either smaller or larger scales.
Due to the smooth behavior, however, we were able to
fit the data to nonlinear models. This suggests that it
1s possible to scale up or down within a landscape, at
least within the limits of the range we examined. Our
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attempt to apply these models to an independent
landscape were unsuccessful. The data from the
second landscape did, however, follow the same
general pattern as that of the first landscape. This
result suggests that general scaling rules might be
developed by further investigation using a wider range
of scales and a greater number of data sets.

In conclusion landscape metrics are extremely
dependent upon the grain size of the data. A fine grain
size affords more detail but results in the landscape
appearing to be more highly fragmented and complex
than the same landscape examined with a coarser
grain. In view of this, extreme caution must be
exercised in comparing landscapes at different scales
and in choosing the resolution of the data that best
describes the process under study.
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