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Abstract

As a scale dependent measure of heterogeneity, lacunarity has been applied to the analysis of structures in both
fractals and non-fractals. In this paper, the lacunarity concept and some lacunarity estimation methods are briefly
described, then a Lacunarity Analysis extension for ArcView GIS (ESRI) is introduced. Using binary and gray-
scale images, several examples are also given for lacunarity analysis of spatial heterogeneity. Experiments with
gray-scale image textures show that a new lacunarity estimation method can provide more accurate heterogeneity
measurement than some existing methods. The results suggest that lacunarity analysis is a promising tool for
spatial heterogeneity measurement in a GIS environment.

I.INTRODUCTION

Spatial heterogeneity exists in both natural and
human-dominated phenomena, and affects many
processes on this planet. For example, spatial
heterogeneity associated with soil properties, land
cover, and localized precipitation influences soil
moisture and surface fluxes [1]. Spatial heterogeneity
also affects the use of remote sensing measurements
at various resolutions for deriving surface parameters
such as Leaf Area Index (LAI), and for estimating
processes such as gas and energy exchange between
the surface and the atmosphere [2]. In landscape
ecology, the effects of spatial pattern on ecological
processes is a key problem area [3], and coexistence
through spatial heterogeneity has been shown for both
animals [4] and plants [5]. In addition, spatial
heterogeneity varies at different scales, and scaling
has been recognized as one of the most important and
pressing challenges across all fields of Earth sciences
[6-10]. To better understand the pattern of spatial
heterogeneity, the effects of changing scale must be
taken into account.

Lacunarity is introduced by Mandelbrot [11] to
describe the characteristic of fractals of the same
dimension with different texture appearances. The
lacunarity concept has been extended to any set that
is not necessarily fractal at any arbitrary scale [12],
which allows for application of lacunarity to both
fractals and non-fractals. In fact, many natural objects
are fractal only in a limited scale range rather than
in the full scale range [13][14].

Spatial heterogeneity is one of the questions standing
in the way of confirmatory spatial data analysis. Over
the years, much emphasis has been put on the
modeling capabilities of geographic information

systems (GIS) so that that their full potential as an
analytical tool is realized. Increasingly, the
measurement of spatial heterogeneity and effects of
scaling have become important issues in geographical
information science. In a previous paper [15], the
author proposed a new method for lacunarity
estimation with gray-scale images. In this paper, the
lacunarity concept and some lacunarity estimation
methods are introduced, then the development of a
Lacunarity Analysis extension for ArcView GIS (ESRI)
is presented. Several examples are also given for
lacunarity analysis of binary and gray-scale images.
Finally, some aspects of lacunarity for heterogeneity
measurement are discussed.

II. FRACTAL GEOMETRY AND LACUNARITY

Many natural objects are so complex and irregular
that models of classical geometry are insufficient to
describe them. Since the advent of Mandelbrot’s work
[11], fractal geometry has received increased attention
as a novel model for natural phenomena. Many
researchers attempted to use fractals in different fields
such as sedimentology analysis [16], particle
morphology description [17], computer graphics
generation [18], geological structural analysis and
geophysical data analysis [19][20], geomorphological
surface study [21], and spatial statistics [22].
Generally, the application of fractal geometry has led
to a far greater understanding of fundamental
processes in physics and chemistry which influence
many other fields [23][24].

Fractal dimension can be viewed as a measure of
irregularity of many physical processes. There has
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Figure 1. Sample images of three rock units (79 x 79
pixels each) from a Shuttle Imaging Radar (SIR-C)
imagery (L-band HH-polarization) near Yuma, Ari-

zona, USA. Pixel size is 12.5 by 12.5 meters.

Basalt

been increasing interest in the use of fractal dimension
for spatial heterogeneity modeling in computer vision
and pattern recognition [13][14][25-27]. In areas of
remote sensing applications, a number of studies have
been carried out to evaluate the usefulness of fractal
dimension for analysis of remotely sensed images of
land surfaces [28-34]. However, different fractal sets
may share the same fractal dimension and have
strikingly different textures [11][35], just like visually
different images may have the same gray-level
histogram. As an example, Figure 1 shows three
images of rock units extracted from a Shuttle Imaging
Radar (SIR-C) imagery (L-band HH-polarization) near
Yuma, Arizona, USA. Using a differential box counting
method for fractal dimension estimation proposed by
Sarkar and Chaudhuri [26], the fractal dimension
values for the three sample images are 2.49, 2.48, and
2.49, respectively.

It can be seen that the fractal dimension of the three
rock unit images can be very similar, even though they
have different texture appearances. For discriminating
these textures, fractal dimension alone would be
useless. Mandelbrot [11] introduced the term
lacunarity, from Latin lacuna for gap, to describe the
characteristic of fractals of the same dimension with
different texture appearances.

Lacunarity measures the deviation of a geometric
object, such as a fractal, from translational invariance
[36]. A geometric object is translationally invariant if
different parts of the object are the same. Lacunarity
isrelated to the distribution of gap sizes in a geometric
object: homogeneous geometric objects have low
lacunarity because all gap sizes are the same or almost
the same, whereas heterogeneous objects have high
lacunarity because gap sizes are quite different. At a
given scale, lacunarity represents how similar are
parts from different regions of a geometric object to
each other. It should be noted that objects which are
homogeneous at small scale can be quite
heterogeneous when examined at larger scale and vice
versa. Therefore, lacunarity can be considered a scale
dependent measure of heterogeneity or texture [36].
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Figure 2. Illustration of the gliding-box method. The
mesh size of the underlying lattice and the radius of a
particle are 2a and ¢, respectively. The gliding-box is a
square of side 2r, which is a multiple of 2a. (Adapted
from Allain and Cloitre [12])

III. METHODS OF LACUNARITY ESTIMATION

Methods for calculating lacunarity were given by
Mandelbrot [11], Gefen et al. [37], and Lin and Yang
[38]. Allain and Cloitre [12] found that most of the
methods impractical or difficult to characterize a wide
range of structures. Following a general approach
which consists of analyzing the mass distributionin a
deterministic or a random set, Allain and Cloitre [12]
proposed a gliding-box algorithm of defining the
lacunarity of the set. The gliding-box algorithm has
been used for lacunarity analysis of binary images [39-
42]. The algorithm is briefly introduced below.

Lacunarity of Binary Images — Gliding-box
Algorithm

In the gliding-box algorithm, the set under study is
placed on an underlying lattice with a mesh size equal
to 2a (Figure 2). o.is lower or equal to particle radius
E.

Now consider a box of radius r which “glides” on this
lattice in all the possible manners, with its center being
placed successively on the different sites of the
underlying lattice. Let us define n(M,r) to be the
number of gliding boxes with radius r and mass M.
The probability function Q(M,r) is obtained by dividing
n(M,r) by the total number of boxes. It is convenient
to analyze the properties of probability function Q(4\/,r)

g Ly
Zg" (=) M"Q(M,r) (1)

M
The lacunarity at scale r is defined by the mean-square
deviation of the fluctuations of mass distribution
probability Q(M,r) divided by its square mean:

staring from its statistical moments Z
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The definition for lacunarity (equation 2) is general
since it can be applied to any set which is not
necessarily fractal at any arbitrary scale r.

A(r)

Plotnick et al. [39][40] extended the concept of
lacunarity and the gliding-box algorithm to the
description of spatial distribution of real data sets,
including, but not restricted to, fractal and multifractal
distributions. Based on a random binary map which
has two values (0 for empty and 1 for occupied), they
extended equation 2 as:

A =25 e )

S (r)

where ¢ (r) is the mean and S2(r) the variance of the

number of the occupied sites at scale r (i.e., gliding-
box size r x r).

Lacunarity of Gray-scale Images

Spatial data sources for a geographic information
system may have a three-dimentional structure, i.e.,
x and y coordinates and z values. For example, digital
elevation models (DEM), population density maps, and
remotely sensed images all have «x, y, and z values and
can be displayed as gray-scale images. Gray-scale
images can be converted into binary quartiles [41][42],
then lacunarity indices can be derived from the binary
quartiles using the gliding-box algorithm. However,
information on the spatial heterogeneity of a binary
quartile may not reflect the spatial heterogeneity of
the original gray-scale image due to the loss of spatial
information during conversion from gray-scale (for
example 8-bit) to binary (1-bit). It is therefore essential
to obtain lacunarity of a gray-scale image directly.

Voss [35] proposed a probability method to estimate
the fractal dimension and lacunarity of image
intensity surfaces. Let P(m,L) be the probability that
there are m intensity points within a box of size L
centered about an arbitrary point of image intensity

surface, we have
N

;P(m, L)=1 4

where IVis the number of possible points in the box of
L. Letting

N

M(L)=") mP(m,L) (5)
m=l

and

M?*(L) = ZmlP(m, E) (6)

m=l

the lacunarity is defined as
M*(L)—(M(L))*

A(L) = ;
(M (L))

()

In an earlier paper, the author proposed a new method
of lacunarity estimation for gray-scale images [15].
The method was based on the differential box counting
method proposed by Sarkar and Chaudhuri [26], and
the gliding-box algorithm [12]. Comparisons of the new
method and the method by Voss [35] can be found in

Section 5 of this paper.

IV. IMPLEMENTATION OF LACUNARITY
ANALYSIS IN GIS

A Lacunarity Analysis extension for ArcView GIS
(ESRI) is developed using the Dialog Designer and
Avenue scripting language of ArcView GIS and the C

Formats: BMP, BSQ, BIL, BIP, ERDAS,
IMAGINE, JPEG, Sun rasterfiles, TIFF
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Figure 3. Flow chart for the Lacunarity Analysis ex-
tension
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(B) Pattern 2

(C) Pattern 3 (D) Pattern 4

Figure 4. Binary images of the four spatial patterns

programming language. The Dialog Designer and
Avenue provide tools for developing a Graphical User
Interface (GUI), while the C programming language
implements calculation of lacunarity in the moving
windows across the input image, which is relatively
intensive in computation. For lacunarity estimation
of binary images, the gliding-box algorithm proposed
by Allain and Cloitre [12] was used. For gray-scale
images, a new method based on differential box
counting and gliding-box algorithm was employed [15].
The design of the Lacunarity Analysis extension is
shown in Figure 3. The output results from lacunarity
analysis are in ESRI GRID format, which allows for
convenient integration of the results into other
ArcView GIS extensions, such as Spatial Analyst and
ModelBuilder (ESRI). In case the user selects the input
image size as moving window size, the output is not a
grid but rather a chart showing the lacunarity curve.
The Lacunarity Analysis extension can be used on PCs
with ESRI’s ArcView GIS (version 3.0 or later) on
Windows 95/98/NT (Microsoft) operating systems.
With minor modifications, the extension can be used
on other platforms.

V. EXAMPLES

Example 1: Binary spatial patterns

Figure 4 shows four 11 x 11 binary image patterns,
with white pixels representing 1’s, and black pixels

representing 0’s. There are 61 white pixels and 60
black pixels for all four patterns. The lacunarity
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Figure 5. Lacunarity curves of the patterns shown
in Figure 4.
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Figure 6. Lacunarity curves of the rock unit images
shown in Figure 1.

measurements at scalesr=2, 3,4, 5,6, 7, 8, and 9 are
obtained for each pattern (Figure 5). It can be seen
that lacunarity measure does reflect the geometry
structure of the patterns. For example, pattern 2
(Figure 4B) has larger gaps than other patterns, and
lacunarity is larger than that of the other three
patterns due to the increase in fully occupied and
totally empty boxes. In contrast, pattern 4 (Figure 4D)
is a totally regular (i.e., translationally invariant)
image, and the lacunarity is equal to 1 or very close to
1 because the number of occupied squares would be
almost constant at any location.

Example 2: Sample images of rock units

Now let’s go back to the three rock unit sample images
(Figure 1) presented in Section 2 of this paper.
Although they cannot be differentiated from each
other using fractal dimension, their lacunarity curves
are able to show their differences when the gliding-
box size changes form 2 to 9 (Figure 6).

Example 3: Brodatz textures

Image texture is also a reflection of spatial
heterogeneity. Figure 7A shows a mosaic of four
texture images taken from Brodatz’s album [43]. The
size of texture image mosaic is 400 by 400 pixels. The
texture image in the upper-left part of the mosaic is
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Figure 7. Comparison of lacunarity images. (A) Origi-
nal texture image (400 x 400); (B) and (C) are
lacunarity images derived from the second quartile
binary image of (A) at r = 3 and 5 respectively; (D),
(E), and (F) are lacunarity images obtained using the
new method [15] at r = 3, 5, and 7 respectively; (G),
(H), and (I) are lacunarity images obtained using the
Voss method [35] at r = 3, 5, and 7 respectively. The
moving window size is 15 x 15. r — gliding-box size.

referred to as Texture 1, the upper-right as Texture 2,
the lower-left as Texture 3, and the lower-right as
Texture 4. Some result images from different
lacunarity estimation methods are also shown in
Figure 7. The lacunarity curves for the four textures
are shown in Figure 8 with gliding-box size changing
from 2 to 9.

Figure 8 shows that the lacunarity curve of Texture 3
has a slower decay rate than that of the other textures,
and Texture 2 has higher lacunarity than Texture 3
when the gliding-box size (observation scale) r = 2. At
r=3, Texture 2 and Texture 3 have similar lacunarity.
With the increase of gliding-box size, the lacunarity
of Texture 3 is higher than that of Texture 2, and the
differences in the lacunarity values increase, as shown
also in the lacunarity images (Figure 7E, F). The
example suggests that two textures may be
differentiated at certain scales, even though they
cannot be differentiated at some other scales.

Using maximum likelihood classification, the result
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Figure 8. Lacunarity curves for the four textures
shown in Figure 7A (gliding-box sizer=2, 3, 4, 5, 6, 7,
8,9).
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Figure 9. Comparison of overall classification accu-
racy between lacunarity images generated from gray-
scale image using the new method [15] and quartile
binary images at different scales. Binary 1 represents
the first quartile binary image.

images from the new lacunarity measure [15] are
compared with those from the quartile binary images
derived from the gray-scale image (a method used in
[41] and [42]), and with the lacunarity measure
proposed by Voss [35]. Approximately 60 by 60 pixels
for each texture category are used as training sites,
and 1024 random points are used for classification
accuracy assessment of each resultant image. The
texture measurements are obtained using a 15 by 15
moving window for all the methods compared. It can
be seen that the lacunarity measures for gray-scale
image using the new estimation method in [15] can
generate more accurate classification accuracy than
lacunarity measures of the binary images, particularly
when the gliding-box size is larger than 2 (Figure 9).
When lacunarity images at different scales are
combined for classification, the method in [15] also
provide more accurate classification accuracy than the
method due to Voss [35] and gliding-box method for
binary images (Figure 10).

VI. CONCLUSIONS AND DISCUSSIONS

It has been shown in this paper that lacunarity can
be used for the analysis of spatial heterogeneity at
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Figure 10. Comparison of overall classification accuracy for combined lacunarity images generated using
different methods at different scales. A, B, and C are results from the new lacunarity estimation method [15]
for gray-scale images. A —scalesr=2, 3, 4, 5, 6, 7, 8, and 9 combined; B —scales r = 3, 5, and 7 combined; C —
scale r = 3 combined with lacunarity measures at directions 45° and 135° of the scale r = 3; D — result from the
method by Voss [35] for scales r = 3, 5, and 7 combined. E, F, G, and H are results from the 1%, the 2", the 3,

and the 4" quartile binary images for scales r

different scales. For gray-scale images in which texture
is an expression of spatial heterogeneity, a new
lacunarity estimation method [15] has been proved
to provide more accurate measurements for spatial
heterogeneity than the method proposed by Voss [35]
and the methods based on binary images [41][42]. This
can be attributed to the ability of the new method
that gives a better approximation to the image
intensity surface.

Texture of an image (binary or gray-scale) exhibits
the degree of spatial heterogeneity. Indeed, texture is
a very important spatial characteristic in an image.
Before introducing the lacunarity concept in his book,
Mandelbrot [11] commented that: “Texture is an
elusive notion which mathematicians and scientists
tend to avoid because they cannot grasp it. Engineers
and artists cannot avoid it, but mostly fail to handle
it to their satisfaction.” It is reasonable to expect that
spatial heterogeneity can be better understood by
revealing several individual facets of image texture
through lacunarity analysis.

Implemented in a GIS environment, lacunarity
analysis provides a useful and convenient approach
to spatial heterogeneity measurement. Unlike other
studies where lacunarity analysis results are usually
expressed as interpretable graphics [39-42], this paper
shows that output from lacunarity can be in raster
format in additional to graphics, which enables the
integration of lacunarity analysis with other spatial
modeling functions in a GIS. In this paper, lacunarity
analysis is demonstrated on binary and gray-scale
sample images. It is desirable in the future to use real
dataset, such as remotely sensed images and other
raster data, to further explore the use of lacunarity
as a scale dependent measure for spatial
heterogeneity.
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