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Abstract

There are inevitably some errors or uncertainties in spatial data. Such kind of uncertainty will further influence the accuracy of
topological relations, which are obtained by reasoning from observation data. In this paper, a determination approach based on
relative possibility for topological relations under uncertainty is proposed. First, the effect of positional uncertainty on topological
relations is investigated and, statistical modeling of spatial data uncertainty is provided. Then a set of uncertain topological relations
for two imprecise regions were built upon a new formal model, proposed by Chen and Deng (2003). Further, some basic functions,
which are used for a valid link from positional uncertainty propagating to relation uncertainty, are derived. Finally, a simple example
is provided for the illustration of the approach presented in this paper.

LINTRODUCTION

One of the most fundamental properties of spatial objects in
the real world is topological relationship, which has been
widely investigated in GIS in recent years (Egenhofer et al,
1991; 1995; Chen et al., 2001; Liet al., 2002). Existing works are
based on crisp sets and involved in general topology such as
algebraic and point-set topology. However, there are inevita-
bly errors or uncertainties in spatial data, which are used to
represent reality world (Goodchild and Gopal, 1989; Guptill
and Morrison, 1995; Burrough and Frank, 1996; Shi and Liu,
2000). Further, these errors or uncertainties are propagated
with spatial transformations and operations, and will cause
the inaccuracy of topological relations obtained by reasoning
from observation data (Chen, 1996; Winter, 2000).

In recent years, some scholars like Chen (1996), Clementini
(1996), Cohn (1996), Molenaar (1998), and Winter (2000), have
paid attention to uncertain topological relations, which are
mainly caused by location uncertainty of spatial objects. Sev-
eral efforts have been made on formal description of topologi-
cal relations between fuzzy objects. The first one is the Egg-
yolk model introduced by Cohn and Gotts (1996), which is
built upon region connection calculi (RCC) theory. In the Egg-
yolk model, the egg is the maximal extent of a vague region
and the yolk is its minimal extent, while the white is the area of
indeterminacy. 46 relations are identified based on the so-called
limits on the possible ‘complete crisping’ or precise versions
of a vague region. Another is the algebraic model proposed
by Clementini and Di Felice (1996). This model is based on the
9-intersection approach. In its definition, a region is composed
of a core region with a broad boundary. The interior and exte-
rior of a region with a broad boundary are open sets, while the
broad boundary is a closed set. By the use of 9-intersection
approach, 44 different relations are identified. Fundamentally,

the above-mentioned two models are the extension of the no-
tation “simple region” into fuzzy simple region. The egg-yolk
model, which is based on logic, extends the region into both
the egg and its yolk and, both yolk and white are changeable.
The approach is similar to which was adopted to analyze to-
pological relations between regions with holes (Egenhofer et
al., 1994). The model is difficult to extend it to the relationship
between line and region since it is the extension of RCC theory.
The algebraic model, which is based on geometric, splits a
simple region into yolk and white and the white is ‘equivalent’
to the crisp boundary of the region. They assume that the
extent of the broad boundary of a region is much smaller than
of its interior. Actually, this assumption is quasi-topological.
It describes an aspect of the object that remains invariant with
respect to some common topological transformations such as
rotation and scaling. In their assumptions the boundary may
be homeomorphic to a one-dimensional circle, and may also
be homeomorphic to a two-dimensional region. In addition,
Molenaar (1998) developed a determination approach of fuzzy
topological relations. In the practical applications it is often
more difficult to determine the fuzzy membership, and to inter-
pret the fuzzy membership value for a topological relation. In
contrast to fuzzy set approach, Winter (2000) presented a sta-
tistical model for quantitative assessment of uncertain topo-
logical relations. This model is not suitable for simple line
objects, let alone complex objects. As a result, morphological
distance used in his paper cannot act as a good bridge be-
tween location uncertainty and relation uncertainty.

The remainder of this paper is structured as follows: In Sec-
tion 2, uncertainty of spatial data (point line, and region) is
analyzed and modeled based on the assumption that posi-
tional uncertainty of point complies with a 2-dimensional nor-
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mal distribution. By means of a new formal model, a set of
topological relations between two imprecise regions is given
in Section 3. A combination of statistical modeling of posi-
tional uncertainty with description of topological relations is
considered, and a determination approach based on relative
possibility is proposed in Section 4. Section 5 provides a simple
example for illustration of the approach. This paper ends with
some discussions and conclusions in Section 6.

II. REPRESENTATION OF UNCERTAIN SPATIAL DATA
Measures of spatial graphic structure under uncertainty

The present paper exclusively focuses on spatial entities with
definite boundary locations in the real world, like highway,
buildings. In this case, location uncertainty is mainly from
digitalization, scanning or field measurement. It is therefore
reasonable to assume that positional uncertainty of spatial
data is characterized by randomness. Henceforth, the spatial
objects with randomness are called imprecise objects, includ-
ing imprecise point, imprecise line, and imprecise region.

Definition 1: For any imprecise line, L all of its vertex should
satisfy Deg(P;) > 1, in which Deg(P;) denotes the connective
degree related with vertex P;. If there is the equation, Deg(P)=1,
the vertex P; is the boundary point of the imprecise line.

Definition 2: If there is a chain between two imprecise nodes,
we call the two imprecise nodes connective. Furthermore, if all
pairs of nodes in a planar graph are connective, the graph is
also connective.

Any graph in the plane, G, is composed of imprecise nodes,
imprecise edges and imprecise faces, and the numbers of these
elements satisfy the following formula

f+n—e=c+1 (1)
where f, n, e are the numbers of face, node and edge, and c is
the number of connective branches of G. If a planar graph is
connective, i.e. c=1, formula (1) is reduced to

f+n—e=2 )
Formula (2) is the famous Eula theorem, which is often used to
check topological inconsistency. Here it is applied to analyze
changes of spatial graphic structure under the effect of uncer-
tainty. Let us look at Figure 1. In case (a), it satisfies the ex-
pression f + n — e = 2, but not for case (b). In topological
aspect, a qualitative change occurs in between them. The to-
pological relations in (a) and (b) are described as ‘overlap’
and ‘disjoint’, respectively. In the real world the true relation
between A, and A, is possible ‘meet’. Hence, it is necessary to
measure the uncertainty for a determination to be some topo-
logical relation.

Modeling of spatial data uncertainty

For uncertainty of positional data, there are considerable re-
search documents (Shi, 1994; Gong et al., 1995; Leung and

(b) disjoint

(a) overlap

Figure 1. Effects of positional uncertainty on spatial graphic
structure

Yan, 1998; Shi and Liu, 2000). Upon the assumption that spa-
tial data uncertainty is characterized by randomness, it can be
further modeled statistically. In GIS databases, a point in a 2-
dimensional space, P;, is measured by its coordinate (x, y), and
a line or arc L; represented by some connective points, P, P,,
..., P,, while an area, A, demarcated by a sequence of bound-
ary lines, denoted as L,, L,,..., L,. Moreover, positional uncer-
tainty of a point in a line (or region boundary) will further
affect location exactness of the line or the region boundary.
Geometrically, any point in a line can be linearly represented
by the two adjacent end-points (Shi, 1994)

Pi=1 P+ (1-1) Py, 3)
where ¢ is a parameter of splitting ratio of length. Its value
equals |P; P, I/IP; P;,,l. For simplicity, it is assumed that posi-
tional uncertainty of a point complies with a normal distribu-
tion. Mathematically, such point may be regarded as a random
variable. Moreover, if a random variable can be expressed as a
linear combination of other two random variables complying
with normal distribution, then the random variable obtained
by combination also satisfies a normal distribution. As a re-
sult, any interpolation point in line or region boundary, which
is determined by formula (3), will be regarded as a random
variable complying with a normal distribution. On the basis of
this, a random line can be regarded as a normal random pro-
cess (Shi and Liu, 2000), and a random region as a normal
random field (Liu et al., 1998). The geometric projections of
their spatial distributions in a 2-dimensional plane correspond
to a band-shape region and a donut-shape region (see Figure
2), which are called ‘g-band’ and ‘g-donut’ in the previous
papers, respectively.

1. TOPOLOGICAL RELATIONS BETWEEN IMPRECISE
REGIONS

Topological relations and the conceptual neighborhood graph

Currently, several formal models for description of topological
relations are available, such as RCC model, 4/9-intersection
model, and so on. Clementini et al. (1995) made a comprehen-
sive analysis for these models from the view of identification
and representation of topological relations. It is pointed out
that the 4-intersection model is identical with the 9-intersec-



Geographic Information Sciences

Vol. 10, No. 1, June 2004 75

—_—

e @

—

\,

)

R

Figure 2. Visual g-band and g-donut of imprecise line and
region in a 2-dimensional plane

tion model for identification of topological relations between
two simple regions. In addition, the problems for the 4/9-inter-
section models have been discussed in some research docu-
ments, such as Chen et al. (2001) and Li et al. (2000, 2002). The
model proposed by Chen et al. (2001), which is called Voronoi-
based 9-intersection model, can overcome partial shortcom-
ings of the 9-intersection model, and further the model pro-
posed by Li et al (2002) can distinguish more topological rela-
tions than the Voronoi-based 9-intersection model. In recent,
Chen and Deng (2003) presented a new 4-intersection-differ-
ence model (abbreviated as 4ID model), which consists of two
intersection sets and two difference sets, i.e.

A’ NA° A —AQ} @

(A’A’))z
ety [AZ—Al 0A, N 0A,

where Aio and aAi (i=1,2) are interior and boundary of A;, re-
spectively. 4ID model is a binary formal model for topological

relation, element of which takes value ) or —¢ . By using of

the 4ID model, topological relations between two certain re-
gions in a 2-dimensional space can be distinguished into 8
families. These relations are named ‘disjoint’, ‘meet’, ‘over-
lap’, ‘contains’, ‘covers’, ‘inside’, ‘coveredby’, and ‘equal’,

O oW

[¢ ﬁq [czﬁ ﬁq
- ¢ plAal”
disjoint meet

contains coveredby

as listed in Figure 3. It has been pointed out that topological
relations may convert from one caregory to another with
changes in geometry of one or two of the involved objects.
That is to say that a qualitative change occurs if geometric
change of an object affects its topological relationship with
respect to another object. Therefore, all of the eight relations
in Figure 3 can occur with a certain degree of changes in ge-
ometry, including object location, orientation, shape, and size.
In order to represent their occurrence rule, a concept of topo-
logical distance is presented here.

Let & (*) be a function of mapping the values of empty and
non-empty onto the integers 0 and 1, defined as:

1, *#¢
6(*)={0’ =g ®)

Furthermore, topological distance between two relations can
be defined as:

4
dT(71’7/2):z|6(‘9,'1)_5(5{2)' ©6)
i=1

where d . (Y,,Y,) represents the topological distance
between relation ¥, andrelationy, ; 5, and 57 (1<i<4)

are coresponding elements in Y, and 7, , respectively. By

using of formula (6), we can calculate the topological distance
between any two relations shown in Figure 3. For instance,
the topological relations ‘disjoint’ and ‘overlap’ are described
by using the 4ID model as follows:

disjoint:[d) —mb} overlap={_|¢ —Iﬂ
-0 0| —¢ —o

i I b
¢ =9 ¢ -9

overlap covers
)y

=
-9 ¢ g ¢
inside equal

Figure 3. Eight region/region relations based on 4ID model
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and then the topological distance is calculated as:
d, (disjoint,overlap) =t 0—=11+11-11+11-11+10-1I=2
Similarly, all the distance for other relations may be obtained,

as listed in Table 1. It can be seen from Table 1 that the
topological distance satisfies the following four properties:

D dp (Y, Y,)=dr (Y2, 71)s
2)0<d, (y,,7,) < 4;

3) dT(Y]a ’)/2) :O,Ifandonlyif 'yl :’}/2’
4y d (Y, Y,) +dr (¥, V3) 2 d; (Y, 75)

It is also shown that the minimal distance between distinct
topological relations are 1. In this paper, such two relations
with topological distance equal to 1, is defined as neighborhood
relations. That means if there satisfies the condition

dr (7, 7,)=1 @)

¥, and ¥, are then termed of neighborhood relations. Fur-

ther, we link all pairs of neighborhood relations, thus the con-
ceptual neighborhood graph is set up, as shown in Figure 4.
This is particulatly useful to predict what is the most likely
relations after a change in geometry of one or two objects
occurs.

Under uncertainty circumstance, spatial data uncertainty, in
essence, can be regarded as a small deformation of object
boundary in location, size, shape, etc. It only possibly changes
topological relation from one kind to another, and does not
increase or decrease topological categories. As a result, for
two imprecise regions, separable topological relations are still
8 families with the same names. In the following, 4ID model is
taken as a basis of reasoning topological relations under un-
certainty.

Reasoning of topological Relations from observations

In practical application, the topological relation by reasoning

overlap

Figure 4. The conceptual neighborhood graph derived by
topological distance

from observations may be inconsistent with the true relation.
As shown in Figure 1, topological relations between A and A
may be described as ‘overlap’, or ‘disjoint’ with a Ve1ly smalf
perturbation on one or both of objects, where the true relation
is ‘meet’. Sometimes, spatial data uncertainty does not have
any effect on description of topological relation. One example
is that two disjoint objects are very far, and in this case uncer-
tainty may be ignored. Therefore, it is necessary to make fur-
ther investigation and set up a general model for topological
relations under location uncertainty.

The g-donut model is utilized to represent an imprecise re-
gion. And here we define the region which is demarcated by
the exterior boundary of g-donut as exterior region, represented
by g*, the region demarcated by the interior boundary of g-
donut as interior region, represented by g~. Based on the 4ID
model, four relations are defined as follows:

ra?.gt)= (&) n(gy)’ & -8
I vo2 /™ + + + +
) 1 82 — & a(gl)ma(gz)

@)’ n(g)’ &8s

my(g, .g5)

g, —g 09(g;)na(g,)

Table 1. The topological distance between the eight binary relations

d; (=) disjoint meet overlap covers contains coveredby inside equal
disjoint 0 1 2 3 2 3 2 4
meet 1 0 1 2 3 2 3 3
overlap 2 1 0 1 2 1 2 2
covers 3 2 1 0 1 2 3 1
contains 2 3 2 1 0 3 2 2
coveredby 3 2 1 2 3 0 1 1
inside 2 3 2 3 2 1 0 2
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(&) n(g)" & —4&
g, —8& (g )NMa(g;)

(8,)°N(gy)’ g — 8>
8, —8& 9(g )Na(g;)

HI) ?’(81 )gz)

V) y(g,,8,)=

where gf and g, (i=1, 2) are outer and inner region of g-

donut of regions A,. ( 8i ) and d(g; ) are the interior and
the boundary of g, respectively. Similarly, (8 )? and
d(g; ) denote the interior and the boundary of g; . By the
definitions of I)~IV), all of the possible topological relations
between A, and A, can be expressed as:

V(AL A)=<y(g.8).Y(g) 85) > U<Y(g/,85):Y(8 ,8)>
U<Y(g,8:)Y(81,8:) > U<y(g) . 8).Y(8r . 85)>
VY(ALA)

@®)

In formula (8), Y(A,,A,) is the observed topological rela-
tion; symbol< > all possible relations. For instance,
<y(g/ ,52) v(g,' ,g;) > includes  the  rela-
tionsy(g,,85). ¥(g/ ,g,), and some relation (7}, ) that
must occurs fromY(g,", g, ) toy(g;", &5) . The relationcan
Y, be determined according to the conceptual neighborhood
graph presented in Section 3.1. A simple example is that, the
relation )’ will be ‘meet’ if having )/(g1 .8, )= ‘overlap’
and ¥(g,,8,)= dlSjOlIlf Further,
<y(8/.8,).7(8&,8y)> = {‘overlap’, ‘meer, ‘disjoint }
Apparently, ¥(A,,A,) is likely to include more than one
relation. In spatial analysis, we have to make a decision among
all possible relations. It thereof is necessary to set up a crite-
rion for such a decision. This issue will be further investigated
in the sue section.

IV.ADETERMINATION APPROACH BASED ON RELA-
TIVEPOSSIBILITY

Uncertainty in 4ID model

Here, take Figure 1 as an example. By the definition of (8), all
possible topological relations between A, and A, are ‘over-
lap’, “meet’ and ‘disjoint’. Their corresponding 4IDs are de-
scribed as follows:

=0 =] |0 —¢] |0 ¢
According to the conceptual neighborhood graph in Figure 4,
their order of occurrence under a continuous deformation is:
‘overlap’ — *meet’ — ‘disjoint’, or ‘disjoint’ — ‘meet’
— ’overlap’. Moreover, only an element varies as each of

topological changes occurs. For instance, only the element in
left-top corner of 4IDs is changed from ‘overlap’ to ‘meet .

Thus, the effect of location uncertainty on topological rela-
tions is embodied by change of content of one or some ele-
ments in 4ID. Furthermore, a determination of ‘overlap’ and
‘meet’ is to compare the possibility that the element in left-top
corner takes —¢ and @ . It is similar to analyze the change
between ‘meet’ and ‘disjoint’.

Construction of basic possibility functions

For two imprecise regions, A, and A,, their relation uncertainty
can be reduced to uncertainty of relations between points in
Ajand A,, or uncertainty of relations between points in A, and
A,. Its basis is to determine uncertain relations between an
imprecise point and an imprecise region. There the determina-
tion mainly involves the relations between imprecise points,
see Figure 5. Topologically, there are two possible relations,
namely, ‘equal’ and ‘disjoint’ (or ‘unequal’). As a result, it
needs a quantitative determination of the relations between
two imprecise points, as is built upon some basic functions. In
the following we will first set up a function for determination
of relations between a certain point and an imprecise point.

On the basis of Section 2.2, a further assumption is made that
positional uncertainty of a point in 2-dimensional plane com-
plies with a circle normal distribution, i.e.

g,=0, =00, = 0, and the probability density func-

tion is as follows:

F 5, y) = rexp[— el ©)

where parameter O is the standard error of coordinate

components of P(x,,y,) . Likewise, an interpolated point

obtained by formula (3) also complies with a normal distribution,
which is similar to formula (9). Furthermore, the probability of
any point falling in the equal density error circle can be
calculated by the following expression,

p(x,y)cC,)= _” -exp| — Lt gy

2702

= [, Zrexp( - s£5)dp (10)

=1-exp(—

where C: (x — xp)2 +(y- yp)z < r?, rthe radiu of error

circle. It is apparent that the following function

1- exp(—%), r=0

0, r<0

F(r)= (11)

is a distribution function, specifically the Rayleigh distribution.

Considering that the standard error of point (O, ) equals:

=,J(6l+02) =420

Therefore formula (10) is simplified into
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Figure 5. An illustration of determining topological relations for two imprecise regions

1—exp(— 2y, r20
F(I‘): p GP—)

0, r<0

(12)

While for a certain point (a point without error) and an
imprecise point, we here presume a normal distribution with
its center being the certain point, and standard error being
that of the imprecise point. Further, a quantitative determination
function for their uncertain relation may be defined as:

0(y ='equal') =1- ]irgl_ F(r)
=1-(1-exp(-%))

= exp(—%)

(13)

where d is the distance between imprecise point and certain
point. In terms of formula (13), if the distance between two
points equals zero, then one can make the decision that the
relations between two points is ‘equal’ with the possibility 1.

If the distance is large enough (larger than 30, ), then the
possibility of ‘equal’ is nearly 0.

For two imprecise points, P, (x,,y,) and P, (x,,y,), their

quantitative determination function can be defined as an ex-
tension of formula (13), i.e.

0(y ='equal ') =0, (y ='equal ')x0,(y ='equal ") (14)
Here,

0,(y ='equal') = exp(—i—i) , and

0,(y ='equal') = exp(—%)

where O, and O, are the standard error of
P, (x,,y,)and P,(x,,y,), respectively.

Above definitions are also suitable for the relation between a
point and a line under uncertainty. The difference is that an-
other point used is a projection point or one of endpoints in
the line, and that d is the shortest distance from the point to
the line. For an imprecise point and an imprecise region, there
are still three basic relations, namely, ‘a point inside a re-
gion’, ‘a point on the boundary of a region’, and ‘a point
outside a region’. We here abbreviate them as ‘inside’, ‘on’
and ‘outside’. These relations can be determined by using

some classic algorithms in computational geometry. It is eas-
ily found that there exists such an occurrence order as ‘inside’
— ‘on’ — ‘outside’, or ‘outside’ = ‘on’ — ‘inside’ when
the locations of point or/and region change continuously.
Therefore, a similar determination function to formula (14) for
relation ‘on’ can be defined, i.e.

O(y ='on') =0(y ='equal') (15)
and,
O(y #on')=1-0(y ='equal") (16)

If the observed relation is ‘outside’, then we can define the
following functions:

0(y ='outside') =0 (y #'on") a7

0(y ='inside ) = exp(—“20) x exp(— 120 (18)

Similarly, if the observed relation is ‘inside’, then formulae
(17) and (18) become

0(y ='inside') =0 (y #'on") (19)

0 (v ='outside ') = exp( — 20 x exp( — %) (20)
where d is the distance from the imprecise point to the impre-

cise region boundary; the meanings of O, and O, are the

standard errors of two imprecise points used for comparisons,
respectively.

A determination indicator: relative possibility

For two imprecise regions, A; and A,, let their observated
relation bey; , which is obtained by reasoning spatial data
stored in GIS databases. In terms of basic principle of
perturbation, we may deem that the true relation between A,
and A,, Y, is one of uncertain relation set ’)7 (A, A,) . Hers,
assuming that ¥'(A,, A,) obtained by formula (8) includes n
relations, denoted by ¥,,¥,....,Y, » and that their relative
possibility is @,,@, ..., @, , respectively. Thus the true
topological relations between A, and A, can be expressed as:

y:q)l/’}/1+(P2/'}/2+.“+(pn/’}/n (21)

Here, +' denotes a connection symbol, not the sum operation;
0, =0,y =7; ly.) represents the possibility of
Y = ; under the observed relation 7 ; . Itis called the relative
possibility in this paper. If having
¢, =max(@,,Q,,-,¢,), one can determine ¥, to be
the true rélation between A, and A,. A simple new approach is
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presented below for comparisons of ¢, (1 <7< n).
ali 1 ali2 aljl alj2
Lety, =| . S Y=l ,let 7, be the ob-
i i J j i .
Oy Op & Oy
served relation, and then we define

k,m=2

IT6@)
k,m=1

(pij (y = yj I )/I) = k,m=2 )
H O(all\'m)

k,m=1

22

WhereQ(Oé,f,m) ,9(06,\{;”) (1< k,m < 2) is respectively the
possibility that element ¢, in ¥; andy; takes values O ]i'm’

Oc,f;” . They are calculated by using basic possibility func-

tions mentioned above. At the same time, it is easily found

that relative possibility, ¢, , satisfies the following proper-

ties:
DO0<o, % hee
2) (P,J :(Qj,')_ )

3)Forj=1,¢, =1.

V. EXAMPLE

In Figure 6, there are two imprecise region objects, A; and A,,
which are from different data layers. Their location and accu-
racy data are listed in Table 2. The observed relation between
A, and A, is ‘contains’.

At first, the method presented in Liu et al. (1998), is used for

the generation of g-donut of A, and A,, denoted by g &,

In the light of I)~IV) defined in Section 3.2, four relations be-
tween them are respectively computed and, on the basis of
the 41D model, they are described as follows,

v(g, .8, )= ‘contains’, y(g/,g,)="contains’,

14

15 24 23 13
Aq

21

11 12

Figure 6. A schematic graph of topological relation between
Ajand Ay

g, s g;)= ‘overlap’, Y(g,, 8, )= ‘contains’.

Furthermore, having
< V(gr, g;),}/(gr, 8, ) >={‘contains’};
<y(g,, g;),’)/(gl_, g, ) >={‘contains’, ‘covers’, ‘over-
lap’};
<v(g,,8,)v(8,85)>={ contains’, “covers’, ‘over-
lap’};
<y(8,,8,)7(81,8,)>={ contains’}.
By the definition of (8), all of possible topological relations
between A, and A,, ¥ (4,,A,), are expressed as
7(141 5 Az) = {‘contains’, ‘covers’, ‘overlap’}
Now it needs to calculate their relative possibility under the
observed relation 'contains', including:

i) @(y ='contains'l' contains') ;

ii) @(y ='covers'l'contains') ;

iii) @(y ='overlap'l' contains').
By the definition of (18), it is obvious that for i) there has

@(y ='contains'l'contains') =1
For ii), there only exists a different element in the 4IDs of both

‘covers’ and ‘contains’. That is, E)Al M 8A2 takes value ¢

for ‘contains’, while —|¢ for ‘covers’. Therefore, formula (22)

is reduced to
0(A, MDA, = —¢)
9(8Al ﬁaA2 =0)

While in Figure 6, only the point ‘27’ in A, possibly locates on
the boundary of A,. The possibilities will be calculated below
using formulae (15)~(20), i.e.

0(0A, N0A, =—¢) =exp(—
=0.762

@(y ='covers'l' contains') =

)

d? _ d’
) xexp(—4;

Table 2. Location and accuracy of Aj and Ap

Point No. x/m ym o /m o,/m p
11 1468.32 8798.56 15.00  15.00 0
12 2383.82 8798.56 15.00  15.00 0
13 2688.97 9513.24 15.00  15.00 0
14 2162.16 9704.58 15.00  15.00 0
15 1252.76 9601.43 15.00  15.00 0
21 1834.52 8805.14 15.00  15.00 0
22 226435 9065.84 15.00  15.00 0
23 217041 9440.18 15.00  15.00 0
24 1636.51 9440.18 15.00  15.00 0
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6(0A, MOA, =¢) =1-0(dA, NIA, =—9)
=0.238

Among above computations, parameter d is the distance from
the point ‘27” to the boundary ‘//-12° of A}, equal to 6.58m;

O, denotes the standard error of the point ‘2/°, equal to
\/E x15=21.21m; O, the standard error of the projection

point, which can be computed using the error propagation
expression derived by Li et al. (1995), equal to

\/5 x11.12=15.73m. Further, the relative possibility is

o(y ='covers'l'contains') = 3.209

For iii), we may calculate the relative possibility using a similar
approach to ii). And in this case, formula (22) can be reduced
to

@(y ='overlap'l' contains")
_0(A, — A =—¢)0(0A, N IA, =—¢)
0(A, — A, =9)0(dA, NJA, =¢)

Here, 'A, — A =—¢' means that there exists at least one

point of A, outside A,, while ' A, — A; = ¢' means that all of

points of A, falls inside A, or on the boundary of A,. As for
Figure 6, it only needs to determine whether the point 21’ is
inside A, or outside. Their possibilities are computed as fol-
lows:

Q(Az - Al = —|¢) = eXp(_ (l];all)z ) % exp(_(d;%)l)
=0.140
O(A, —A =9)=1-0(A, — A, =—9)
=0.860
Thus, the relative possibility is

0.140x0.762

0.860x0.238
=0.521

o(y ='overlap'l' contains") =

By comparisons of the three relative possibilities, one can
make the decision that the true relation between A, and A, is
‘covers’.

VI. DISCUSSIONS AND CONCLUSIONS

In this paper, positional uncertainty is analyzed and modeled
statistically. With this model we make a detailed investigation
on the effect of positional uncertainty on topological rela-
tions. A relative possibility-based approach for the determina-
tion of uncertain relations is proposed. A simple example is
given for the illustration of the approach presented.

In this approach, the following new aspects are provided:

o Extended application of 41D model presented by Chen and
Deng (2003), where it is used for formal description of topo-
logical relation under certainty, while is now adapted under
uncertainty.

 Basic possibility functions are derived, which is a bridge of
positional uncertainty propagating to topological relation
uncertainty.

o The approach presented can be simplified for use if epsilon
band of probability distribution is taken for modeling loca-
tion uncertainty of region boundary. And, the approach is
also suitable for complex objects.

Further work is to concentrate on how to process topological
inconsistency between neighboring objects. It possibly needs
to generate a new common boundary.
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