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Abstract

Most studies on urban land values focus on the determinants, using hedonic land price models with the consideration of the physical
and socio-economic factors. This article employs geostatistical methods to analyze urban land values. Through a case study of
Milwaukee, we set up semivariogram models and 3-D TIN surface models for urban land values, and explore anisotropy character-
istics and the relationships of land values among different types of land use. We have found that spatial dependency is a salient
feature of urban land values, and spatial clustering of land values varies with type and location of land use. Our models can detect and
well explain spatial autocorrelations of urban land values. We demonstrate that geostatistical methods have a great potential when

applied in the urban context.

LINTRODUCTION

Quantitative studies of urban spatial structure have been con-
ducted mainly through analyzing population distribution and
density (Bourne, 1989; Batty and Kim, 1992), housing and
land prices (Peiser, 1987), and firm location (Shukla and Waddell,
1991). Such studies often require a substantial amount of data
from population census, records of property transactions, and
firm-level data. Housing price and land value models have
often been used to study urban spatial structure and urban
economies, and are central to the debate on race and equity
(Kim, 2000).

The uneven distribution of urban land values has attracted
considerable scholarly attentions (Abelson, 1997; Bertaud,
1992; Brigham, 1965; Huh and Kwak, 1997; McDonald and
McMillen, 1998; McMillen, 1990, 1996; McMillen and
McDonald, 1991). Many of the studies deal with the determi-
nants of land values using hedonic land price models, with
the consideration of physical and socio-economic factors, such
as race, housing attributes, and neighborhood. Regression
models have been developed to explain land values and hous-
ing prices with a number of independent variables (Erickson,
1986; Peiser, 1987). To simplify the models, many researchers
focus on a singular determinant of land values, a singular type
of urban land use, and/or the distance decay of urban land
values.

Previous studies of urban land values, however, have several
limitations. First, despite the change from a monocentric to a
polycentric structure of cities, traditional negative exponen-
tial density function is still widely used to model land values
and urban spatial structure. Those models are over-simplified
and therefore are less effective in examining spatial differences
in land value distribution. Second, many studies on urban
spatial structure primarily use aggregate zonal data. There are

problems associated with this form of data, such as “Modifi-
able Areal Unit Problem”(Openshaw, 1984); findings vary with
the change in the level of aggregation and the configuration
of the zoning system. Lastly, spatial statistics have great po-
tential to improve the understanding of urban land use, hous-
ing markets, and urban changes, but its application in model-
ing land values remains limited. Previous researches have
been hampered by poor data and the limited usage of spatial -
statistics. Housing markets exhibit spatial dependency, and. * -
almost all hedonic models violate regression assumptions
(Mulligan etal., 2002). More studies of the spatial distribution
of urban land values and the relationship among different types
of urban land uses are needed.

Consequences of urban restructuring and extents of spatial
segregation remain hotly debated issues for Milwaukee. While
some have argued for the decline of residential segregation in
the city, many others have maintained that segregation per-
sists and inner-city neighborhoods are troubled by unemploy-
ment and poverty (e.g., Boardman and Field, 2002). Regarding
land values, many studies have focused on cities like Chicago
(e.g., McMillen, 1996), and few studies have examined Mil-
waukee. While Kim (2000) examined the relationship between
race and home price appreciation by neighborhoods, no study
has examined the spatial patterns of land values and the ef-
fects of residential segregation in the city.

In this paper, we use geostatistical approaches to study urban
land values, through a case study of the City of Milwaukee.
The paper attempts to examine the characteristics of spatial
distribution of urban land values, to develop models for urban
land value distribution with kriging methods, and to analyze
their implications for urban spatial structure. We stress the
feature of spatial dependency and the clustering of urban land
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values, and argue that race remains a critical determining fac-
tor in accounting for the uneven distribution of land values in
the Midwest cities. The paper is organized as follows: after
the next section on data and methodology, we set up and
interpret land value distribution models. Then we analyze the
implications of land value models for urban spatial structure,
and the last section is the conclusion.

II. DATA ANDMETHODOLOGY

Milwaukee is a classic rustbelt city, which has experienced the
decline of manufacturing jobs and ig one of the most segre-
gated cities in the United States. In 2000, the city had a popu-
lation of 596,974, considerably less than the 717,372 of 1970
(Huang and Wei, 2002). African-Americans are heavily con-
centrated in the inner-city north, followed by the northwest
areas, while the suburban areas in northeast, west, and south
have a much lower share of African American population (Fig-
ure 1).

Data for this research is from the Master Property File (MPROP)

datasets created by the City Government of Milwaukee.
MPROP is a computerized inventory of all properties in the
City of Milwaukee. It contains more than 90 indicators de-
scribing each of the approximately 160,000 properties in the
city. The file was firstly created in 1975 to provide current and
accurate property information and can be accessed in a vari-
ety of ways. Our research mainly uses the 2001 dataset since
it was the most recent data available.

Grid sampling method of geostatistics is used in the research
(Wackernagel, 1998). We create a fishnet, which covers the
whole area of the city. The cell size is 150 feet because a bigger
cell size may not reflect the actual change of spatial character-
istics, while a smaller size may make one sample lie across
more than one cell. We select at most one sample property in
each cell. We have 526 samples, including 329 residential
samples, 100 commercial samples, and 97 manufacturing
samples; each of them is associated with their assessed land
values in 2001. Figure 2 presents the spatial distribution of
the research samples.

To analyze spatial distribution and clustering, especially spa-
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Figure 1. Distribution of African-American population in the
city of Milwaukee, 2000.
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Figure 2. Spatial distribution of research samples.
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tial autocorrelation, we use the global Moran’s 7 statistic, which
is calculated from the following formula:
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where 7 = x — X/ § is the z-score of the variable of interest
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and Ci= 0 otherwise, W then forms a row-standardized

weights matrix.

The research adopts the geostatistical method, mainly
semivariogram models and kriging, which are based on statis-
tical models that include autocorrelation (statistical relation-
ships among the measured points). Assuming we have a popu-
lation of samples in space, (S, S,, .....S,), and their attributes,
(A - Z,), empirical semivariogram for the (i,j)th pair can
be calculated by the following:

0.5%(Z(S,)=Z(S,))’ @

in which Z(S ) and Z(S)) are the values in the locations S and
S respectively. After calculating all pairs’ semivariogrami, we
chn bin the semivariograms based on common distance and
direction:
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Figure 3. Grid tolerance regions for binning empirical
semivariograms.

in which a bin 7(d) is the half of the averaged sum of the
squared difference from the values for all pairs of locations
with common distance and direction. The most commonly used
binning method is tolerance regions that are rectangles and
distributed uniformly on a grid (Figure 3). The cell size of the
grid is also called lag size. After plotting the empirical
semivariogram value for each bin for each direction, we get
the empirical semivariogram cloud.

After estimating the empirical semivariogram, we fit a theoreti-
cal model to the empirical semivariogram. The most commonly
used theoretical models include spherical, exponential,
tetraspherical, pentaspherical, and gaussian. These theoreti-
cal semivariogram models are based on the intrinsic stationarity
assumption that the variance is the same between any two
points that are at the same distance and direction apart no
matter which two points you choose. After testing these com-
monly used models with the cross-validation method (see sec-
tion IV), we adopt the nugget spherical semivariogram model,
which is presented in the following form:

oMLY <o
r(h;0) = Nugget +4 ' 26, 2|6, ’ S
0. for 0, <

4)

where /1is the distance, 6 = Ois the partial sill parameter
and Qr 2 (0 is the range parameter. The sill, nugget, and range
are important parameters when fitting a theoretical model to
empirical semivariogram (Figure 4). The partial sill is the sill
minus nugget. We expect that the semivariogram functions
change not only with distance but also with direction. This is
called anisotrdpy, or directional semivariograms. In general,
anisotropy means that the ranges vary with the directions.
We need to consider anisotropy effect when deciding the
search neighborhood size in kriging prediction.

Kriging is the interpolation method of geostatistics. Gener-
ally, kriging interpolation takes the following form:

ZO0) =Y 4Z(x), YA =1 ®)
where Z(0) is the attribute value of unmeasured point in

space. /li can be solved through the following kriging equa-
tions:
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where m is the lagrangian multiplier. At a certain distance, the
sample points have no correlation with the prediction loca-
tion, and it is possible that they may even be located in an area
very different than the unknown location. Determining the
shape and size of search neighborhood is a complex process,
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Figure 4. Empirical semivariogram clouds and isotropic fitting model. Note: Distance h in foot.

which requires a good understanding of the sample data. An
example of search neighborhood is given as the below:

Xt

where the long axis of the ellipse is the major range and the
short axis is the minor range with each one’s direction in two
dimensional space.

We use the Gstat package, which provides powerful tools for
geostatistical modeling. The package improves the speed and
efficiency of the computing process, but the decision on pa-
rameters requires a careful and comprehensive analysis.

III. MODELING URBAN LAND VALUES

Table 1 presents results of spatial autocorrelation analysis (as
normalized values). We can see that land values have a high
degree of positive spatial association, indicating that high
values tend to cluster with high values, and vice versa. Resi-
dential land values have the highest spatial association, fol-
lowed by commercial and manufacturing land values. These
findings provide further evidence for the high level of resi-
dential segregation in Milwaukee.

Table 1. Global spatial autocorrelation analysis

Land Value Standardized Moran's

Overall 25.642%%
Commercial 24357 %%
Residential 32,189
Manufacturing 12.794 %

“* indicates significant at the § per cent level

We model the spatial distribution of urban land values in the
city as a whole using the isotropic model and the anisotropic
model. Figure 4, where the y-axis is the empirical semivariogram
value and the x-axis is the distance associated with the bin,
presents the isotropic fitting model. The model is calculated
as follows:

(see equation (7) on next page)

Figure 4 shows that land value differences increase with the
increase of distance between measured observations. Be-
yond the distance of 3.19 miles (16823 feet) as the range pa-
rameter, land value differences become constant and measured
points are spatially uncorrelated. This suggests that land
values are spatially associated only at locations within certain
distance.

Directional autocorrelation (i.e. anisotropy) can be examined
by considering various search directions. Figure 5 shows the
fitting models in various search directions and suggests that
with different directions land value differences may vary even
though they are at the same distance.

We then extract the highest and lowest semivariogram curves
from Figure 5. Figure 6 and Figure 7 are semivariograms in
directions NNW and WSW with an angle of 345.2 degree and
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Figure 5. Fitting models in various directions. Note: Distance
h in foot.
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65.2 degree respectively.

As shown in Figure 6, in the NNW direction land value differ-
ences increase slowly with distance, and become constant
beyond the distance of 5.39 miles. In the WSW direction,
however, land value differences increase faster and turn to
constant at the distance of 3.91 miles (Figure 7). The influence
of anisotropy is apparent, since in the direction of NNW, land
values are spatially correlated in a bigger range than that in
the direction of WSW. We therefore use them to determine the
search neighborhood’s shape and size.

In the NNW direction with the range of 5.39 miles (28458 feet)
and the angle of 345.2 degree, an anisotropy fitting model is
constructed as follows:

(see equation (8) above)

In the direction WSW with the range of 3.91 miles (20368 feet)
and the angle of 65.2 degree, the fitting model becomes:

(see equation (9) above)

Based on the above two directional fitting models, we can
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Figure 6. Semivariogram cloud in the direction of NNW. Note:
Distance h in foot.
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determine the searching neighborhood’s shape and size as
Figure 8. Due to the distribution of samples, we have many
more samples in the NNW direction than in the WSW direc-
tion, which makes the search neighborhood’s major and minor
axes somewhat consistent with the city shape. The length of
semi-major axis is 5.39 miles and the length of semi-minor axis
is 3.91 miles. Since our sample data are collected on a grid, we
divide the ellipse into four sectors; each sector has two to five
measured points, which are used for further analysis.

Based on the above kriging equation’s 5 and 6, and the search-
ing neighborhood, we interpolate all unmeasured points in
the city. A grid is generated to present the land value surface
of Milwaukee City (Figure 9). The land value surface of Mil-
waukee City manifests that the highest land values cluster in
the lakefront and downtown areas, while the lowest land val-
ues cluster in inner-city northern area.

Furthermore, a TIN is created based on the land value surface
grid, which provides a 3-D view of the spatial distribution of
land values (Figure 10). Similarly, the TIN shows that land
values peak in the lakefront and downtown areas, and the
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Figure 7. Semivariogram cloud in the direction of WSW. Note:
Distance h in foot.
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Figure 8. Searching neighborhood for the overall model.
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Figure 9. Land value surface in Milwaukee.

land value basin is in the inner city north. Areas in the north-
west also have low land values, while the land value surface
becomes higher in southwest area.

IV.URBANLAND USE AND LAND VALUES

Since the above isotropic and anisotropic models show the
land values of the city as a whole regardless of the land use
type, we further model land value distribution for different
land use types. Table 2 presents the parameters of isotropic
models, and Table 3 presents the parameters of anisotropic
models. We have also created three TINs to show the land
value distribution of residential, commercial and manufactur-
ing land uses.

Results of isotropic modeling presented in Table 2 indicate
that commercial land values have the highest aggregation level
(indicated by partial sill), followed by manufacturing land val-
ues and residential land values. This implies that in general,
commercial land use values are the most centralized, with higher
values in the downtown area and decreasing quickly with the
increase of distance (Figures 11, 12, and 13). The areas with
the lowest land values are not consistent with the areas with
the largest distances to the downtown, but in the inner-city
north and old near suburban areas in the southeast.

Residential land use is significantly decentralized, and does
not simply follow the distance decay model. The areas with
high land values are in the downtown areas and the lakefront
areas in the northeast, followed by the areas in the southwest

Figure 10. Land value surface TIN in Milwaukee.
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Table 2. Parameters of isotropic models

Table 3. Parameters of anistropy models

Parameter Nugget Partial Sill Range(foot)
Overall 0.090028 1.0646 16823
Residential 0.89869 8.2221 17572
Commercial 0 18.101 13485
Manufacturing 0 17.94 6009.3

(Figure 11). The areas with low land values are in the inner-
city north, and spots in the northwest where blacks have moved
in recently. Manufacturing land values are relatively central-
ized, and the areas with the lowest values are in the inner-city
north (Figure 13).

The cross validation method, which removes one sample and
uses the rest of the sample data to predict the removed sample,
is adopted to determine the prediction accuracy. Table 4 pre-
sents the results of cross validation. The standardized means
of the four models are all near zero and each model has root-
mean-square near the average standard error. This indicates
that the predictions of our models are reasonably accurate,
and that our geostatistical models of urban land values pro-
vide an effective way to investigate urban land values and
spatial structure.

Although our land value models are based on the geostatistical
analysis rather than the hedonic models, the determining fac-
tors are embodied in the land value models. Residential land
use has the greatest influence range (indicated by the range
parameter), followed by commercial and manufacturing land
use. This characteristic shows that residential land use has

Figure 11. Residential land value surface TIN.

Parameter Nugget Partial Sill Range(foot)
NNW (345.2¢) 0.17657 1.0687 28458
Overall
WSW(65.2+) 0.17657 1.0687 20368
Residential NNW (348.4¢) 1.6017  8.2826 28371
WSW(78.4¢) 1.6017  8.2826 22864
. NNW(333.9¢) 2.6965  16.927 23608
Commercial
WSW(63.9e) 2.6965  16.927 17049
Manafacturing NNW(297.8¢) 0 19.032 13734
WSW(27.8¢) 0 19.032 6048.9

the strongest effect of agglomeration: high land values tend
to cluster and so do the low land values. The limited influence
range of manufacturing land value means that the urban manu-
facturing function is weak and the proportion of manufactur-
ing land use is low in the city, although Milwaukee is tradi-
tionally a manufacturing city.

The anisotropic models show that urban land value distribu-
tion varies in different directions. In the direction of NN'W, all
three land use types have the biggest influence range. Resi-
dential land use and commercial land use have the similar di-
rectional angle, which indicates that decentralization has the
similar direction and is relatively synchronous. This further
confirms the significance of residential segregation in Mil-
waukee. The distribution angle of manufacturing land value
search neighborhood is different from that of residential and

Figure 12. Commercial land value surface TIN.
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Table 4. Cross validation results

Predictions Errors Standardized Mean

Root-Mean-Square Average Standard Error

Overall 0.01112 1.949 2.112
Residential 0.0008725 1.054 1.656
Commercial 0.001226 1.738 2.817
Manufacturing -0.05311 4.269 4.744

commercial land values, which is more oriented towards the
west, and is pointed to the employment sub-center identified
by McMillen (2001), where the Harley-Davidson motor plant
is located (see Figure 14).

Land value distribution maps and models clearly reflect resi-
dential segregation in Milwaukee. Figure 1 shows that the
inner city north area has the largest percentage of African
American population, followed by northwest areas, while the
suburban areas in the northeast, west, and south have much
smaller shares of African American population. Our land value
models coincide with and reflect such spatial patterns of popu-
lation distribution. Neighborhoods with a large percentage of
the minority population, such as the inner city north and north-
west areas, have low land values.

As presented in the four land-value surface TINs, the down-
town and the lakefront areas have the highest land values
while the inner city north has the lowest land values. It can
also be concluded that suburbanization and agglomeration
levels are relatively higher in the southwest fringe area than

Figure 13. Manufacturing land value surface TIN.

other city fringe areas. Land values reach another peak in the
southwest fringe area, although they are still much lower than
the downtown and lake front areas (Figure 9).

V.CONCLUSION

Geostatistical methods have been well developed and are of-
ten used in natural sciences such as geology. This study
uses geostatistical methods to model the spatial distribution
of urban land values. The spatial distribution of urban land
values is often influenced by socio-economic factors.
Semivariogram models have been proven to be effective when
modeling the spatial autocorrelations in urban land values,
but weak when reflecting the social-economic factors influ-
encing the spatial distribution of urban land values. More-
over, kriging interpolation only uses the location information
to predict the places with unknown land value. Cross-
semivariogram, however, can use a secondary variable such
as population distribution to model the spatial distribution of
urban land values as primary variable. More importantly, cross-
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Figure 14. Manufacturing land value search neighborhood.
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semivariogram can reveal the spatial relationship between the
primary and secondary variables. Cokriging is based on the
cross-semivariogram and implements the interpolations using
both the location and socio-economic factors, which makes
the prediction more accurate. Future researches should try to
incorporate the socio-economic variables into cross-
semivariogram models, and make the geostatistical modeling
more powerful to explain spatial patterns of urban land values.

In this study, we have used geostatistical methods in a GIS
environment to study urban land values, and demonstrated
their utilities when applied in the urban context. Unlike the
commonly used regression models based on hedonic land
price function, our geostatistical models focus on the spatial
dimensions of urban land values and can be used effectively
in investigating spatial patterns of land values and urban spa-
tial structure.

Through a case study of Milwaukee, we have developed iso-
tropic and anisotropic semivariogram models for urban land
values of different land-use types, and performed point inter-
polations using the kriging methods. We also have created 3-
D TIN to visualize spatial patterns of land values. Our models
have shed some light on urban spatial structure through ana-
lyzing the parameters of geostatistical models of land values.
In particular, we have revealed the spatial differentials of the
extent of agglomeration among residential, commercial and
manufacturing land uses. Our models have profound implica-
tions for urban social structure and can be used as an effec-
tive way to investigate urban social space when combined
with socio-economic data such as population.
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