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Abstract

This paper proposes a simple, automated method to detect rural to urban land use changes at the pixel level of SPOT-Panchromatic
images in the developing world. The proposed method entails two tasks: (1) classification of images as either urban (built-up) or rural
(non built-up) at a relatively high level of spatial detail (pixel level) in order to include the classification of houses made of natural
materials. The binary classification was performed through a combined thresholding of spectral information and spatial information
derived by a normalized high-pass filter. An automatic procedure was used to determine the optimal threshold (2) classified image
comparison of two different dates by overlaying them to detect changes from rural to urban land use during the corresponding period.

An accuracy of 82.31% was achieved for the final change map.

LINTRODUCTION

Information about rural to urban land use conversions is cru-
cial to city leaders in the developing world because they have
the responsibility to manage the rapid urban growth in order
to help promote its economic productivity and standard of
living. However, these same cities usually lack the funding
and the trained staff to manually collect and update data about
the rapid changes. In light of this dilemma, remotely sensed
images provide an ideal data source to monitor the changes
because of their relatively low cost and repetitive acquisition
capability. Furthermore, digital processing of these remotely
sensed images can make the usually laborious change detec-
tion task automated and efficient.

A large number of change detection methods have been de-
veloped using multi-temporal remote sensing images since
the 1970’s. These include post-classification comparison, im-
age differencing, image ratioing, image regression, principle
components analysis, multi-date classification, change vec-
tor analysis, and artificial neural network. Reviews or com-
parative studies can be found in Singh (1989), Ridd and Liu
(1998), Mas (1999), and Gong and Xu (2003).

Change detection with respect to the urban environment has
generated considerable research interest (Riordan 1980, Jensen
and Toll 1982, Martin 1989, Gong et al 1992, Gong 1993, Ridd
1995, Li and Yeh 1998, Zhang 2001, Gluch 2002). There exist
some common features among these studies: 1) they defined
urban land use as a composite of different land cover types
(such as concrete, asphalt, trees, grass, different roofs) and
utilized a land use classification strategy; 2) the spatial details
of these studies were rough and the finest change unit usu-
ally consisted of a relatively large area ranging from tens of

pixels to hundreds of pixels.

Although classifying such large units of land is sufficient for
natural environment studies, for urban studies they are not as
helpful. The types of research questions social sciences such
as urban economics and urban planning ask concern the be-
havior of individuals and firms and how they are altering the
land use patterns. Therefore, a unit closer to the size of urban
land development projects is needed in order to understand
the agent-based determinants of growth (Irwin and Bockstael,
2002). Parcel level data would be the ideal unit but many local
governments have not had the funds or capacity to digitize
and regularly update land survey and ownership data, espe-
cially in the developing world. Given the available data, a next
best alternative would be rural to urban land use conversion
data at a smaller unit. The pixel level scale better approximates
the size of individual residential land developments, especially
in the developing world. Another challenge particular to the
classification of images from the developing world is that
houses, especially in squatter settlements and on the periph-
ery where the urban growth occurs, consists of a wider diver-
sity of building types than in the US. Very small houses made
of plant material similar to their surroundings proliferate ren-
dering brightness value alone too blunt a vehicle for classifi-
cation (Bertaud, 1989). If remote sensing images could be
classified at a smaller unit and with greater sensitivity to low
brightness value construction materials, rural to urban land
use conversion data could be generated that would be practi-
cally helpful to urban planners and useful to urban scholars.

SPOT-Panchromatic (SPOT-PAN) images are valuable in this
regard since they have collected 10 meter resolution images
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since 1986. Furthermore, SPOT-PAN images also have great
potential in generating important time-series urban land use
conversion data because they are the only commercially avail-
able satellite images at high resolution that continuously ac-
quired images from the 1986 to the present for most of the
globe, coincidentally the period of historic global urbaniza-
tion. Since in the case of many Third World cities, this is the
only record of the rapid urban land use changes that were
taking place during this period, it is important to develop ap-
propriate methods to interpret this data. The ability to analyze
spatial urban growth trends over time would be a boon for
both policymakers and social scientists alike.

However, in generating spatially detailed classification of land
cover, many of the previous methods of group-pixel based
texture analysis (such as frequency based methods) are inap-
propriate because the output of the group-pixel classifier is a
composite of different parcel units. Zhang (2001) presented a
new approach to detect the detailed urban housing develop-
ment by fusing SPOT-PAN and TM images and performing
spatial feature post-classification. In a recent study, Gluch
(2002) detected the urban growth as the change of non-built
pixels to built pixels from a merged TM and SPOT-PAN data.
The spatial detail of the study by using two types of texture
analysis is at the super pixel (3X3 pixels) level. Gluch utilized
a user-defined threshold to determine whether a super-pixel is
classified built or un-built. Although Gluch (2002) used both
SPOT-PAN and aerial photos, she noted that SPOT-PAN alone
would be sufficient to distinguish built from non-built fea-
tures through texture analysis. There are few works done to
detect the urban growth using SPOT-PAN alone.

This paper proposes a simple, automated method to detect
rural to urban land use changes on the urban periphery of
cities in developing country by testing a new algorithm that
provides detailed classification using SPOT-PAN images alone.

ILSTUDY AREA

Like the majority of developing country cities, urban land
development at the fringe of Ho Chi Minh City (HCMC)
dramatically increased during the last decade. Huge inflows
of population migration and rising incomes have created a
high demand for shelter and urban services which has fueled
this rapid urban growth. Even by the most conservative
statistics, the city’s population has increased by over a million
people during the 1990-2000 period (Statistical Office of Ho
Chi Minh City, 2000). In order to cope with this situation, Ho
Chi Minh City incorporated 5 outlying districts into the city
boundaries in 1997 and has plans for future expansions. Within
the city, the area that is experiencing some of the most dramatic
growth is the urban periphery. While in the inner urban district
areas, population grew by 21% during the 1990s, in the five
new urban districts on the edge of HCMC population grew by
58% and by 73% in the rural fringe districts just outside the
city boundaries.

The study area is the urban periphery of HCMC which consists
of aroughly 60,000 hectare ring of land around the city’s center.
This area has a wet season lasting from roughly June to
September and a drier season in the other months with the
driest period being March and April. The topography in this
area is flat with such land cover types as rivers, wetlands,
irrigated farmlands, dry farmlands, wet bare soil, dry bare soil,
and built up urban areas. The built up areas consist of a variety
of land uses such as residential, commercial, industrial, and
mixed-use.

III. DATA DESCRIPTION

SPOT-PAN images over Ho Chi Minh City were purchased in
ortho-rectified and geo-referenced form. This source of data
is the only record of the changes that occurred throughout
the transition period while land information institutions them-
selves were being reformed. The first image purchased from
their archives was taken in January 1994. The SPOT satellite
was then commissioned to repeatedly acquire images of HCMC
during January of 2001 until a cloud-free image could be taken.
The 10 m resolution of the SPOT-PAN images is particularly
helpful in the context of Ho Chi Minh City’s building typology
where the building footprint of a house is typically 5 m X 10 m
and houses are clustered close together.

For accuracy assessment, we relied on some visual interpreta-
tion of the SPOT-PAN image in 1994 and relied on field data
collection done during January 2001 when the second satel-
lite image was taken. The image of 2001 was registered to the
image of 1994 using a first order polynomial model with near-
est neighbor resampling. The RMS error for this image-to-
image registration was 0.12 pixel which is satisfactory for
change detection purposes.

IV.METHODS

The 1994 and 2001 images were classified as a binary map
consisting of ‘built’ (value = 1) and ‘non-built’ (value = 0)
pixels. ‘Built’ land uses are assumed to be urban without
differentiating between different classes of urban land use
such as residential, industrial, or commercial. To achieve de-
tected changes at a higher spatial detail than previous meth-
ods, a classification algorithm at the pixel level was proposed
in this project. The algorithm includes two steps: 1) image
enhancement with a normalized high-pass filter, and 2) com-
bined thresholding of the original image and the enhanced
image.

Pixels of most ‘built’ areas have brighter tones than ‘non-
built’ areas in the image. However, in a certain range there still
exists much confusion between the ‘built” area and ‘non-built’
area (the pixels with digital number (DN) between 55 and 70 in
Figure 1) especially between dark small houses with grass
roofs and dry bare land. Therefore, the spectral information of
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Figure 1. Histogram plot of sample ‘built’ and ‘non-built’ pixels taken from the SPOT-PAN image of the urban periphery of Ho

Chi Minh City in 2001.

SPOT-PAN alone cannot separate the ‘built” area from ‘non-
built” area completely and accurately. Spatial contextual infor-
mation needs to be combined with the spectral information to
improve the classification.

Image enhancement with respect to the spatial context makes
good use of the high spatial resolution of the SPOT panchro-
matic image, which will obviously augment the ability to dif-
ferentiate the built-up pixel from the non built-up. Since the
previous studies’ textural enhancement algorithms based on
group-pixels are not suitable to this project, a normalized high
pass filter will be used to enhance the spatial contextual infor-
mation from the image. It is well known that high-pass filters
such as the Laplacian filters have the effect of edge enhance-
ment. In homogenous areas, no edge will be enhanced and the
resultant image is uniform with a value near zero. In heteroge-
neous areas, gray-level contrasts in the local neighborhood
will be enhanced as edges. When the filter size is greater than
the size of the object, the object as a whole will be detected as
an edge. This holds in the case of small houses in the urban
periphery of HCMC.

A typical n X n high-pass filter can be expressed as ann X n
matrix M with the central element as (n>~1) and the others as —
1. It is easy to show that the convolution result of this high-
pass filter equals (DN, ¢,y — Mean) X n? Here, Mean is the
mean value of all DNs within the n X n window. In bright areas,
the DN of the central pixel is higher than that in dark areas and
the contrast between built-up and its background (non built-
up) is larger than that in dark areas. Therefore, it can be ob-

served that the convolution result for ‘built’ pixels positively
correlates to the DN of the central pixel. Also, the convolution
will increase with n. To utilize a uniform convolution measure
to all the ‘built’ areas with respect to different filter sizes, a
normalized high-pass filter is proposed as (DN ,—Mean)/
DNy = 1-Mean/DN...,,.- The normalization makes the opti-
mal threshold selection much easier because the ‘built’ en-
hancement is relatively invariant to DN and filter size.

The criterion used for selecting an appropriate filter size was
the enhancement of all the small and medium ‘built” areas and
the edge of large ‘built’ areas. In light of the fact that most of
the urban structures in HCMC’s periphery are less than 50 m
X 50 m, the filter sizes used in this project include 3X3, 5X5,
7X7,9X9, 11X11, and the optimal filter size was determined as
the one achieving the best classification accuracy by compar-
ing the resultant image with the ground data.

The proposed classification method combines thresholding
performed on both the spectral and high-pass filtered images
as diagrammed in Figure 2. The thresholding can be inter-
preted as three steps: 1) classify all pixels with DN greater
than threshold 1 (t1) as ‘built’ no matter how low its enhance-
ment 2) classify all pixels with DN smaller than threshold 2 (t2)
as ‘non-built’ no matter how high its enhancement 3) classify
the remaining pixels (DN between tl and t2) with enhance-
ment higher than threshold 3 (t3) as ‘built’.

The optimal values for the three thresholds were selected by
searching in the 3-D appropriate parameter space by compar-
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Figure 2. Schematic diagram depicting the thresholding
scheme employed to combine spectral (DN) and spatial con-
textual (NHP: Normalized High-pass filter) data in the classifi-
cation of ‘built’ (urban) and ‘non-built’ pixels.

ing the classification with the ground data. T1 is fixed as the
maximum DN of ‘non-built” samples. T2 starts from the mini-
mum DN of the ‘built’ samples, increases 1 at each step, and
stops after 30 steps (i.e. t2: DN,;,~DN,,;,+30). T3 starts from —
0.10, increases 0.01 at each step for each (2, and stops after 30
steps (i.e. t3: =0.10 ~0.20). For each filter size, the classifica-
tion accuracy for each combination of thresholds (900 in total)
was calculated and optimal thresholds were chosen as the
combination maximizing the accuracy. This approach provides
a threshold selection that is more objective than user specifi-
cation.

With the 1994 and 2001 images classified using this method, a
post-classification comparison was performed for change de-
tection. Urban growth or the change of ‘non-built’ to ‘built’
pixel is extracted by overlaying the two classified binary im-
ages and the pixels with a value change from 0 to 1 are labeled
as rural-to-urban land use change. No attempt is made to de-
fine the change from 1 to 0 since it would primarily be due to
classification error.

V.RESULTS

Five normalized high-pass filters ranging from 3X3 to11X11
were applied to the two co-registered images. The effect of
normalization is illustrated in Figure 3 (before normalization)
and Figure 4 (after normalization). The positive correlation
between DN and the enhancement has been reduced to the
same range.

A random sampling and verification process with the help of
visual interpretation of SPOT-PAN images, aerial photos, and
field visit was performed to extract the ground data for optimal
threshold selection and accuracy assessment of change de-
tection. For the purposes of threshold selection, the sampling
process is intended to include a full DN range of ‘built’ and
‘non-built’ pixels. In total, two independent samples were gen-
erated: one for the optimal threshold training and the other for
accuracy assessment.

The optimal threshold selection process seeks the best bal-
ance between accurately classifying ‘built’ and ‘non-built’ pix-
els. Fora given t1 and 2, alow t3 will favor the ‘built’ accuracy
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Figure 4. Scatter plot of the data’s DN and enhancement after normalization.

while a high 3 will favor the ‘non-built” accuracy. As a linear
combination of the two accuracies, the overall accuracy will
be maximized at an intermediate t3. Figure 5 shows the rela-
tionship between searching for ‘built’ accuracy, ‘non-built’
accuracy, and overall accuracy with respect to t3 for the image
of 2001. As t3 increases from —0.1 to 0.3 with an increment of
0.01, the ‘built” accuracy decreases from 100% to 75% while

the ‘non-built” accuracy increases from 12% to100%. As a
linear combination of ‘built’ accuracy and ‘non-built’ accu-
racy, the overall accuracy starts at 29% and increases to the
maximum 97.89% and then decreases to 94%. The optimal
threshold 0.12 corresponds to the maximum overall accuracy.

The optimal thresholds and the corresponding maximum ac-
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Figure 5. Classification accuracy curves of overall, built and non-built pixels with respect to t3 for a given t1, {2 and filter size
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curacies for the 5 filter sizes are listed in Table 1 (1994) and
Table 2 (2001), respectively. For year 1994, all five maximum
training accuracies are around 96% to 98%, in which the maxi-
mum accuracy across the 5 filter sizes is 97.78 % at filter size 7
X 7. All the test accuracies are around 94% to 95% with the
maximum 94.97% at filter size 7 X 7. For year 2001, the maximum
training and test accuracies across the 5 filter sizes are 97.89%
and 94.72% at filter size 7 X 7. For each filter size, t3 in year
1994 is approximately half of that in year 2001 (except for 3 X
3). This can be explained by the fact that the SPOT-PAN image
taken in 2001 has greater contrast than the 1994 image. It should
be noted that although 3 is increasing with filter size, they are
all in the same level so that it is possible to use the same initial
value and increment. In this sense, the normalized high pass
filter simplifies the threshold searching process.

The optimal thresholds (for the 1994 image, t1:DN=95,
t2:DN=69, t3=0.06; for the 2001 image, t1:DN=87, t2:DN=53,
t3=0.12) were applied to the whole study area. The classified
images consist of binary values with ‘1’ referring to ‘built’
pixels and ‘0’ referring to ‘non-built’. Change from rural to
urban was detected as pixels with value ‘0" in 1994 and ‘0=1" in
2001 by comparing the two classified images. Compared to the
verification sample, an accuracy of 82.31% was achieved for
the final change map.

VL. CONCLUSIONS

The classification of the binary map was determined by the
combined thresholding of spectral information and the spatial
contrast information by the normalized high-pass filter. The
normalized high-pass filter proposed here proved to have two
advantageous properties: 1) it is insensitive to filter size and
2) insensitive to relative brightness. Therefore, a simplified
optimal threshold procedure was successfully used to search
the optimal value from a large threshold set consisting of all
possible combinations. This process makes threshold
determination automatic and objective and alleviates the
laborious process of manually checking the image.

This method of combining spectral and spatial context
information at the pixel scale was able to differentiate amongst
individual pixels with low brightness value and classify the
small houses of informal settlements in Ho Chi Minh City’s
urban fringe. As such, it has the potential to be useful to
researchers and policymakers in the developing world where

there has been a dearth of data about the rapid urban growth
patterns that have developed during the last decade of the
20" century. In particular, developing methods to interpret the
images already taken with SPOT-PAN is important because it
may be the only record of these urban growth patterns as they
developed during the end of the 20" century.
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