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Key Points:
We detected and located earthquakes from January 2018 to February 2019 using the machine learning method and double-
differencing technique.

●

The machine learning method and waveform cross-correlation enabled systematic phase picking and reduced inconsistencies in
catalog picking.

●

Hypocenter patterns demonstrate clear spatial-temporal clustering with depth constrained within 5 km.●

Our high-resolution earthquake relocations and waveform similarity analysis have revealed an unmapped fault that may have led to
the September 2019 Mw 5.2 event.

●
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Abstract: Anthropogenic induced seismicity has been widely reported and investigated in many regions, including the shale gas fields in
the Sichuan basin, where the frequency of earthquakes has increased substantially since the commencement of fracking in late 2014.
However, the details of how earthquakes are induced remain poorly understood, partly due to lack of high-resolution spatial-temporal
data documenting the evolution of such seismic events. Most previous studies have been based on a diffusive earthquake catalog
constructed by routine methods. Here, however, we have constructed a high resolution catalog using a machine learning detector and
waveform cross-correlation. Despite limited data, this new approach has detected one-third more earthquakes and improves the
magnitude completeness of the catalog, illuminating the comprehensive spatial-temporal migration of the emerging seismicity in the
target area. One of the clusters clearly delineates a potential unmapped fault trace that may have led to the Mw 5.2 in September 2019, by
far the largest earthquake recorded in the region. The migration of the seismicity also demonstrates a pore-pressure diffusion front,
suggesting additional constraints on the inducing mechanism of the region. The patterns of the highly clustered seismicity reconcile the
causal link between the emerging seismicity and the activity of hydraulic fracturing in the region, facilitating continued investigation of
the mechanisms of seismic induction and their associated risks.
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1.  Introduction
Anthropogenic activities inducing seismicity have been widely re-

ported  in  recent  decades.  In  particular,  subsurface  fluid  injection

(or withdrawal)  activities,  including  enhanced  geothermal  recov-

ery (Majer et al., 2007; Lee et al., 2019), carbon sequestration (Zo-

back  and  Gorelick,  2012),  underground  gas  storage  (Cesca  et  al.,

2014; Foulger  et  al.,  2018; Zhou  PC  et  al.,  2019; Jiang  GY  et  al.,

2020, 2021),  wastewater  disposal  (Ellsworth,  2013)  and  hydraulic

fracturing of shale gas exploration (Clarke et al., 2014; Weingarten

et al., 2015; Bao XW and Eaton, 2016; Yang HF et al., 2020; Zhou PC

et  al.,  2021),  have  all  been  associated  with  seismic  events.  The

subsequently induced earthquake rates caused by these industri-

al activities  can  rise  as  high  as  ten  times  the  background  seismi-

city; induced earthquakes can be of sufficient magnitude to be felt

locally and even cause significant destruction (Grigoli et al., 2017;

Yang HF et al., 2017; Atkinson et al., 2020).

Hydraulic fracturing,  also known as fracking,  is  a  directional  well-

bore-completion method used to recover hydrocarbons from un-

conventional oil and gas reservoirs. High-pressure fluids are injec-

ted into the targeted shale layers to create new fracture networks,

enhancing fluid flow within impermeable yet porous strata. After

the opening of the fracture network, the injected fluid is allowed

to flow back so as to extract hydrocarbons (Gale et al., 2014). Giv-
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en  hydraulic  fracturing’s  limited  injection  volumes  and  discrete

fracturing  patches  (unlike  wastewater  injection  and  enhanced

geothermal  recovery  with  continuous  high-pressure  injection),  it

was  commonly  asserted  as  recently  as  2015  that  fracking  would

present  negligible  risk  of  triggering  damaging  earthquakes.  The

microseismicity expected  during  fracking  procedures  was  pre-

dicted  to  be  limited  to  magnitudes  ranging  from  −4  to  0.

However, evidence has been accumulating that hydraulic fractur-

ing  induces  reactivation  of  large  pre-existing  faults,  thus  leading

to destructive earthquakes (Lei XL et al., 2019; Schultz et al., 2020;

Atkinson et al., 2020; Yang HF et al., 2020).

By far, a significant portion of the most intense earthquakes attrib-

utable  to  hydraulic  fracturing  have  been  located  in  the  Sichuan

Basin. In  recent  years,  two major  shale  gas  fields,  in  the Changn-

ing  and  Weiyuan  areas,  have  witnessed  induced  earthquakes  of

magnitude  five  or  above  (Lei  XL  et  al.,  2019; Sheng  MH  et  al.,

2020). These earthquakes have led to casualties and to estimated

economic losses of up to 50 million RMB (Lei XL et al., 2019).

Rising concerns over the safety and seismic risks of the area have

led to extensive research into the properties and the mechanisms

of  the  aforementioned  significant  earthquakes.  Despite  several

detailed studies of these earthquakes, the locations of their hypo-

centers  remain  debatable,  particularly  for  the  largest  event  that

occurred  in  early  September,  2019,  in  the  Weiyuan  Gas  Field

(Figure 1, Table 1). According to previous analyses, the focal depth

of the 2019 Mw 5.2 earthquake exhibits variation from two to five

kilometers (Wang MM et al., 2020; Lei XL et al., 2020; Sheng MH et

al.,  2020).  Although  location  disputes  and  other  differences  are

common in earthquake studies, as geophysical inversion with dif-

ferent  observations  and  model  parameters  may  have  divergent

results, knowing  with  precision  the  hypocenter  locations  of  in-

duced earthquakes is pivotal in determining how induction takes

place  (Yang  HF  et  al.,  2020; Lei  XL  et  al.,  2020; Sheng  MH  et  al.,

2020).

It  is  worrisome  that  the  faults  on  which  these  relatively  large

earthquakes occurred remain unclear.  For instance, the pre-exist-

ing fault leading to the 7 September Mw 5.2 Weiyuan earthquake

remains controversial. Wang MM et al.  (2020) analyzed the earth-

quake's  focal  mechanism and incorporated the seismic reflection

profile to outline the potential  fault  geometry of the event.  Their

results suggested that the earthquake with 5 km depth activated

the pre-existing basement fault of a structural wedge at the Weiy-

uan anticline. However, according to the interpretation of the re-

flection profile  along the northeastern Weiyuan region,  there are

also  two  detachment  faults  with  similar  geometry  at  shallower

depths, comparable to the injection depth of 2.5 km. Another ana-

lysis  from Sheng  MH  et  al.  (2020) used  previously  well-located

events from a local dense array to conduct relative relocation, and

determined the depth of the largest event to be 2.9 km. The event

location  coincides  with  the  aforementioned  upper  detachment

fault. The September 2019 Mw 5.2 earthquake is not the only one

whose source  location  remains  disputed;  differences  among  re-

ported source  locations  of  the  February  2019  Rongxian  earth-
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Figure 1.   Background seismicity of the Sichuan Basin; station and well coverage in Weiyuan area; focal mechanism of the magnitude 4+ events

and seismicity rate in the Weiyuan area. (a) Background seismicity of the Sichuan Basin. Events are colored by date and sized with magnitude.

Events with magnitude larger than 5 are outlined by red diamond and star. Red lines delineate the major faults. Blue and orange rectangles

highlight two recent major seismic clusters related to hydraulic fracturing in the Weiyuan and Changning regions respectively. (b) Stations and

recent major earthquakes in the Weiyuan area. White triangles, blue squares, and yellow hexagons indicate locations of the seismic stations,

major cities, and well locations respectively. Locations of 153 wells are derived from Google Earth satellite and field visits from 2015−2020.

(c) Seismicity rate of the Weiyuan area. The bar and line represent the daily event counts and the cumulative moment released in the Weiyuan

area. The recent Mw 5.2 and Mw 4.9 events in 2019 September and December released significant seismic moment in the area.
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quakes also have not been unresolved. Yang HF et al. (2020) com-
bined  the  inversion  by  InSAR  surface  deformation  and  seismic
data  to  conclude  that  the Mw 4.3 Rongxian  earthquake  was  loc-
ated at a depth of 1 km and adjacent to the Molin fault, and that
its two foreshocks were at greater depth (2.7 km), occurring on a
different fault. However, the depth of the Mw 4.3 Rongxian earth-
quake has been suggested as >2 km (Lei XL et al. 2020; Yi GX et al.,
2020).

Furthermore,  there  has  been  limited  analysis  of  the  foreshocks
and  aftershocks  of  the  events  that  help  constrain  the  potential
fault  geometry. Lei  XL  et  al.  (2020) relocated earthquake  se-
quences  of  the  major  events;  however,  the  resulting  foreshocks
and aftershocks  did  not  display  any  well-aligned  clusters.  There-
fore, the activated fault remains not well delineated, and the indu-
cing mechanism is yet to be resolved.

The  delineation  of  fault  geometry,  especially  at  greater  depths,
demands high-resolution earthquake locations. However, the loc-
ation  proposed  by  previous  methods  was  derived  from  catalog
phase arrivals (Yang HF et al.,  2020; Lei XL et al.,  2020; Wang MM
et  al.,  2020), which  are  routinely  determined  from  P  and/or  S  ar-
rivals. As  a  consequence,  the  location’s  accuracy  depends  critic-
ally on  the  heterogeneities  of  the  velocity  model  and  the  uncer-
tainties  of  the  picked  arrival  times  and  station  distribution.  As
shown  in  one  of  the  results  (Yang  HF  et  al.,  2020), the  hypocen-
ters  after  double-difference  relocation  remain  diffusive,  with
depths reaching 20 kilometers, and display rough estimates of the
distribution  of  earthquake  clusters  (Figure  2a, b), making  it  diffi-
cult to  differentiate  whether  they  are  induced  or  tectonic  earth-
quakes.

In order to search for potential fault geometry that might be illu-
minated  by  detailed  knowledge  of  the  micro-seismicity,  we
picked seismic arrivals by use of a detector that employs machine
learning.  We  then  associated  and  located  earthquakes  in  the
Weiyuan area  from  January  2018  to  March  2019  using  the  per-
manent  station  network.  Furthermore,  we  employed  waveform
cross-correlation to enhance the accuracy of differential times and
relocated  the  earthquakes  using  the  double-difference  method
(Waldhauser  and  Ellsworth,  2000). Furthermore,  we  used  avail-
able event  catalog data  to  calibrate  the local  magnitude calcula-
tions of  all  the earthquakes;  the resulting new expanded catalog
of events was then analyzed for their spatiotemporal distribution
as well as their potential for fault surface delineation. Lastly, we re-
confirmed that the earthquakes with shallow depths in the Weiy-

uan area were induced by hydraulic activities. 

2.  Geological Setting and Seismic Data 

2.1  Overview of Geology, Hydraulic Fracturing Activities
in Weiyuan Area

The Sichuan  Basin  was  discovered  as  the  largest  shale  gas  reser-
voir in China in the 1990s and is still  the major petroleum produ-
cer to date (Lei XL et al., 2013). The Weiyuan Gas Field is one of the
major  gas  reservoirs  in  the  southwestern  Sichuan  Basin  and  has
high  productivity  at  present.  According  to  government  reports,
the Weiyuan Shale Gas Field had a targeted shale gas production
volume  of  2  billion  m3 in  2015.  The  shale  gas  field  belongs  to  a
large anticline dome structure that lies on the southeastern slope
of  the Leshan−Longnüsi  paleo-uplift  and the western side of  the
Early  Cambrian  "Mianyang−Changning"  intra-cratonic  sag.  The
rich  and  high-quality  shale  gas  formation  in  the  area  is  found  at
depths  of  1.5  to  4.5  km  and  between  the  upper  Ordovician
Wufeng  formation.  The  Longmaxi−Wufeng  formation  shale  layer
has an average thickness of 100 meters (Liang X et al., 2019).

The "Wei-201  well"  drilled  in  2010  in  the  Laochang  Village,  Xin-
chang  Town,  Weiyuan  County,  was  the  first  shale  gas  evaluation
well in China. During completion of the well and the first hydraul-
ic  fracturing  operation,  the  earthquake  rate  in  the  Weiyuan  area
increased  drastically  (Figure  1c).  Systematic  shale  gas  hydraulic
fracturing in horizontal wells commenced in 2014 (Lei et al., 2017;
Yang  HF  et  al.,  2020).  At  least  four  horizontal  wells  were  drilled
and completed  after  a  year  of  development.  Recent  satellite  im-
agery  has  shown  active  well  development  in  the  Weiyuan  area
(Figure 1b). 

2.2  Overview of Emerging Seismicity in the Sichuan Basin
and the Weiyuan Region

Although frequent  and  large  earthquakes  occur  along  the  Long-
menshen  Fault  Zone  at  the  northwestern  part  of  the  Sichuan
Basin, natural seismicity within the Sichuan Basin has been scarce
and limited,  according to the earthquake catalog (Figure 1a). Be-
fore  the  recently  emerging  seismic  activities,  there  were  minor
swarms of  earthquakes  related  to  the  salt  mining  industries  loc-
ated at the southeastern side of the Weiyuan area. As reported by
the  modern  catalog  from  the  China  Earthquake  Network  Center
(CENC),  no  earthquakes  of  magnitude  larger  than  five  were  ever
recorded within the Weiyuan Region before 2018. Since the intro-
duction  of  unconventional  shale  gas  exploration  in  2015,

Table 1.   Major 2019 earthquakes in the Weiyuan Region; differing source parameters from CENC catalog and various studies.

Time (YYYY/MM/DD HH:MM) (UTC) Lon.(°) Lat.(°) Depth (km) Magnitude Source

2019/02/25 05:15

104.49 29.47 1.0 Mw 4.3 Yang HF et al., 2020

104.49 29.48 1.7 Mw 4.53 Lei XL et al., 2020

104.5 29.47 5.0 Ms 4.9 CENC Catalog

2019/09/07 22:42

104.82 29.58 2.5 Mw 4.92 Lei XL et al., 2020

104.931 29.530 5.0 Mw 5.2 Wang MM et al., 2020

104.812 29.602 2.9 Mw 4.97 Sheng MH et al., 2020

104.82 29.58 10.0 Ms 5.4 CENC Catalog
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however,  seismicity  has  surged  in  the  Weiyuan  Area  (Figure  1c)
(Zhou  PC  et  al.,  2021).  As  recently  as  in  2019,  four Mw 4+ earth-
quakes  and  one  of Mw 5.2  occurred  along  the  southern  edge  of
the Weiyuan anticline structure. The corresponding seismicity rate
can now reach 50 events per day. 

2.3  Seismic and Drilling Data
Event waveforms  from  the  permanent  local  seismographic  net-
work  were  collected  with  nine  short-period  seismometers  from
2018 to September 2019 and used in this study. The seismic net-
work has an average spacing of 30 kilometres and is located at the
southern flatland  of  the  Weiyuan  anticline.  The  permanent  sta-
tion network provides primary spatial and azimuth coverage over
the targeted Weiyuan region and the Molin fault area (Figure 1b).
Event  waveforms  from  the  nine  local  stations  have  a  section
length of five minutes starting from the event origin time. In total,
we  have  31,847  sets  of  event  waveform  data,  covering  20  to  30
percent  of  all  daily  data.  We  have  also  detected  and  identified
drilling locations in the Weiyuan area from 2015 to 2020, based on
satellite photos and our field visits (Figure 1b). 

3.  Methods 

3.1  Machine Learning Detector and Detection
Machine learning applications have been widely adopted in seis-
mology,  with  particularly  outstanding  performance  in  seismic
phase detection and picking accuracy (Kong et al.,  2019).  A deep
neural network with convolutional layers can recognize the com-
plex shape  of  an  earthquake  arrival  phase  and  select  the  corres-
ponding onset (Perol et al.,  2018).  We used the publicly available
machine  learning  detection  package  “PhaseNet”,  which  is  a  U-

shaped  convolutional  neural  network  modified  with  1-D  time
series  data  input,  to  analyze  the  seismic  data.  PhaseNet’s  deep
neural network consists of four convolutional down-sampling and
up-sampling stages. In each stage, the data are convoluted with a
1D filter,  and each neuron is  activated by the rectified linear unit
(ReLU) to  recognize  the  spatial  pattern.  The  model  outputs  con-
tinuous  probability  distribution  of  P  arrivals,  S  arrivals,  and  noise
levels with the same dimensions as the input. The PhaseNet mod-
el  is  trained  with  over  700,000  labeled  seismic  arrivals  from  the
Northern California Earthquake Data Center. The training datasets
consist  of  input  from  various  seismic  instruments,  including
broad-band seismometers, short-period seismometers, and accel-
erometers. Limited data pre-processing is applied with only a lin-
ear trend removed during the training of PhaseNet,  and thus the
training sets consist of a portion of low signal-to-noise-level tem-
plates. The PhaseNet deep learning model has proven its robust-
ness, accurately detecting arrivals, even in noisy conditions, when
tasked  with  analyzing  the  characteristics  of  P  and  S  arrivals  and
the  ambient  noise  pattern  in  seismic  recordings  (Zhu  WQ  and
Beroza,  2019).  Our study applied PhaseNet as the phase detector
to select P and S arrivals from the continuous waveform. 

3.2  Earthquake Location and Magnitude Calibration
The detected P and S  phases  are  associated with the grid-search
method using REAL — the Rapid Earthquake Association Locator
(Zhang M et al., 2019). The travel-time grids use the modified velo-
city  profile  derived  by  ambient-noise  topography,  and  shallow
depth data from well-logging records (Meng XB et al.,  2018) (Fig-
ure S1). Absolute location using VELEST (Kissling et al., 1995) is ap-
plied after the initial  grid search hypocenter location. VELEST is a
distributed  Fortran  program  to  locate  earthquakes  using  travel-
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Figure 2.   Earthquake catalog (a, b) phase data from 2018-09 to 2019-02 in previous catalog (Retrieved from Yang HF et al., 2020); and (c, d) from

new machine learning catalog. (a) Red lines delineate mapped faults; triangles locate the stations used in the catalog; colored circles show the

relocated events.
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time iterative inversion based on predefined velocity profiles. The
resulting  locations  are  the  initial  reference  model  which  is  then
subjected  to  further  analysis.  In  our  analysis,  VELEST-computed
events with large azimuth gaps (> 270°) were classified as poorly-
determined  and  were  discarded.  The  accuracy  of  the  catalog  is
further improved by using the hypoDD relocation method incor-
porated with phase arrival cross-correlation shift correction (Wald-
hauser and Ellsworth, 2000).

All the associated and located events were estimated using calib-
rated local  magnitudes (Equation (1)).  We defined the local  mag-
nitude equation based on the linear relation of the maximum log-
arithmic amplitude of horizontal  ground motion Apeak to the log-
arithmic epicentral distance, with the correction k on attenuation
and geometric spreading and C constant

MLreference = log10Apeak + klog10R + C, (1)

log10Apeak =
log10Apeak,East + log10Apeak,North

2
. (2)

We determine the k and C values by using the catalog events; we
then calculate our local magnitude estimation for each event. 

3.3  Fault Plane Fitting

di = m1 +m2xi +m3yi Nth

The fault  plane is  determined by  the  location of  the  hypocenter,
using a least-squares solution based on the plane equation. Con-
sider  a  plane  with  hypocenter  equations.
The plane equation has the form of⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1

d2

⋮
dN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x1 y1

1 x2 y2

⋮ ⋮ ⋮
1 xN yN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ [
m1
m2
m3

] . (3)

By the least-squares  method,  we can estimate the coefficients  of
the plane:

mmmest = [GGGTGGG]−1
GGGTddd. (4)

The standard  derivation  of  the  least-squares  planar  fit  is  calcu-
lated by :

Cov (mmmest) = σ2
d[GGGTGGG]−1

. (5)

To determine the fault trace, the related events showing lineation
are  subset  from  the  catalog,  using  temporal  range  and  latitude
and longitude bins, determined visually. In our study, we have se-
lected the events located in the northeastern part of the Weiyuan
area from January to April, 2018. 

3.4  Pressure Diffusion Front

The pore  pressure  induced  seismicity  has  a  characteristic  migra-
tion pattern following the diffusion front, as stated in Equation (6):

R =
√

4πDt. (6)

which  presents  the  pore  pressure  front  that  results  from  solving
the diffusion equation assuming a homogeneous, isotropic medi-
um. Full derivation is attached in the supplementary material. R is
the  radius  of  the  pore  pressure  diffusion-triggering  front,  based
on the injection lapse time t and the scalar hydraulic diffusivity D.
The hydraulic diffusivity is the permeability divided by the dynam-

ic  viscosity  of  the  fluid  (Shapiro,  2015).  Seismic  events  are  more

likely to occur  within the relaxation zone;  the diffusion front  giv-

en by Equation (6) suggests the upper bound of seismicity migra-

tion. Since the injection data are limited, we select the first earth-

quake  of  each  seismic  cluster  to  approximate  the  injection  site

and initiation. 

4.  Results 

4.1  Machine Learning Detection and Event Association
Although  the  PhaseNet  machine  learning  detector  was  trained

with  data  subjected  to  minimal  pre-processing,  we  employed

standard  time-series  pre-processing  to  increase  the  signal-to-

noise  ratio  before  the  detection.  Linear  trend  removal,  tapering,

and highpass 1 Hz were applied. To avoid phases at the boundar-

ies, the pre-processed waveforms were then sliced into 30-second

windows with  50  percent  overlap.  Data  in  each  30-second  win-

dow were normalized and fed into PhaseNet for arrival prediction.

To insure picking accuracy, this study used only phase picks with

probabilities  larger  than  0.5.  In  total,  this  approach  identified

232,050 P arrivals and 161,720 S arrivals.

We  conducted  a  travel  time  grid  search  using  the  REAL  package

(Zhang  M  et  al.,  2019).  The  travel  time  grid  consists  of  search

ranges with station-event distances of up to 1.5 degrees (167 km)

with a grid size of 0.02°, and event depths ranging from surface to

30 km with a grid size of 1.5 km. Due to the limited number of sta-

tions, a  minimum of  four  P  phase arrivals,  and six  total  phase ar-

rivals (P  + S),  and a  residue tolerance of  0.5  seconds in  phase ar-

rivals,  are  configured  for  an  event  association. Figure  S2 demon-

strates  one  of  the  associated  events  with  corresponding  phase

picks.  The  requirements  mentioned  above  are  generally  looser

than those of previous studies based on more comprehensive sta-

tion coverage,  such as  the study of  induced earthquakes using a

nodal seismic array in Raton Basin, USA (e.g., Wang RJ et al., 2020).

In  total,  the  machine  learning  phase  picking  yielded  18,172  P

picks  and  11,996  S  picks,  based  on  which  we  have  associated

3,522 events. The associated picks consist of less than 10 percent

of the detected phases. The limited number of associated phases

is due in part to the limited station coverage over the major earth-

quake clusters;  data from the closest four of the nine stations ac-

count for 60 percent of the total detections.

Locations of  the associated events were further identified by use

of absolute VELEST location results (Kissling et al., 1995); to minim-

ize  event  location  errors,  we  accepted  only  events  for  which

VELEST  station  azimuth  gaps  were  270°  or  less.  Overall,  3,061

earthquakes  were  detected  and  located  in  the  event  waveforms

detected  in  data  from  the  permanent  stations  between  January

2018  and  to  February  2019  (Figure  3).  Compared  to  the  catalog

from the China Earthquake Network Center (CENC), our approach

has detected 1,458 additional earthquakes, accounting for 47 per-

cent  of  the  revised  total;  compared  to  the  Sichuan  Earthquake

Agency's catalog from November 2018 to February 2019, our ma-

chine  learning  methods  have  added  335  unique  earthquakes,

which account  for  20  percent  of  the  revised total  of  1,652 earth-

quakes. 
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4.2  Comparison with Catalog Phase Picks
To  assess  the  performance  of  the  machine  learning  detection

used in  the study,  we compared our  machine learning detection

and picking results  with the catalog phase picks.  There are some

obvious differences between the arrival  times picked by PhaseN-

et and in the catalog, the latter consisting of either manual picks

or  picks  based  on  Short  Term  Average/Long  Term  Average.  The

catalog picks demonstrate both effusive and impulsive onsets as P

wave  arrivals,  as  shown  in  the  waveform  plot  in  the Figure  3.  In

contrast,  the  PhaseNet  picks  exhibit  a  consistent  picking  among

the arrivals.

To assess  the  capability  of  machine  learning  detection  qualitat-

ively,  we  computed  the  arrival  time  differences  between  picks

based  on  the  machine  learning  approach  and  the  catalog  picks

(Figure 4). Compared to catalog picks, PhaseNet picks exhibit sys-

tematic  delays,  with  median  values  of  0.60  seconds  in  P  arrivals

and  0.88  seconds  in  S  arrivals  (Figure  5). These  systematic  differ-

ences  are  due  to  variant  consistency  in  picking  arrival  onsets  of

manual picks and PhaseNet.

The accuracy of PhaseNet detection is further illustrated using ar-

rival cross-correlation correction.  To obtain a relative pick adjust-

ment,  we  conducted  cross-correlation  on  each  phase  arrival  pair

whose  corresponding  event  separation  was  less  than  20  km.  In

principle,  the  cross-correlation  time  shift  of  an  accurate  arrival-

pair should be minimal, while the time shift for a less accurate ar-

rival-pair  would be finite.  However,  mis-picked arrival  pairs result

in  either  a  random  time  shift  or  a  pseudo-minimal  time  shift.

Therefore,  the  time-shift  distribution  for  cross-correlated  arrival

pairs  picked  by  an  accurate  phase  picker  would  be  narrow  and

concentrated, while results from an imprecise phase picker would

exhibit a more widely distributed time shift.

In  our  study,  the waveform was first  subjected to  a  bandpass  2−
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Figure 3.   Comparison of arrival phase picks by PhaseNet and manual picks by the Sichuan Earthquake Agency. (a) P wave arrival pick

comparison; (b) S wave arrival pick comparison. Red line is the phase pick by PhaseNet; black line is the manual pick.
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Figure 4.   Histogram of phase pick time difference between machine

learning detector and catalog phase pick. Offset is the machine

learning phase pick minus catalog phase pick time. Black indicates P

wave pick offset; red indicates S wave pick offset.
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15 Hz filter and sliced 0.5 s  before and 1.5 s after arrival  picks for
the cross-correlation;  the  only  cross-correlation  results  con-
sidered were those exhibiting coherency of 0.7 or above.

The  resulting  arrival  cross-correlation  shift  distribution  revealed
that the machine learning detector used in our study delivered a
consistent  improvement.  In  both  P  and  S  arrival  picks,  the  time-
shifting  distributions  of  the  PhaseNet  picks  are  more  confined
than those of  the manual picks.  PhaseNet picks were revealed to
exhibit a significantly lower variance in correction shift than cata-
log  picks:  PhaseNet’s  standard  deviations  were  0.099  s  for  P  and
0.083 s for S, compared to the corresponding 0.158 s and 0.172 S
for  the  catalog  picks  (Figure  6).  These  results  suggest  that  the
PhaseNet  picker  is  significantly  more  reliable  than  the  catalog
picking method.

To optimize the machine learning picking, we tested a higher ac-

ceptance of  the PhaseNet  phase pick  output,  lowering the prob-

ability level cutoff from 0.5 to 0.3. Visual inspection of these lower-

probability phase  picks  confirms  the  expected  significant  in-

crease in ambiguity of arrival onset selection. Although the num-

ber of phase pick (401,689 P, 333,914 S) and the consequent num-

ber of events associated (7000+) by grid-search methods doubled

with  the  loosened  criteria,  the  final  number  and  accuracy  of

events  located after  double-difference relocation remains  mostly

unchanged. Both 0.5 and 0.3 PhaseNet picking acceptance led to

relocation of nearly a thousand events. We concluded that accept-

ance of  lower probability  picking by the machine learning meth-

ods  does  not  significantly  improve  the  final  results;  accordingly

we  retain  our  original  criterion:  limiting  machine  learning  phase

picks to those at probability levels of 0.5 or greater. 

4.3  Double Differencing Relocation
We relocated the events using the double-difference relocation al-
gorithm hypoDD (Waldhauser and Ellsworth, 2000). In addition to
differential  times  derived  from  cross-correlation,  we  also  used
phase arrivals  to calculate the differential  times if  their  cross-cor-
relation coefficients were lower than the threshold, with PhaseN-
et’s picking probabilities used as the phase weighting. The config-

urations of the hypoDD inversion are listed in Table S1.

We relocated 1,350 events  in  the Weiyuan area,  comprising one-
third  of  the  events  located.  Compared  to  the  absolute  locations
from  VELEST,  the  relocated  catalog  shows  enhanced  clustering
and lineation of  the hypocenters  (Figure 7). The catalog also dis-
plays multiple swarms that clearly emerged and migrated during
the period, correlating with the continuous development and op-
erations of hydraulic fracturing activities in the region. Compared
to the Sichuan Earthquake catalog,  the event depths of  our  relo-
cated catalog  have  shifted  shallower,  with  a  median  displace-
ment of 4.53 km in depth and 2.27 km horizontally (Figure 8).

Addressing the significant loss of events that occurred during our
relocation processes,  we  applied  different  parameters  to  maxim-
ize the number of events relocated. We then tested the accuracy
of the results. To recover most of the discarded results during the
inversion, we followed the configuration used to  analyse  the ini-
tial hydraulic  fracturing  stage  in  the  Guy-Greenbrier  area,  Arkan-
sas, United States, for which data from three seismic stations were
available (Yoon et al., 2017). The air-quakes were retrained during
relocation iterations  according  to  their  configurations.  Our  num-
ber  of  relocated  earthquakes  doubled  with  use  of  the  air-quake
reserved configurations;  however,  most  of  the  additional  earth-
quakes  tended  to  be  at  the  subsurface  (within  1  km  depth)  and
their locations exhibited large uncertainties. Inclusion of these ill-
defined  shallow  events  altered  the  deeper  hypocenter  lineation.
Therefore,  with  limited  station  spatial  and  azimuth  coverage,  we
considered removing ill-relocated events during the iterations.

To further  examine the  reliability  of  the  relocation results  and to
obtain  a  more  exhaustive  catalog  of  event  locations,  we  subset
and  relocated  a  major  event  cluster  located  at  the  northeastern
side  of  the  Weiyuan  county,  where  the  largest Mw 5.2 event  oc-
curred (Figure 7). We applied and tested multiple  hypoDD inver-
sion configurations to the targeted cluster  (Table S2).  Since all  of
the stations are located at the southern and southeastern side of
the cluster but with large separations between them (> 60 km), to
test  the  stability  of  our  results  we  tried  a  bootstrap  sampling
method, limiting stations and corresponding phase data in the in-
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Figure 5.   Histogram of phase pick correction between machine learning detector and catalog phase pick by waveform cross-correlation. Black

indicates P wave pick correction; red indicates S wave pick correction.
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version. Overall, the resulting catalog displayed decreased resolu-

tion; using the closest  four stations did not demonstrate signific-

ant improvement (Figure S3). Therefore, the hypocenter locations

appear  to  be  better  confined by  use  of  all  available  station data;

restricting the  analysis  to  data  from  fewer  stations  does  not  ap-

pear to have any advantages.

The  initial  hypoDD  relocation  method  resulted  in  significant  lost

of  relatively  large  magnitude  earthquakes.  Their  loss  appears  to

be due to the limited similarity of  arrivals  between the large and

small  magnitude  earthquakes,  as  their  source  time  functions  are

different. Therefore, for earthquakes of magnitude 2.5 and above,

we  used  phase  arrivals  instead  of  the  combined  approach  of

phase  and  cross-correlation  relocation.  The  retention  rate  of  the

resulting catalog  reached  80%.  To  validate  the  accuracy  of  loca-

tions  of  the  relatively  large  earthquakes,  we  selected  the  2019

February Rongxian earthquake sequence and compared results of

our new method with the results reported by a study in which fo-

cal mechanisms were determined (Yi GX et al.,  2020) (Table 2).  In

general the reported locations are consistent with each other; re-

ported depths of these three earthquakes differ from between 1.4

and 2 km (Table 2). However, we should note that our depths refer

to  the  hypocenters,  while  the  depths  in Yi  GX  et  al.  (2020) are
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Figure 6.   (a) Relocation results. The color and size refer to the times of occurrence and the magnitudes of the events. (b) Depth plot of the

relocated events. In total, 1002 events were relocated.
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Figure 7.   (a) Detailed view on the northeastern seismic cluster. Events are colored by dates and sized by magnitude. (b) Hypocenter depth

projection along AA’ and (c) hypocenter depth projection along BB’.
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Figure 8.   Hypocenter offset comparison between relocation and catalog.

Table 2.   Comparison of locations of relatively large magnitude earthquakes reported by this study and one previous study.

Date and time ML Lat.(°) Lon.(°) Depth Source

2019/02/25T00:40:27 4.3 29.508 104.499 1.2 This study

29.486 104.503 2.5 Yi GX et al. (2020)

2019/01/23T06:40:37 3.8 29.505 104.500 0.8 This study

20.492 104.494 3 Yi GX et al. (2020)

2019/01/07T11:13:06 3.5 29.446 104.469 2.7 This study

29.443 104.454 4 Yi GX et al. (2020)
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centroid  depths.  Nevertheless,  our  hypocenter  depths  are  much

shallower than the network reports, which were typically at 10 km

or greater for these earthquakes. 

4.4  Magnitude and Completeness of the Catalog
In Equation (1), correction parameters k and C are determined us-
ing  the  least  squares  method,  where k is  the  distance  correction
parameter representing  the  geometric  spreading  and  attenu-
ation,  and C is  the base level  in the magnitude calculation.  Since
we do not have the complete responses of the instruments used
in the  permanent  network,  we applied a  1  Hz  highpass  filter  dir-
ectly to remove low-frequency noise and collect the peak ground
motion amplitude of the filtered east and north component wave-
form  (Equation  (2)),  and  thus  obtained  the  local  magnitude  for
each detected event.

Using  1,480  reference  events  and  the  least-squares  method, k is

determined as 2.001; C is  −4.867 (Figure S4). The final  local  mag-

nitude of an event is the median of all the calibrated magnitudes

from the  nine  permanent  stations.  The  calibrated  local  mag-

nitude  results  are  consistent  with  the  reported  events,  with  a

standard deviation of 0.13 and only one outliner event, underde-

termined by 0.7 (Figure S5).

Using the  machine  learning  detector,  we  have  detected  earth-

quakes  as  small  as ML 0.  We  have  calculated  the b value  of  our

newly acquired  catalog.  The  magnitude  and  frequency  distribu-

tion of our located earthquakes, calculated using the python soft-

ware  EQCORRSCAN  (Chamberlain  et  al.,  2018),  suggests  that  our

catalog  becomes  incomplete  below  magnitude  1.75  (Figure  9 &

10).  The  corresponding b value  for  catalog  events  of  magnitude

larger  than  1.75  is  1.114  using  the  method  proposed  by Weimer

and  Wyss  (2000).  We  conclude  that  despite  the  limited  event

waveforms and  the  sparse  permanent  station  network,  our  ap-

proach can deliver high catalog magnitude completeness. 

5.  Discussion 

5.1  Machine Learning and Waveform Cross-correlation

Method in Constructing an Event Catalog
The  machine  learning  method  and  waveform  cross-correlation

application  not  only  improve  the  spatial-temporal  resolution  of

the earthquakes but also suggest a feasible method to be applied

routinely to all datasets available in the Sichuan Basin. Use of the

approach described here can provide essential event information

to assess the hydraulic fracturing risk in real time, including monit-

oring  the  crucial  comparison  of  earthquake  depths  to  the  depth

of the hydraulic fracturing layer. The low cost of computation us-

ing the machine learning method is advantageous. PhaseNet pro-

cessing of a year's data from all nine stations was completed with-

in  6  hours,  using  a  40-CPU-core  computer.  The  efficiency  of  this

machine learning application could be further improved using the

latest  GPU  implementation.  In  addition,  the  linear  scaling

between dataset size and neural network operations in the meth-

od  we  have  described  greatly  reduces  runtime  with  expanding

datasets,  especially  when  compared  to  the  template  matching

method  (Yang  et  al.,  2009; Peng  and  Zhao,  2009; Meng  et  al.,

2018), whose exponential scaling between runtime and data and

template size (Perol et al., 2018) results in comparatively slow and

limited performance on such large and growing datasets. A great

advantage  of  the  machine  learning  application  is  that  it  can  be

scaled up economically to take advantege of all the available data

in the region.

The machine learning method has proved its robustness and reli-

ability  in  detecting emerging induced seismic  swarms compared

to  the  traditional  method  of  moving-average  detection  and

manual picking.  With implementation of waveform cross correla-
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Figure 9.   Magnitude frequency distribution of detected events.
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tion,  such improved arrival  differential  times have led to a better
relocation of earthquakes using the sparse seismic stations in the
region. Since March 2019, 14 additional local seismic stations have
been deployed in the Rongxian−Weiyuan region, significantly im-
proving  the  network  coverage  and  lowering  the  magnitude
threshold of earthquake detection. With more precise arrival picks
from the machine learning method, we can anticipate significant
improvements in the accuracy of earthquake catalog locations.

Increased completeness and accuracy of earthquake catalogs will
provide a  comprehensive  framework  for  assessing  risks  associ-
ated  with  induced  earthquakes.  Rapid  assessment  of  emerging
seismic swarms is critical to the detection of earthquakes induced
by  injection  and  hydraulic  fracturing.  Estimating  the  risks  from
earthquakes induced by anthropogenic activities is an active field
of  research  (Lee  et  al.,  2019).  The  latest  assessment  scheme  is
based  on  a  real-time  estimation  of  seismic  risk  by  use  of  the
Gutenberg–Richer relation (Gutenberg and Richter, 1956) and the
nonhomogeneous Poisson process of induced events (Shapiro et
al.,  2010).  Our method offers  a reliable and complete earthquake
catalog  that  includes  small  induced  events,  which  are  vital  both
statistically  and  physically  to  assessment  of  the  risks  of  induced
earthquakes. 

5.2  Confined and Clustered Earthquakes Between January

2018 and February 2019
Based on both their absolute locations and our computed reloca-
tions,  we report that most of  the earthquakes studied here,  from
January 2018 to February 2019, were confined to depths of 5 kilo-
metres  or  less.  This  conclusion  is  in  contrast  with  the  published
catalog  depths,  which  range  as  deep  as  20  kilometres.  However,
our retrospective  investigation  of  the  locations  of  these  earth-
quakes is  consistent  with the preliminary locations reported dur-
ing the  subsequent  period  when  additional  temporary  and  per-
manent  stations  had  been  deployed.  Early  analysis  of  data  from
these augmented  local  arrays  suggests  that  the  induced  seismi-
city in the Weiyuan area is of limited depth (Zhou PC et al.,  2021;
Zi  JP  et  al.,  2021), in  agreement with — and we believe confirm-
ing the plausibility of — the results of our reanalysis of the limited
earlier data.

We suggest  that  this  agreement  confirms  the  ability  of  our  ma-
chine learning detection and waveform cross-correlation method
to  determine  earthquake  locations  effectively  and  robustly  even
when station coverage and data have been limited.

Natural earthquakes are known to occur at depths beyond tens of
kilometres. Our finding that the earthquakes reanalyzed here oc-
curred  at  much  shallower  depths  strongly  supports  the  growing
evidence that these events are likely to have been induced by hy-
draulic fracturing activities.

Recent  seismicity  in  the  Weiyuan  area  has  also  been  highly
clustered both spatially  and temporally.  Although the availability
of the event waveforms used in the present analysis are biased to
periods with higher seismicity rates, our catalog clearly reveals the
emergence  and  migrated  clustering  of  events  both  along  the
Molin  fault  and  in  the  northeastern  Weiyuan  area  (Figure  2c).
These  clusters  have  generally  lasted  for  a  few  weeks  and  had  a

spatial extent of 10 to 20 kilometres. The size and the duration of
these  seismic  clusters  suggests  correlation  with  active  fracking
activities within or in proximity to the clusters. 

5.3  Potential Fault Geometry Leading to the 2019 Mw 5.2
Earthquake

The  improved  detail  resulting  from  implementation  of  machine
learning picking and waveform cross correlation relocationing re-
veals  multiple  lineations  in  the  emerging  seismic  clusters  in  the
Weiyuan  region.  For  example,  the  northeastern  seismic  clusters
across the study period exhibit multiple lineations trending south-
west to northeast (Figure 7). These earthquake lineations suggest
fault activation over the hydraulic fracturing inducing period. The
orientations  of  the  lineations  are  consistent  with  the  principal
stress  geometry  in  the  Weiyuan  area.  According  to  well-logging
analysis,  the  orientation  of  the  local  maximum  principal  stress  is
roughly  N90°E  (Meng  XB  et  al.,  2018).  The  maximum  principal
stress axis estimated from earthquake focal mechanism of the ma-
jor  fracking  sites  in  the  Weiyuan  area  is  oriented  sub-horizontal
with an azimuth of 106° (Lei XL et al., 2020). The lineation illumin-
ated by the seismicity suggests that the fault is optimally oriented
with respect to the regional stress field and could be readily react-
ivated.

Repeated fault  failures following induced seismicity  are common
and have been reported extensively.  For example,  hydraulic frac-
turing activities in Duverney, Canada, have induced repeated fault
failure over  a  basement-rooted  fault  that  cuts  through  the  injec-
tion layer and the seismogenic region (Eyre et al., 2019). However,
multiple inducing  mechanisms  —  including  pore-pressure  diffu-
sion,  poroelastic  stress  transfer,  and the  coupled aseismic  slip  —
can lead to repeated failure of a pre-existing fault (Atkinson et al.,
2020). Differentiating  these  inducing  mechanisms  requires  ex-
tensive wealth of high resolution spatial and temporal seismic and
well operation  data.  Limited  catalog  resolution  and  well  opera-
tion data prevent further elucidation of  the inducing mechanism
in the Weiyuan area at  this  time.  Until  additional  stations are de-
ployed, the evolution of seismicity in this critical region cannot be
assessed quantitatively.

Nonetheless,  our  retrospective  analysis  has  demonstrated  that
data from induced seismicity can illuminate unmapped fault geo-
metry.  The  relocated  seismicity  in  the  northeastern  section  is
clustered on planar structures and also coincides with the later Mw

5.2  earthquake  in  September  2019  (Figure  7).  The  disclosure  of
this  unmapped  fault  surface  has  significant  potential  in  future
analysis of the risks of further induced earthquakes, including as-
sessment of potential rupture scenarios. 

5.4  Potential Pore Pressure Diffusion Inducing Mechanism
for an Individual Cluster

One of the earthquake swarms that occurred in the northeastern
side of the Weiyuan region in February 2019 was confined along a
fault surface (events circled in purple box in Figure 7), thus allow-
ing us to investigate the swarm’s spatial–temporal evolution. The
hypoDD high resolution location results display a distinctive spa-
tial–temporal  evolution  coinciding  with  the  theoretical  diffusion
front, with hydraulic diffusivity of 1 m2/s (Figure 11), implying that
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this  seismic  cluster  of  earthquakes  might  have  been  caused  by

pore-pressure diffusion.

Although one of the clusters has suggested strong evidence of a

pore-pressure diffusion inducing mechanism, the inducing mech-

anisms of other emerging seismicity clusters in the region remain

unclear;  the  possible  relationship  between  hydraulic  fracturing

activities and  the  large  earthquakes  in  2019  are  particularly  per-

plexing (Yang HF et al., 2020; Yang and Yao, 2021). Future work is

needed  with  better  network  coverage  to  elucidate  the  potential

mechanisms leading to these earthquakes. 

6.  Conclusion
In our  study,  machine  learning  has  demonstrated  promising  res-

ults  in  detecting  a  large  number  of  seismic  phases  from  limited

available  waveform  data.  The  phase  picks  by  PhaseNet  have

shown  consistency  with  and  improvement  on  the  conventional

catalog’s  manual  picks.  Our  approach is  characterized as  follows.

Grid-search  method  using  local  velocity  profile  modified  from

Zhao et al. (1997) and Meng et al. (2018) is used to associate these

phases. Absolute location with VELEST is performed with the asso-

ciated phase, and the earthquakes with large azimuth gap and hy-

pocenter  uncertainty  are  discarded  (Kissling  et  al.,  1995). To  fur-

ther improve hypocenter location, cross-correlation on the phase-

pick waveform is conducted. The corresponding phase-pair shift-

ing and correlation coefficient are inputted in the double differen-

cing relocation algorithm. The resulting catalog has an average er-

ror in hypocenter determination of less than 200 meters. The final

catalog  consists  of  4018  earthquakes,  25%  of  which  are  unique,

not included in the Sichuan Earthquake Agency catalog.

The hypocenter depths of the Weiyuan earthquakes studied here

do not display the diffusive range suggested by the previous cata-

log. Most  of  the  earthquakes  relocated  by  our  method  are  con-

fined within 5 kilometres depths. The relocated catalog clearly dis-

plays at least 6 emerging clusters in the Weiyuan area from 2018

to March 2019, mirroring the rapid development of hydraulic frac-

turing activities in the study area. In addition, after high precision

relocation  by  the  double-difference  algorithm,  it  becomes  clear

that  earthquakes  in  the northeastern part  of  the Weiyuan region
exhibited preliminary fault  lineation.  The location of the fault  lin-
eation  coincides  with  the  centroid  location  of  the  2019 Mw 5.2
event, by far the largest Weiyuan event. This newly described lin-
eation  suggests  a  possible  unmapped  fault  geometry  associated
with the rupture event. The improved catalog and detailed struc-
tures of the emerging seismicity facilitate continued investigation
of the consequences of active hydraulic fracturing in the Sichuan
Basin.
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Supplementary Materials
 

S1 Derivation of the Pore-pressure Front

The  hydraulic  fracturing  operation  is  approximated  by  a  point

source  perturbation  in  an  infinite  heterogenous  anisotropic

poroelastic  fluid-saturated  medium.  The  pressure  evolution  due

to the injection is described by the following diffusion equation:

∂p
∂t

= ∂
∂xi

[Dij
∂
∂xj

p] , (A1)

Dij

p0exp (iωt)

where  is the hydraulic diffusivity tensor of the material. The hy-

draulic  diffusivity  can be  pressure-dependent  in  some situations;

the  equation  then  becomes  non-linear.  Considering  a  simplified

case with pressure-independent, isotropic hydraulic diffusive and

homogeneous  material,  the  following  is  the  pressure  evolution

solution in spherical coordinates satisfying the diffusion equation,

given  a  time-harmonic  pressure  perturbation  on  a

small spherical surface of radius a at origin.

p (r, t) = p0e
−iωt a

r exp [(i − 1) (r − a)√ ω
2D

] , (A2)

where ω is  the  angular  frequency  of  the  injection  pore-pressure
perturbation.

However,  the  injection  in  reality  is  a  step  function  rather  than  a
simple  harmonic  function.  Thus,  the  boundary  condition  for  the
injection point is a rectangular source function of

p (t) = {0, if t < 0,
p0, if t ≥ t0.

(A3)

2π/t0
2π/t0

The  corresponding  power  spectrum  of  the  source  function  is  a
well-known  sinc  function  with  the  dominant  part  of  the  signal
ranges  below .  It  is  assumed  that  the  probability  of  a  large
amplitude  low  frequency  triggering  event  is  higher,  and  is .
Thus, considering that the seismic events are characterized by the
high probability front (Shapiro et al., 2002), we obtain

r =
√

4πDt. (A4)

Table S1.   Configuration of hypoDD relocations for Weiyuan events.

IDAT IPHA MAXDIST

3 3 200

OBSCC OBSCT MINDIST MAXDIST MAXGAP

0 4 −999 −999 −999

ISTART ISOLV IAQ NSET

2 2 1 5

NITER WTCCP WTCCS WRCC WDCC WTCTP WTCS WRCT WDCT DAMP

3 0.01 0.005 −999 −999 1.00 0.5 20 −999 120

3 0.01 0.005 −999 −999 1.00 0.5 10 4 80

3 1 0.5 6 3 1.00 0.5 10 3 60

3 1 0.5 5 3 0.1 0.05 9 3 50

3 1 0.5 4 3 0.01 0.005 8 3 50

Table S2.   Configuration of hypoDD relocations for northeastern Weiyuan cluster.

IDAT IPHA MAXDIST

3 3 200

OBSCC OBSCT MINDIST MAXDIST MAXGAP

4 4 −999 −999 −999

ISTART ISOLV IAQ NSET

2 2 1 5

NITER WTCCP WTCCS WRCC WDCC WTCTP WTCS WRCT WDCT DAMP

4 0.01 0.005 −999 −999 1.00 0.5 20 −999 150

4 0.01 0.005 −999 −999 1.00 0.5 5 4 100

4 1 0.7 −999 4 0.01 0.01 5 4 90

4 1 0.7 5 1 0.01 0.01 5 4 80

4 1 0.7 5 0.5 0.01 0.01 5 4 70
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Figure S1.   Velocity profile of Weiyuan. Dash line at zero depth refers

to sea level.
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Figure S2.   Section plot of the detection using machine learning

detector. Vertical component is shown in the plot. Blue bars and red

bars refer to the arrival pick by the machine learning detector.
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Figure S3.   Relocated northeastern Weiyuan cluster using data from the four closest stations. Colored by date of occurrence.
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Magnitude calibration

 
Figure S4.   Magnitude calibration results. Scatter plot of the linear fit

of the magnitude calibration using local magnitudes from the Sichuan

Earthquake agency: 1480 events and maximum peak horizontal

motion. The least squares results k = 2.001, C = −4.867 in the

calibration equation.
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Figure S5.   Histogram of local magnitude difference with the

reference events. All events’ magnitudes, except one, computed by

Equation (1) differ less than 0.5 with reference magnitude from the

Sichuan Earthquake Agency.
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