
Math2040 Tutorial 9

Self-adjoint and normal

• Riesz representation theorem: if ϕ ∈ L(V,F), there exists a unique u ∈ V such that ϕ(v) = 〈v, u〉,
where u is given by u = ϕ(e1)e1 + · · · + ϕ(en)en with orthonormal basis {e1, . . . , en}; so, there
is a one-one correspondence between vectors in V and linear functionals on V

• adjoint T ∗ ∈ L(W,V ) satisfies 〈Tv,w〉 = 〈v, T ∗w〉 for any v ∈ V and w ∈W

• Riesz representation theorem ⇒ existence and uniqueness of adjoint

• (aS + bT )∗ = āS∗ + b̄T ∗, (T ∗)∗ = T , I∗ = I, and (ST )∗ = T ∗S∗

• orthonormal bases β (of V ) and γ (of W ) ⇒ [T ∗]βγ = ([T ]γβ)∗ (adjoint ↔ conjugate transpose)

• self-adjoint: T = T ∗ ⇒ real eigenvalues, 〈Tv, v〉 ∈ R

• normal: TT ∗ = T ∗T ⇒ ‖T ∗v‖ = ‖Tv‖, conjugate eigenvalues (Tv = λv ⇒ T ∗v = λ̄v), orthogo-
nal eigenvectors (of distinct eigenvalues)

Lecture 14, Example 2. Fix some vector u ∈ V and x ∈ W . Define a linear transformation
T : V →W by Tv = 〈v, u〉x for all v ∈ V . Find the adjoint T ∗ : W → V .

By definition, we have 〈v, T ∗w〉 = 〈Tv,w〉 for any v ∈ V and w ∈W . But

〈Tv,w〉 = 〈〈v, u〉x,w〉 = 〈v, u〉 〈x,w〉 =
〈
v, 〈x,w〉u

〉
= 〈v, 〈w, x〉u〉 .

Since this is true for all v ∈ V , we conclude that T ∗w = 〈w, x〉u for any w ∈W .

Lecture 14, Example 3. Let A ∈Mm×n(F). The adjoint of LA : Fn → Fm is given by LA∗ : Fm →
Fn, where A∗ = At is the conjugate transpose of A.

1. by usual inner product in Fm, 〈LAv, w〉 = w∗Av, where w∗ is the conjugate transpose of w

2. note that (B∗)∗ = B and (Bx)∗ = x∗B∗ (as conjugate transpose)

3. for all v ∈ Fn we have w∗Av = (A∗w)∗v = 〈v, LA∗w〉, so (LA)∗ = LA∗

Lecture 14, Example 4. Let T ∈ L(R2) be the linear operator on R2 (with the standard dot
product) defined by T (x, y) = (2x− 3y, 3x+ 2y). Then T is normal but not self-adjoint.

1. pick an orthonormal basis, e.g. the standard (orthonormal) basis, β = {(1, 0), (0, 1)}

2. matrix representation [T ]β =

(
2 −3
3 2

)
3. for orthonormal basis, [T ∗]β = ([T ]β)∗, not self-adjoint

4. but normal, as [TT ∗]β = [T ]β([T ]β)∗ =

(
13 0
0 13

)
= ([T ]β)∗[T ]β = [T ∗T ]β
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Lecture 14, Exercise 6. Let T ∈ L(V,W ). Prove that

(a) T is injective if and only if T ∗ is surjective,

(b) T is surjective if and only if T ∗ is injective,

(c) dim rangeT ∗ = dim rangeT ,

(d) dim kerT ∗ = dim kerT + dimW − dimV .

1. (Proposition 5, N14) rangeT ∗ = (kerT )⊥ and kerT ∗ = (rangeT )⊥

2. (Proposition 3, N12) U =
(
U⊥
)⊥

for any finite dimensional subspace U

3. (Proposition 3+6, N6) T is injective iff kerT = {0} and rangeT ∗ = V iff T ∗ is surjective

4. (Corollary 4, N12) dimU⊥ = dimV − dimU for any subspace U of V (finite dimensional)

5. (Theorem 7, N6) dimV = dim kerT + dim rangeT , dimW = dim kerT ∗ + dim rangeT ∗

Lecture 14, Exercise 23. Fix u, x ∈ V . Define T ∈ L(V ) by Tv = 〈v, u〉x for all v ∈ V .

(a) Suppose F = R. Prove that T is self-adjoint if and only if {u, x} is linearly dependent.

(b) Prove that T is normal if and only if {u, x} is linearly dependent.

1. 〈v, T ∗w〉 = 〈Tv,w〉 = 〈〈v, u〉x,w〉 = 〈v, u〉 〈x,w〉 = 〈v, 〈w, x〉u〉 ⇒ T ∗w = 〈w, x〉u

2. trivial for u = 0 or x = 0, assume u 6= 0 and x 6= 0

3. (T − T ∗)v = 〈v, u〉x− 〈v, x〉u

4. T self-adjoint ⇒ non-trivial linear combination of x and u

5. x = αu ⇒ (T − T ∗)v = 〈v, u〉 (αu)− 〈v, αu〉u = (α− α) 〈v, u〉, always zero in a real space

6. (TT ∗ − T ∗T )v = 〈〈v, x〉u, u〉x− 〈〈v, u〉x, x〉u = 〈v, x〉 〈u, u〉x− 〈v, u〉 〈x, x〉u

7. T normal ⇒ non-trivial linear combination of x and u

8. x = αu for some α ∈ F ⇒ left hand side vanishes

Lecture 14, Exercise 26. Let T ∈ L(V ) be a normal operator and v, w ∈ V be such that ‖v‖ =
‖w‖ = 2, Tv = 3v, and Tw = 4w. Show that ‖T (v + w)‖ = 10.

1. v, w are eigenvectors, with distinct eigenvalues

2. v is orthogonal to w, 3 〈v, w〉 = 〈Tv,w〉 = 〈v, T ∗w〉 = 4 〈v, w〉 as T normal

3. orthogonality ⇒ Pythagoras theorem works

4. as 3v ⊥ 4w, so ‖T (v + w)‖2 = ‖3v + 4w‖2 = ‖3v‖2 + ‖4w‖2
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