Math2040 Tutorial 9

Self-adjoint and normal

- Riesz representation theorem: if $\varphi \in \mathcal{L}(V, \mathbb{F})$, there exists a unique $u \in V$ such that $\varphi(v) = \langle v, u \rangle$, where u is given by $u = \overline{\varphi(e_1)}e_1 + \cdots + \overline{\varphi(e_n)}e_n$ with orthonormal basis $\{e_1, \ldots, e_n\}$; so, there is a one-one correspondence between vectors in V and linear functionals on V
- adjoint $T^* \in \mathcal{L}(W, V)$ satisfies $\langle Tv, w \rangle = \langle v, T^*w \rangle$ for any $v \in V$ and $w \in W$
- Riesz representation theorem \Rightarrow existence and uniqueness of adjoint
- $(aS + bT)^* = \bar{a}S^* + \bar{b}T^*, (T^*)^* = T, I^* = I, \text{ and } (ST)^* = T^*S^*$
- orthonormal bases β (of V) and γ (of W) $\Rightarrow [T^*]^{\beta}_{\gamma} = ([T]^{\gamma}_{\beta})^*$ (adjoint \leftrightarrow conjugate transpose)
- self-adjoint: $T = T^* \Rightarrow$ real eigenvalues, $\langle Tv, v \rangle \in \mathbb{R}$
- normal: $TT^* = T^*T \Rightarrow ||T^*v|| = ||Tv||$, conjugate eigenvalues $(Tv = \lambda v \Rightarrow T^*v = \overline{\lambda}v)$, orthogonal eigenvectors (of distinct eigenvalues)

Lecture 14, Example 2. Fix some vector $u \in V$ and $x \in W$. Define a linear transformation $T: V \to W$ by $Tv = \langle v, u \rangle x$ for all $v \in V$. Find the adjoint $T^*: W \to V$.

By definition, we have $\langle v, T^*w \rangle = \langle Tv, w \rangle$ for any $v \in V$ and $w \in W$. But

$$\langle Tv, w \rangle = \langle \langle v, u \rangle x, w \rangle = \langle v, u \rangle \langle x, w \rangle = \left\langle v, \overline{\langle x, w \rangle} u \right\rangle = \langle v, \langle w, x \rangle u \rangle.$$

Since this is true for all $v \in V$, we conclude that $T^*w = \langle w, x \rangle u$ for any $w \in W$.

Lecture 14, Example 3. Let $A \in \mathbf{M}_{m \times n}(\mathbb{F})$. The adjoint of $L_A : \mathbb{F}^n \to \mathbb{F}^m$ is given by $L_{A^*} : \mathbb{F}^m \to \mathbb{F}^n$, where $A^* = \overline{A^t}$ is the conjugate transpose of A.

- 1. by usual inner product in \mathbb{F}^m , $\langle L_A v, w \rangle = w^* A v$, where w^* is the conjugate transpose of w
- 2. note that $(B^*)^* = B$ and $(Bx)^* = x^*B^*$ (as conjugate transpose)
- 3. for all $v \in \mathbb{F}^n$ we have $w^*Av = (A^*w)^*v = \langle v, L_{A^*}w \rangle$, so $(L_A)^* = L_{A^*}$

Lecture 14, Example 4. Let $T \in \mathcal{L}(\mathbb{R}^2)$ be the linear operator on \mathbb{R}^2 (with the standard dot product) defined by T(x, y) = (2x - 3y, 3x + 2y). Then T is normal but not self-adjoint.

- 1. pick an orthonormal basis, e.g. the standard (orthonormal) basis, $\beta = \{(1,0), (0,1)\}$
- 2. matrix representation $[T]_{\beta} = \begin{pmatrix} 2 & -3 \\ 3 & 2 \end{pmatrix}$
- 3. for orthonormal basis, $[T^*]_{\beta} = ([T]_{\beta})^*$, not self-adjoint
- 4. but normal, as $[TT^*]_{\beta} = [T]_{\beta}([T]_{\beta})^* = \begin{pmatrix} 13 & 0\\ 0 & 13 \end{pmatrix} = ([T]_{\beta})^* [T]_{\beta} = [T^*T]_{\beta}$

Lecture 14, Exercise 6. Let $T \in \mathcal{L}(V, W)$. Prove that

- (a) T is injective if and only if T^* is surjective,
- (b) T is surjective if and only if T^* is injective,
- (c) dim range T^* = dim range T,
- (d) $\dim \ker T^* = \dim \ker T + \dim W \dim V.$
- 1. (Proposition 5, N14) range $T^* = (\ker T)^{\perp}$ and $\ker T^* = (\operatorname{range} T)^{\perp}$
- 2. (Proposition 3, N12) $U = (U^{\perp})^{\perp}$ for any finite dimensional subspace U
- 3. (Proposition 3+6, N6) T is injective iff ker $T = \{0\}$ and range $T^* = V$ iff T^* is surjective
- 4. (Corollary 4, N12) dim $U^{\perp} = \dim V \dim U$ for any subspace U of V (finite dimensional)
- 5. (Theorem 7, N6) dim $V = \dim \ker T + \dim \operatorname{range} T$, dim $W = \dim \ker T^* + \dim \operatorname{range} T^*$

Lecture 14, Exercise 23. Fix $u, x \in V$. Define $T \in \mathcal{L}(V)$ by $Tv = \langle v, u \rangle x$ for all $v \in V$.

- (a) Suppose $\mathbb{F} = \mathbb{R}$. Prove that T is self-adjoint if and only if $\{u, x\}$ is linearly dependent.
- (b) Prove that T is normal if and only if $\{u, x\}$ is linearly dependent.
- 1. $\langle v, T^*w \rangle = \langle Tv, w \rangle = \langle \langle v, u \rangle x, w \rangle = \langle v, u \rangle \langle x, w \rangle = \langle v, \langle w, x \rangle u \rangle \Rightarrow T^*w = \langle w, x \rangle u$
- 2. trivial for u = 0 or x = 0, assume $u \neq 0$ and $x \neq 0$
- 3. $(T T^*)v = \langle v, u \rangle x \langle v, x \rangle u$
- 4. T self-adjoint \Rightarrow non-trivial linear combination of x and u
- 5. $x = \alpha u \Rightarrow (T T^*)v = \langle v, u \rangle (\alpha u) \langle v, \alpha u \rangle u = (\alpha \overline{\alpha}) \langle v, u \rangle$, always zero in a real space
- 6. $(TT^* T^*T)v = \langle \langle v, x \rangle u, u \rangle x \langle \langle v, u \rangle x, x \rangle u = \langle v, x \rangle \langle u, u \rangle x \langle v, u \rangle \langle x, x \rangle u$
- 7. T normal \Rightarrow non-trivial linear combination of x and u
- 8. $x = \alpha u$ for some $\alpha \in \mathbb{F} \Rightarrow$ left hand side vanishes

Lecture 14, Exercise 26. Let $T \in \mathcal{L}(V)$ be a normal operator and $v, w \in V$ be such that ||v|| = ||w|| = 2, Tv = 3v, and Tw = 4w. Show that ||T(v+w)|| = 10.

1. v, w are eigenvectors, with distinct eigenvalues

2. v is orthogonal to w, $3\langle v, w \rangle = \langle Tv, w \rangle = \langle v, T^*w \rangle = 4\langle v, w \rangle$ as T normal

- 3. orthogonality \Rightarrow Pythagoras theorem works
- 4. as $3v \perp 4w$, so $||T(v+w)||^2 = ||3v+4w||^2 = ||3v||^2 + ||4w||^2$