Math2040 Tutorial 8

Orthonormal basis

- orthonormal \Leftrightarrow unit $||v_i|| = 1$ and orthogonal $\langle v_i, v_j \rangle = 0$ for $i \neq j$
- $\{e_1, \ldots, e_n\}$ orthonormal basis $\Rightarrow v = \langle v, e_1 \rangle e_1 + \cdots + \langle v, e_n \rangle e_n$ for all v
- Gram-Schmidt process $e_1 = \frac{v_1}{\|v_1\|}, e_j = \frac{v_j \sum_{k < j} \langle v_j, e_k \rangle e_k}{\|v_j \sum_{k < j} \langle v_j, e_k \rangle e_k\|}$ for j > 1
- there exists orthonormal basis β of V (finite dim., complex) such that $[T]_{\beta}$ upper-triangular

Lecture 11, Example 6. Let $\beta = \{v_1, \ldots, v_n\}$ be an orthonormal basis of a finite dimensional inner product space $(V, \langle \cdot, \cdot \rangle)$. For any $T \in \mathcal{L}(V)$, the matrix $[T]_{\beta}$ is given by $([T]_{\beta})_{ij} = \langle Tv_j, v_i \rangle$.

- 1. suppose $Tv_j = A_{1j}v_i + \cdots + A_{nj}v_n$ for $j = 1, \ldots, n$
- 2. by definition, we have $([T]_{\beta})_{ij} = A_{ij}$
- 3. on the other hand, by orthonormal basis, we have $A_{ij} = \langle Tv_j, v_i \rangle$

Orthogonal complements

- orthogonal complement $U^{\perp} = \{ v \in V : \langle v, u \rangle = 0 \text{ for all } u \in U \}$
- U finite dim. subspace of $V \Rightarrow V = U \oplus U^{\perp}$ and $U = (U^{\perp})^{\perp}$

Lecture 12, Example 1. Let $V = \{f : [-1,1] \to \mathbb{R} \text{ continuous}\}$ be the real vector space equipped with the L^2 -inner product $\langle f, g \rangle = \int_{-1}^{1} f(x)g(x) dx$. Consider the following subspaces of odd and even functions respectively:

$$U_{\text{odd}} := \{ f \in V : f(-x) = -f(x) \text{ for all } x \in [-1,1] \},\$$
$$U_{\text{even}} := \{ f \in V : f(-x) = f(x) \text{ for all } x \in [-1,1] \}.$$

then we have $U_{\text{odd}}^{\perp} = U_{\text{even}}$.

- 1. $(U_{\text{odd}}^{\perp} \subset U_{\text{even}})$ let $f \in U_{\text{odd}}^{\perp}$, want to show $f \in U_{\text{even}}$, i.e. f(-x) = f(x)
- 2. $f \in U_{\text{odd}}^{\perp}$ means $\langle f, g \rangle = 0$, i.e. $\int_{-1}^{1} f(x)g(x) \, dx = 0$, for any $g \in U_{\text{odd}}$
- 3. using change of variable, $\int_{-1}^{1} f(-x)g(x) dx = 0$ for any $g \in U_{\text{odd}}$
- 4. combine to get $\int_{-1}^{1} [f(x) f(-x)] g(x) dx = 0$ for any $g \in U_{\text{odd}}$
- 5. but $f(x) f(-x) \in U_{\text{odd}}$, take g(x) = f(x) f(-x), we have $\int_{-1}^{1} [f(x) f(-x)]^2 dx = 0$
- 6. as f(x) and f(-x) continuous, f(x) f(-x) = 0, i.e. f(x) = f(-x), so $f \in U_{\text{even}}$
- 7. $(U_{\text{odd}}^{\perp} \supset U_{\text{even}})$ for $f \in U_{\text{even}}$, we have $\langle f, g \rangle = 0$ for any $g \in U_{\text{odd}}$ since f is even but g is odd, so $f \in U_{\text{odd}}^{\perp}$

Lecture 12, Proposition 2. Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space.

- (a) U^{\perp} is a subspace of V for any subset $U \subset V$.
 - 1. $0 \in U^{\perp}$ as $\langle 0, u \rangle = 0$ for any $u \in U$
 - 2. for any $w_1, w_2 \in U^{\perp}$, by the linearity of inner product, we have

 $\langle a_1w_1 + a_2w_2, u \rangle = a_1 \langle w_1, u \rangle + a_2 \langle w_2, u \rangle = 0$

for any $u \in U$, so $a_1w_1 + a_2w_2 \in U^{\perp}$

 \Rightarrow so U^{\perp} is a subspace of V

remark. U^{\perp} is always a subspace, but U is not necessarily a subspace

- (b) $\{0\}^{\perp} = V$ and $V^{\perp} = \{0\}$.
 - 1. since $\langle v, 0 \rangle = 0$ for any $v \in V$, then $V \subset \{0\}^{\perp}$; obviously $\{0\}^{\perp} \subset V$; hence $\{0\}^{\perp} = V$
 - 2. suppose $u \in V^{\perp}$, we have $\langle u, v \rangle = 0$ for any $v \in V$; take v = u, then $\langle u, u \rangle = 0$, so u = 0; hence $V^{\perp} = \{0\}$
- (c) For any subset $U \subset V$, we have $U \cap U^{\perp} \subset \{0\}$.
 - 1. if $U \cap U^{\perp}$ is not empty, then for $v \in U \cap U^{\perp}$, we have $\langle v, v \rangle = 0$, so v = 0
- (d) For any subsets $U \subset W \subset V$, we have $W^{\perp} \subset U^{\perp}$.
 - 1. for any $w^{\perp} \in W^{\perp}$, so $\langle w^{\perp}, w \rangle = 0$ for any $w \in W$
 - 2. but $u \in U \subset W$, so $\langle w^{\perp}, u \rangle = 0$ for any $u \in U$, hence $w^{\perp} \in U^{\perp}$

Lecture 12, Proposition 3. If U is a finite dimensional subspace of an inner product space $(V, \langle \cdot, \cdot \rangle)$, then $V = U \oplus U^{\perp}$. Moreover, we have $U = (U^{\perp})^{\perp}$

- 0. It is shown, in the lecture, that $V = U \oplus U^{\perp}$, we now show that $U = (U^{\perp})^{\perp}$
- 1. $(U \subset (U^{\perp})^{\perp})$ for any $u \in U$, we have $\langle u, u^{\perp} \rangle = \overline{\langle u^{\perp}, u \rangle} = \overline{0} = 0$ for any $u^{\perp} \in U^{\perp}$, so $u \in (U^{\perp})^{\perp}$
- 2. $(U \supset (U^{\perp})^{\perp})$ for any $v \in (U^{\perp})^{\perp}$, we write $v = u + u^{\perp}$ for some $u \in U$ and $u^{\perp} \in U^{\perp}$
- 3. $u^{\perp} = 0$ because $0 = \langle v, u^{\perp} \rangle = \langle u, u^{\perp} \rangle + \langle u^{\perp}, u^{\perp} \rangle = \langle u^{\perp}, u^{\perp} \rangle$, so $v = u \in U$