Math2040 Tutorial 7

Diagonalizability
e [T upper-triangular < span{vy,...,v;} is a T-invariant subspace for each j =1,...,n
e every operator 7' on V (finite dim., complex) has a basis § such that [T]g upper triangular
e cigenspace F)(T') = ker(T — \I)

e T diagonalizable & V = E\,(T) @ --- ® E\, (T), A1,..., A\m all eigenvalues of T' (distinct)

Lecture 10, Example 2. The linear operator T' : F? — F3 defined by T'(z,y, 2) = (2z+y, 5y+32, 82)
is diagonalizable since the matrix of T' with respect to the standard basis 3 of F? is

2 1 0
Ts=[0 5 3],
0 0 8

which is an upper-triangular matrix, hence has 3 distinct eigenvalues 2, 5, and 8. To find an eigenbasis,
we compute the respective eigenspaces to be

Ey(T) = span{(1,0,0)}, E5(T) =span{(1,3,0)}, Es(T)=span{(1,6,6)}.
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Hence, an eigenbasis is given by v = {(1,0,0), (1, 3,0),(1,6,6)} and
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1. n distinct eigenvalues implies n linear independence eigenvectors (c.f. Lecture 8, Proposition 5)

2. form eigenbasis, hence diagonalizable (c.f. Lecture 10, Corollary 8)

Lecture 10, Exercise 7. For each T' € L(V') below, find an eigenbasis of V' with respect to T":
(a) T € L(R?); T(z,y) = (—2x + 3y, —10x + 9y).
() T € L(Max2(R)); T(A) = At + 2(tr A)I.

Solution.

(a) e let B be the standard basis of R? so [T]5 = <__120 S)

)
e get A =3 for any (z,y) € span{(3,5)} and A =4 for any (z,y) € span{(1,2)}

e T(z,y) = A(x,y) means solving <_31_0/\ 9 E )\> (x) = (8) for non-trivial solutions

form eigenbasis v = {(3,5), (1,2)} and [T, = <g 91)
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e get eigenvalues \; = —1, Ao = 1, and A3 = 5 from det([T]g— ) = (A+1)(A—1)?>(A=5) =0

e (G o) mmmnd(p B) (o) = )
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Inner product spaces

e inner product (-,-) : V xV — F satisfies (i) linearity, (ii) conjugate symmetry, and (iii) positivity
e linearity in 1% slot + (conjugate) symmetry = (conjugate) linearity in 2" slot
e inner product describes the geometry of an inner product space
— (lengths) norm ||v|| = \/(v,v)
— (angles) inner product itself, orthogonality (u,v) =0
— Pythagoras theorem, Cauchy-Schwarz inequality, triangle inequality, parallelogram law
Lecture 11, Example 1.
(b) The complex vector space C" with the inner product defined by
(215 2n)s (W1, ..oy wy)) = 2101 + -+ + 2, Wy
is an inner product space.
1. (linearity) write 2= (21,...,2pn), U = (v1,...,0p), and @ = (wy, ..., wy)
(aZ + bV, W) = ((az1 + bui,...,az, + bvy), (w1, ..., wy))
= (az1 + bvy)w1 + - - - + (azp, + buy)wy,

2. (symmetry)

((Wiy e wn), (21,5005 20)) = w121 + -+ + W2y
= 21W1 + -+ + ZpWp
= {((z1,..,2n), (W1,...,wp))

3. (positivity)
0= "{((#1,---y2n), (21,.-.,2n))
= 2121+ "+ 2Zn2n
=la1f’ + -+ |l
which means z;1 =--- =2, =0

Lecture 11, Example 2. For any positive real number c;,

...,¢c, € R, we can define an inner
product on R™ by

(@1, @n), (Y1, yn)) = AT1yL + -+ - + CaTnYn.
1. linearity and symmetry are similar to the above

2. (positivity)
0= ((x1,...,2n), (1,...,2p))
= cw% +-+ cnx%,
which means 1 =--- =2, =0 as cy,..., ¢, are positive

3. scaling without reflection



