Math2040 Tutorial 7

Diagonalizability

- $[T]_{\beta}$ upper-triangular \Leftrightarrow span $\{v_1,\ldots,v_j\}$ is a T-invariant subspace for each $j=1,\ldots,n$
- every operator T on V (finite dim., complex) has a basis β such that $[T]_{\beta}$ upper triangular
- eigenspace $E_{\lambda}(T) = \ker(T \lambda I)$
- T diagonalizable $\Leftrightarrow V = E_{\lambda_1}(T) \oplus \cdots \oplus E_{\lambda_m}(T), \lambda_1, \ldots, \lambda_m$ all eigenvalues of T (distinct)

Lecture 10, Example 2. The linear operator $T: \mathbb{F}^3 \to \mathbb{F}^3$ defined by T(x,y,z) = (2x+y,5y+3z,8z) is diagonalizable since the matrix of T with respect to the standard basis β of \mathbb{F}^3 is

$$[T]_{\beta} = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 5 & 3 \\ 0 & 0 & 8 \end{pmatrix},$$

which is an upper-triangular matrix, hence has 3 distinct eigenvalues 2, 5, and 8. To find an eigenbasis, we compute the respective eigenspaces to be

$$E_2(T) = \text{span}\{(1,0,0)\}, \quad E_5(T) = \text{span}\{(1,3,0)\}, \quad E_8(T) = \text{span}\{(1,6,6)\}.$$

Hence, an eigenbasis is given by $\gamma = \{(1,0,0), (1,3,0), (1,6,6)\}$ and

$$[T]_{\gamma} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 8 \end{pmatrix}.$$

- 1. n distinct eigenvalues implies n linear independence eigenvectors (c.f. Lecture 8, Proposition 5)
- 2. form eigenbasis, hence diagonalizable (c.f. Lecture 10, Corollary 8)

Lecture 10, Exercise 7. For each $T \in \mathcal{L}(V)$ below, find an eigenbasis of V with respect to T:

- (a) $T \in \mathcal{L}(\mathbb{R}^2)$; T(x,y) = (-2x + 3y, -10x + 9y).
- (i) $T \in \mathcal{L}(\mathbf{M}_{2\times 2}(\mathbb{R})); T(A) = A^t + 2(\operatorname{tr} A)I.$

Solution.

- (a) let β be the standard basis of \mathbb{R}^2 so $[T]_{\beta} = \begin{pmatrix} -2 & 3 \\ -10 & 9 \end{pmatrix}$
 - $T(x,y) = \lambda(x,y)$ means solving $\begin{pmatrix} -2 \lambda & 3 \\ -10 & 9 \lambda \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ for non-trivial solutions
 - get $\lambda = 3$ for any $(x, y) \in \text{span}\{(3, 5)\}$ and $\lambda = 4$ for any $(x, y) \in \text{span}\{(1, 2)\}$
 - form eigenbasis $\gamma = \{(3,5), (1,2)\}$ and $[T]_{\gamma} = \begin{pmatrix} 3 & 0 \\ 0 & 4 \end{pmatrix}$

(j) • let
$$\beta = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$
 so $[T]_{\beta} = \begin{pmatrix} 3 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 2 & 0 & 0 & 3 \end{pmatrix}$

• get eigenvalues $\lambda_1 = -1$, $\lambda_2 = 1$, and $\lambda_3 = 5$ from $\det([T]_{\beta} - \lambda I) = (\lambda + 1)(\lambda - 1)^2(\lambda - 5) = 0$

•
$$E_{-1} = \operatorname{span}\left\{\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}\right\}$$
, $E_{1} = \operatorname{span}\left\{\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\right\}$, $E_{5} = \operatorname{span}\left\{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right\}$

• take
$$\gamma = \left\{ \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$
 so $[T]_{\gamma} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 5 \end{pmatrix}$

Inner product spaces

- inner product $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{F}$ satisfies (i) linearity, (ii) conjugate symmetry, and (iii) positivity
- linearity in 1^{st} slot + (conjugate) symmetry \Rightarrow (conjugate) linearity in 2^{nd} slot
- inner product describes the geometry of an inner product space
 - (lengths) norm $||v|| = \sqrt{\langle v, v \rangle}$
 - (angles) inner product itself, orthogonality $\langle u, v \rangle = 0$
 - Pythagoras theorem, Cauchy-Schwarz inequality, triangle inequality, parallelogram law

Lecture 11, Example 1.

(b) The complex vector space \mathbb{C}^n with the inner product defined by

$$\langle (z_1,\ldots,z_n),(w_1,\ldots,w_n)\rangle = z_1\bar{w}_1+\cdots+z_n\bar{w}_n$$

is an inner product space.

1. (linearity) write
$$\vec{z} = (z_1, \dots, z_n)$$
, $\vec{v} = (v_1, \dots, v_n)$, and $\vec{w} = (w_1, \dots, w_n)$

$$\langle a\vec{z} + b\vec{v}, \vec{w} \rangle = \langle (az_1 + bv_1, \dots, az_n + bv_n), (w_1, \dots, w_n) \rangle$$

$$= (az_1 + bv_1)\bar{w}_1 + \dots + (az_n + bv_n)\bar{w}_n$$

$$= a(z_1\bar{w}_1 + \dots + z_n\bar{w}_n) + b(v_1\bar{w}_1 + \dots + v_n\bar{w}_n)$$

$$= a\langle \vec{z}, \vec{w} \rangle + b\langle \vec{v}, \vec{w} \rangle$$

2. (symmetry)

$$\overline{\langle (w_1, \dots, w_n), (z_1, \dots, z_n) \rangle} = \overline{w_1 \overline{z}_1 + \dots + w_n \overline{z}_n}$$

$$= z_1 \overline{w}_1 + \dots + z_n \overline{w}_n$$

$$= \langle (z_1, \dots, z_n), (w_1, \dots, w_n) \rangle$$

3. (positivity)

$$0 = \langle (z_1, \dots, z_n), (z_1, \dots, z_n) \rangle$$

= $z_1 \bar{z}_1 + \dots + z_n \bar{z}_n$
= $|z_1|^2 + \dots + |z_n|^2$,

which means $z_1 = \cdots = z_n = 0$

Lecture 11, Example 2. For any positive real number $c_1, \ldots, c_n \in \mathbb{R}$, we can define an inner product on \mathbb{R}^n by

$$\langle (x_1,\ldots,x_n),(y_1,\ldots,y_n)\rangle = c_1x_1y_1+\cdots+c_nx_ny_n.$$

- 1. linearity and symmetry are similar to the above
- 2. (positivity)

$$0 = \langle (x_1, \dots, x_n), (x_1, \dots, x_n) \rangle$$
$$= c_1 x_1^2 + \dots + c_n x_n^2,$$

which means $x_1 = \cdots = x_n = 0$ as c_1, \ldots, c_n are positive

3. scaling without reflection