
Math2040 Tutorial 4

Kernels and Ranges

• Let T ∈ L(V,W ). Then T is injective if and only if kerT = {0}.

• Let T ∈ L(V,W ). Then T is surjective if and only if R(T ) = W .

• (Fundamental Theorem of Linear Algebra) If V is finite dimensional, then both kerT and
R(T ) are finite dimensional and dimV = dim kerT + dimR(T ).

• If dimV = dimW , then T is injective if and only if T is surjective.

(Special case: when T is an operator on V , i.e. W = V .)

Lecture 6, Example 10. Let T : P2(R)→ P3(R) be the linear map defined by

T (f(x)) = 2f ′(x) +

∫ x

0

3f(t)dt.

• Let β be {3x, 2 + 3
2
x2, 4x+ x3}

• Note that β spans R(T ) and is linearly independent.

• Then β is a basis of R(T ) and dimR(T ) = #(β) = 3.

• Since R(T ) 6= W , T is not surjective.

• Since dim kerT = dimP2(R)− dimR(T ) = 3− 3 = 0, kerT = {0}, i.e. injective.

Lecture 6, Exercise 17. Define a linear map T : P(R) → P(R) by T (f(x)) =
∫ x

0
f(t) dt.

Prove that T is injective but not surjective.

X Injective: T (f(x)) = 0⇒
∫ x

0
f(t) dt = 0⇒ f(x) = 0.

× Surjective: 1 ∈ P(R) but T (f(x)) 6= 1 for all f(x) ∈ P(R).

Lecture 6, Exercise 18. Define a linear map T : P(R)→ P(R) by T (f(x)) = f ′(x). Prove
that T is surjective but not injective.

× Injective: T (x+ 1) = 1 = T (x+ 2) but x+ 1 6= x+ 2.

X Surjective: given any p(x) ∈ P(R) let f(x) =
∫ x

0
p(t) dt and T (f(x)) = p(x).

Lecture 6, Exercise 19. Give an example of a linear map T : F∞ → F∞ such that (i) T is
injective but not surjective; (ii) T is surjective but not injective.

• Forward shift map (x1, x2, x3, . . . ) 7→ (0, x1, x2, . . . ) is injective but not surjective.

• Backward shift map (x1, x2, x3, . . . ) 7→ (x2, x3, x4, . . . ) is surjective but not injective.
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Lecture 7, Example 5. Show that for each polynomial q(x) ∈ P(R), there exists a polyno-
mial p(x) ∈ P(R) such that [(x2 + 5x+ 7)p(x)]′′ = q(x).

• Goal: show that the map p(x) 7→ [(x2 + 5x+ 7)p(x)]′′ is surjective.

• Linear: multiplication by x2 + 5x+ 7 and differentiations.

• Cannot apply propositions directly as P(R) is infinite dimensional.

• Fix q(x) ∈ P(R) (of degree m).

• Restrict T to Pm(R) (as an operator on Pm(R)).

• T : linear operator on finite dimensional vector space⇒ surjective if and only if injective.

• Injective: [(x2 + 5x+ 7)p(x)]′′ = 0⇒ (x2 + 5x+ 7)p(x) = ax+ b⇒ p(x) = 0.

*Lecture 6, Exercise 24. Supose there exists a linear map T : V → V such that both kerT
and R(T ) are finite dimensional. Prove that V is a finite dimensional.

• Goal: find a finite basis of V .

• Pick a basis of kerT : {u1, . . . , un}.

• Pick a basis of R(T ): {w1, . . . , wm} (and for each wj there is some vj such that Tvj = wj).

• Claim: {u1, . . . , un, v1, . . . , vm} is a basis of V .

• Spanning:

– for any v ∈ V we have Tv ∈ R(T ) so Tv = c1Tv1 + · · ·+ cmTvm,

– rearrange to get T (v − c1v1 − · · · − cmvm) = 0,

– implies v − c1v1 − · · · − cmvm ∈ kerT so v − c1v1 − · · · − cmvm = d1u1 + · · ·+ dnun,

– rearrange to get v = c1v1 + · · ·+ cmvm + d1u1 + · · ·+ dnun.

• In fact, it suffices to show {u1, . . . , un, v1, . . . , vm} spans V as it is a finite set.

• Linear independence: (optional, to find the dimension of V )

– suppose a1u1 + · · ·+ anun + b1v1 + · · ·+ bmvm = 0,

– apply linear map T to both sides: a1Tu1 + · · ·+ anTun + b1Tv1 + · · ·+ bmTvm = 0,

– get b1Tv1 + · · ·+ bmTvm = 0 since ui ∈ kerT (so Tui = 0),

– implies b1 = · · · = bm = 0 by the linear independence of {Tv1, . . . , T vm},
– remains a1u1 + · · ·+ anun = 0,

– implies a1 = · · · = an = 0 by the linear independence of {u1, . . . , un}.
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