
Math2040 Tutorial 3

Basis and Dimension

Lecture 4, Proposition 10. Let V be a finite dimensional vector space over F. Suppose
S = {v1, . . . , vn} is a subset of V with dimV = n. If either one of the following is satisfied: (1)
S is linearly independent, (2) spanS = V , then S is a basis of V .

Lecture 4, Example 4. Verify that {1, (x − 5)2, (x − 5)3} is a basis of the subspace U of
P3(R) defined by

U = {p ∈ P3(R) : p′(5) = 0}.

Idea. For any p ∈ P3(R), say p = a0 + a1x+ a2x
2 + a3x

3, if p′(5) = 0, then we have

p′(5) = a1 + 2a2(5) + 3a3(5)2 = a1 + 10a2 + 75a3 = 0,

which implies a1 = −10a2 − 75a3. That means

U = {a0 + (−10a2 − 75a3)x+ a2x
2 + a3x

3 ∈ P3(R) : a0, a2, a3 ∈ R}.

But for any p ∈ span{1, (x− 5)2, (x− 5)3}, say p = b1(1) + b2(x− 5)2 + b3(x− 5)3, we have

p = (b1 + 25b2 − 125b3) + (−10b2 + 75b3)x+ (b2 − 15b3)x
2 + b3x

3

= c1 + (−10c2 − 75c3)x+ c2x
2 + c3x

3,

where c1 = b1 + 25b2 − 125b3, c2 = b2 − 15b3, and c3 = b3. Essentially, we see that {1, (x −
5)2, (x− 5)3} spans U . Also, {1, (x− 5)2, (x− 5)3} is obviously linearly independent. Hence, it
is a basis.

Linear Maps

Lecture 5, Example 3. The map T : R3 → R2 is defined by T (x, y, z) = (2x− 4y + z, x +
y + 6z) is a linear map.

Idea. (additivity)

T (x1 + x2, y1 + y2, z1 + z2) = (2(x1 + x2)− 4(y1 + y2) + (z1 + z2), (x1 + x2) + (y1 + y2) + 6(z1 + z2))

= (2x1 − 4y1 + z1, x1 + y1 + 6z1) + (2x2 − 4y2 + z2, x2 + y2 + 6z2)

= T (x1, y1, z1) + T (x2, y2, z2)

(homogeneity)

T (ax, ay, az) = (2ax− 4ay + az, ax+ ay + 6az)

= a(2x− 4y + z, x+ y + 6z)

= aT (x, y, z)

1



Lecture 5, Example 10.

1. Rotation by θ is given by Tθ(x, y) = (x cos θ − y sin θ, x sin θ + y cos θ).

2. Reflection about the x-axis is the linear map T : R2 → R2 defined by T (x, y) = (x,−y).

3. Projection on the x-axis is the linear map T : R2 → R2 defined by T (x, y) = (x, 0).

Idea. Check directly!

Lecture 5, Exercise 7. Let T : Fn → Fm be a linear map. Show that there exist unique
scalars Aij ∈ F, i = 1, . . . ,m and j = 1, . . . , n such that T (x1, . . . , xn) = (A11x1 + · · · +
A1nxn, . . . , Am1x1 + · · ·+ Amnxn).

Idea. Obviously, we let Aij = (T (ej))i, which is determined uniquely. So, we have T (ej) =
(A1j, . . . , Amj). Therefore, we have the following.

T (x1, . . . , xn) = T (x1e1 + · · ·+ xnen)

= x1T (e1) + · · ·+ xnT (en)

= (A11x1 + · · ·+ A1nxn, . . . , Am1x1 + · · ·+ Amnxn)

Lecture 5, Exercise 8. Give an example of a function T : R2 → R such that T (av) = aTv
for all a ∈ R and all v ∈ R2 but T : R2 → R is not a linear map.

Example. One possible function is T (x, y) =

{
x if |x| ≥ |y|
y otherwise

, which satisfies T (av) = aTv

but fails additivity. For example, we have T (1, 1) = 1 and T (1, 0) + T (0, 1) = 1 + 1 = 2.

Lecture 5, Exercise 10. Let V and W be vector spaces over the field of rational numbers
Q. Suppose T : V → W is a map such that T (u + v) = T (u) + T (v) for all u, v ∈ V . Prove
that T is a linear map.

Idea. By the given assumption, we already have the additivity. So, it remains to show the
homogeneity, that is, T (αv) = αT (v) for all α ∈ Q. Consider α ∈ Q, we have α = p

q
for some

p, q ∈ Z and q 6= 0. Note that T (−v) = −T (v). We want to show that T (p
q
v) = p

q
T (v), which

is equivalent to qT (p
q
v) = pT (v).

qT (
p

q
v) = T (

p

q
v) + · · ·+ T (

p

q
v)︸ ︷︷ ︸

sum of q terms

= T (q · p
q
v)

= T (pv)

= T (v + · · ·+ v︸ ︷︷ ︸
sum of p terms

)

= pT (v)

So, we have established the homogeneity.

Remark. T may not be a linear map over R.
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