THE CHINESE UNIVERSITY OF HONG KONG

DEPARTMENT OF MATHEMATICS

MATH2050 (First Term

Mathematical Analysis I

Homework IV

Questions with * will be marked.

- 1. Let a>0 and $z_1>0$, $z_{n+1}:=\sqrt{a+z_n}$ for all $n\in\mathbb{N}$. Show that the sequence is bounded (Hint: Let $\xi:=\max\{1,z_1\}$. Then $z_n\leq \xi+\sqrt{a}$ for all n). Show that the sequence converges and find the limit.
- 2. Find the limits if exist:

(i)
$$\lim_{n\to\infty} \left(2+\frac{1}{n}\right)^2$$
;

(ii)
$$\lim_{n\to\infty}\frac{(-1)^n}{\sqrt{n}};$$

(iii)
$$\lim_{n\to\infty}\frac{\sqrt{n}-1}{\sqrt{n}+2};$$

(iv)
$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{n+1}$$
;

(v)
$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{2n}$$
;

(vi)
$$\lim_{n\to\infty} \left(1-\frac{1}{n}\right)^n$$
.

3. Let

$$x_n := \frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{n+n}$$
 for all $n \in \mathbb{N}$.

Show that (x_n) is monotone and bounded.

Is the following argument valid:

$$\lim_{n\to\infty} x_n = \lim_{n\to\infty} \frac{1}{n+1} + \lim_{n\to\infty} \frac{1}{n+2} + \dots + \lim_{n\to\infty} \frac{1}{n+n} = 0?$$

- 4.* Show that $\lim x_n = x \in \mathbb{R}$ if and only if every subsequence of (x_n) has in turn a subsequence that converges to x.
- 5.* Let $x \in \mathbb{R}$ and (x_n) be a bounded sequence. Suppose (x_n) does not converge to x. Show that there exists a subsequence of (x_n) converges to some $x' \neq x$.

1