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2. Let

S := { 1

n
− 1

m
: m,n ∈ N}.

Find maxS, supS,minS, inf S, if they exist; Give your reasoning (including your
nonexistence claim).

We recall the definition of maximum (minimum):

Definition 1. Let S be a nonempty subset of real numbers. We say M ∈ R is (the)
maximum of S if both of the followings are true:

(a) M ∈ S.
(b) M is an upper bound for S, namely, for any s ∈ S, we have s ≤M .

Similarly, we define minimum:

Definition 2. Let S be a nonempty subset of real numbers. We say m ∈ R is (the)
minimum of S if both of the followings are true:

(a) m ∈ S.
(b) m is a lower bound for S, namely, for any s ∈ S, we have s ≥ m.

It follows easily from definition that maxima and minima are unique.
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Solution:

We claim that

(a) supS = 1.

(b) maxS does not exist.

(c) inf S = −1.

(d) minS does not exist.

Proof. (a) We prove that supS = 1 : First we show that 1 is an upper bound for
S. Let m,n ∈ N be arbitrary. Note that n ≥ 1,m > 0, hence 1

n
≤ 1, and

1
m
> 0 so that − 1

m
< 0. This gives:

1

n
− 1

m
< 1− 0 = 1. (∗)

To show that 1 is the least upper bound, we use the useful criterion: l ≤ supS
if for any ε > 0, there exists s ∈ S such that s+ ε > l.

Now let ε > 0 be given. By Archimedean Property, there is some m0 ∈ N such
that m0 >

1
ε
, whence ε > 1

m0
. Take n = 1,m = m0, thus s = 1

1
− 1

m0
= 1− 1

m0
∈

S so that we have s+ ε = 1− 1
m0

+ ε > 1 by construction. Hence supS = 1.

(b) maxS does not exist.

We will prove by contradiction. Suppose S had a maximum M ∈ R. Then
M is an upper bound for S. Since 1 is the least upper bound for S, we have
1 ≤ M . However, we see from (*) that for any s ∈ S, s < 1. Since the
maximum M ∈ S, we have M < 1, which is a contradiction. Hence S does not
have a maximum.

(c) inf S = −1.

One may use similar arguments as in (a) to prove this, by the symmetry of
m,n. We present here a different approach which exploits the symmetry of the
set S:

For each S ⊆ R, we denote −S := {−x : x ∈ S}. In this question, S is
symmetric in the sense that S = −S, which may be easily verified. Then our
conclusion follows from the proposition below:

Proposition 1. Let S be a nonempty set of real numbers which is bounded
above and below. Then:

i. inf S = − sup(−S)

ii. supS = − inf(−S)

iii. minS = −max(−S), provided that max(−S) exists in R.
iv. maxS = −min(−S), provided that min(−S) exists in R.

We prove (i) only. The others are similar.

Proof. Let a = inf S, b = sup(−S).
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• “a ≤ −b”: Let ε > 0 be arbitrary. We aim to show that there is s ∈ S
such that s− ε < −b. Since b = sup(−S), for the same ε, there is t ∈ −S
such that t + ε > b. But t ∈ −S, hence we let s := −t ∈ S, and thus
s− ε = −t− ε < −b. Since ε > 0 is arbitrary, we have a ≤ −b.
• “a ≥ −b”: Let u ∈ S be arbitrary. We aim to show that u ≥ −b. Since
u ∈ S, we have −u ∈ −S. Since b is an upper bound for −S, we have
b ≥ −u, whence u ≥ −b. Since u ∈ S is arbitrary, we have a ≥ −b.

By the proposition, we have: inf S = − sup(−S) = − supS = −1. (Recall that
S is ‘symmetric’)

(d) minS does not exist.

Suppose it had a minimum m ∈ R. Then we would have maxS = max(−S) =
−minS = −m. But we have just shown that maxS does not exist. This is a
contradiction, and hence minS does not exist.



4

3. Let f, g be real valued functions on X which are bounded above. Show that

sup{f(x) + g(x) : x ∈ X} ≤ sup{f(x) : x ∈ X}+ sup{g(x) : x ∈ X}

or in convenient notations,

sup
x∈X

(f(x) + g(x)) ≤ sup
x∈X

f(x) + sup
x∈X

g(x).

Can strict inequality or equality happen?

Proof. Our first observation is that all the 3 suprema exist in R, because f, g are
bounded above.

It suffices to show that for any y ∈ {f(x) + g(x) : x ∈ X}, y ≤ sup{f(x) : x ∈
X}+ sup{g(x) : x ∈ X}.
Let y ∈ {f(x) + g(x) : x ∈ X} be arbitrary. Then there is x0 ∈ X such that
y = f(x0)+g(x0). Observe that by definition, f(x0) ≤ sup{f(x) : x ∈ X}, and that
g(x0) ≤ sup{g(x) : x ∈ X}. Hence y ≤ sup{f(x) : x ∈ X} + sup{g(x) : x ∈ X}.
Since y is arbitrary, we have:

sup{f(x) + g(x) : x ∈ X} ≤ sup{f(x) : x ∈ X}+ sup{g(x) : x ∈ X}

Example 1. (strict inequality)

X = [0, 1], f(x) = x, g(x) = −x. Then sup{f(x) : x ∈ X} = 1, sup{g(x) :
x ∈ X} = 0, and that sup{f(x) : x ∈ X} + sup{g(x) : x ∈ X} = 1. However,
f(x) + g(x) = 0, so that sup{f(x) + g(x) : x ∈ X} = 0.

Example 2. (equality)

X = [0, 1], f(x) = 1, g(x) = −1. Then sup{f(x) : x ∈ X} = 1, sup{g(x) : x ∈
X} = −1, and that sup{f(x) : x ∈ X} + sup{g(x) : x ∈ X} = 0. On the other
hand, f(x) + g(x) = 0, so that sup{f(x) + g(x) : x ∈ X} = 0.
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4. Let (xn) be a real sequence converging to x ∈ R. Show by ε-N definition that

(a) limn→∞ |xn| = |x|
(b) If α < x < β then there exists N ∈ N such that for any n ≥ N , α < xn < β.

Proof. (a) Let ε > 0. Since xn converges to x, there is N ∈ N such that for n ≥ N ,
|xn−x| < ε. Now with the same N , for n ≥ N , we have, by triangle inequality,
that ∣∣|xn| − |x|∣∣ ≤ |xn − x| < ε

Hence |xn| converges to |x|.
(b) Since α < x < β, we let ε0 := min{β − x, x−α} > 0. For this ε0, by definition

of convergence, there is N ∈ N such that for n ≥ N ,

|xn − x| < ε0

On the one hand, xn − x < ε0 ≤ β − x. Thus xn < β for n ≥ N . On the other
hand, for n ≥ N , xn−x > −ε0 ≥ −(x−α), whence xn > α. Hence α < xn < β
for n ≥ N .

Remark: In the proof for (b) we could also let ε0 := min{β−x,x−α}
2

> 0, which
would make the calculation slightly harder. However, the advantage is that
it is always safer to use a smaller epsilon in general, since one may get into
trouble obtaining only ≥ instead of > in some other cases.


