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Find max S, sup S, min S, inf S, if they exist; Give your reasoning (including your
nonexistence claim).

We recall the definition of maximum (minimum):

Definition 1. Let S be a nonempty subset of real numbers. We say M € R is (the)
maximum of S if both of the followings are true:

(a) M € S.
(b) M is an upper bound for S, namely, for any s € S, we have s < M.
Similarly, we define minimum:

Definition 2. Let S be a nonempty subset of real numbers. We say m € R is (the)
minimum of S if both of the followings are true:

(a) meS.

(b) m is a lower bound for S, namely, for any s € S, we have s > m.

It follows easily from definition that maxima and minima are unique.



Solution:

We claim that

Proof. (a) We prove that sup S = 1 : First we show that 1 is an upper bound for

S. Let m,n € N be arbitrary. Note that n > 1,m > 0, hence % < 1, and
% > ( so that —% < 0. This gives:

1 1
———<1-0=1 (%)
n o m
To show that 1 is the least upper bound, we use the useful criterion: | < sup S

if for any € > 0, there exists s € S such that s +¢ > [.

Now let € > 0 be given. By Archimedean Property, there is some mg € N such

that mg > 1, whence e > 2. Taken =1,m =mg, thuss=*-L =1-1L ¢
€ mo 1 mo mo

S so that we have s +e=1— m%) + € > 1 by construction. Hence sup S = 1.

max S does not exist.

We will prove by contradiction. Suppose S had a maximum M € R. Then
M is an upper bound for S. Since 1 is the least upper bound for S, we have
1 < M. However, we see from (*) that for any s € S, s < 1. Since the
maximum M € S, we have M < 1, which is a contradiction. Hence .S does not
have a maximum.

inf S = —1.

One may use similar arguments as in (a) to prove this, by the symmetry of

m,n. We present here a different approach which exploits the symmetry of the
set S

For each S C R, we denote —S := {—z : x € S}. In this question, S is
symmetric in the sense that S = —S, which may be easily verified. Then our
conclusion follows from the proposition below:

Proposition 1. Let S be a nonempty set of real numbers which is bounded
above and below. Then:

i. inf S = —sup(—9)
it. sup S = —inf(—9)
iti. min S = —max(—>S5), provided that max(—S) exists in R.

iv. max S = —min(—29), provided that min(—S) ezists in R.

We prove (i) only. The others are similar.

Proof. Let a = inf S, b = sup(—25).



e “a < —b": Let € > 0 be arbitrary. We aim to show that there is s € §
such that s — e < —b. Since b = sup(—S), for the same ¢, there is t € —S
such that t + € > b. But t € —5, hence we let s := —t € S, and thus
s —e=—t—e < —b. Since € > 0 is arbitrary, we have a < —b.

e “a > —b": Let u € S be arbitrary. We aim to show that u > —b. Since
u € S, we have —u € —S. Since b is an upper bound for —5, we have
b > —u, whence u > —b. Since u € S is arbitrary, we have a > —b.

]

By the proposition, we have: inf S = —sup(—S) = —sup S = —1. (Recall that
S is ‘symmetric’)
min S does not exist.

Suppose it had a minimum m € R. Then we would have max S = max(—S) =
—min S = —m. But we have just shown that max .S does not exist. This is a
contradiction, and hence min .S does not exist.

]



3. Let f, g be real valued functions on X which are bounded above. Show that
sup{f(x)+ g(z) :z € X} <sup{f(z):z € X} +sup{g(x) : z € X}
or in convenient notations,

Sg}g(f(x) +9(x)) < Sup f(z) + Sup 9(@).

Can strict inequality or equality happen?

Proof. Our first observation is that all the 3 suprema exist in R, because f,g are
bounded above.

It suffices to show that for any y € {f(z) + g(z) : x € X}, y < sup{f(z) : z €
X} +sup{g(x) : x € X}.

Let y € {f(z) + g(z) : « € X} be arbitrary. Then there is xy € X such that
y = f(xo)+g(xo). Observe that by definition, f(zo) < sup{f(z) : € X}, and that
g(xo) < sup{g(z) : = € X}. Hence y < sup{f(x) : x € X} +sup{g(z) : z € X}.
Since y is arbitrary, we have:

sup{f(z) + g(z) : 2z € X} <sup{f(z): 2 € X} +sup{g(z) : z € X}

Example 1. (strict inequality)

X =10,1], f(z) = =z, g(x) = —z. Then sup{f(z) : = € X} = 1, sup{g(x) :
x € X} =0, and that sup{f(z) : * € X} +sup{g(z) : v € X} = 1. However,
f(z) 4+ g(x) =0, so that sup{f(z) + g(z) :x € X} =0.

Example 2. (equality)

X =[0,1], f(z) =1, g(xr) = —1. Then sup{f(x) : z € X} =1, sup{g(z) : = €
X} = —1, and that sup{f(z) : € X} +sup{g(z) : x € X} = 0. On the other
hand, f(z)+ g(x) = 0, so that sup{f(z) + g(x) : x € X} = 0.



4. Let (z,,) be a real sequence converging to z € R. Show by e-N definition that

(a) limy o0 |2a| = [2]

(b) If @ < & < (3 then there exists N € N such that for any n > N, o < z,, < 5.

Proof. (a) Let e > 0. Since z,, converges to z, there is N € N such that for n > N,
|z, — x| < e. Now with the same N, for n > N, we have, by triangle inequality,
that

Hxn\ — |:L‘H <|ax, —z| <e
Hence |z,| converges to |x|.

(b) Since a < x < 3, we let ¢y := min{f — x,x — a} > 0. For this ¢, by definition
of convergence, there is N € N such that for n > N,

|z, — 2| < €

On the one hand, z,, —x < ¢y < g —x. Thus x,, < 8 for n > N. On the other
hand, forn > N, z,, —z > —¢y > —(x —«), whence z,, > a. Hence o < z,, < 8
forn > N.

Remark: In the proof for (b) we could also let €y := w > 0, which
would make the calculation slightly harder. However, the advantage is that
it is always safer to use a smaller epsilon in general, since one may get into
trouble obtaining only > instead of > in some other cases.

]



