MATH1050/1058 Proof-writing Exercise 8

Advice.

- Almost all the questions are concerned with wholesale refutations.
- Study the Handout Dis-proofs by wholesale refutation before answering the questions.

Also, make sure you know what it means (and what it takes) to correctly obtain the negation of a statement (which may involve one or more several quantifiers). Refer to the Handouts Basics of logic in mathematics, Universal quantifier and existential quantifier, Statements with several quantifiers on this matter.

- Besides the handout mentioned above, Question (5) of Assignment 7 is also suggestive on what it takes to give a correct wholesale-refutation argument.
- Sometimes you may want to apply the method of proof-by-contradiction within one passage of a proof.

In this situation, it may be good to start that passage with the words 'we want to verify blah-blah with the method of proof-by-contradiction'.

Be reminded that the assumptions used in such a passage of argument (which you hope will lead to a desired contradiction within that passage) must be stated clearly at the beginning of the passage concerned.

1. Dis-prove the statements below:

- (a) There exists some $x \in \mathbb{R}$ such that $x^2 + 2x + 3 < 0$.
- (b) There exist some $x, y \in \mathbb{R} \setminus \{0\}$ such that $(x+y)^2 = x^2 + y^2$.
- (c) \Diamond There exists some $r \in \mathbb{R}$ such that $r < r^5 \le r^3$.
- (d) There exist some $\zeta \in \mathbb{C} \setminus \{1\}$, $n \in \mathbb{N} \setminus \{0,1\}$ such that ζ is an (n+1)-th root of unity and ζ is an (n^2+n+1) -th root of unity.
- (e) $^{\Diamond}$ There exists some $s \in \mathbb{Q}$ such that (for any $t \in \mathbb{Q}$, s = 2t + 1).
- (f) There exists some $t \in \mathbb{R}$ such that (for any $s \in \mathbb{C}$, $|s| \leq t$).

$$(\mathbf{g})^\diamondsuit \text{ There exist some } a \in \mathbb{R}, \ n \in \mathbb{N} \setminus \{0,1,2,3\} \text{ such that } \frac{(1+\sqrt{|a|})^n}{n(n-1)(n-2)(n-3)} \leq \frac{a^2}{24}.$$

- 2. Dis-prove the statements below. (Various results known as the Triangle Inequality may be useful.)
 - (a) There exists some $x \in \mathbb{R}$ such that |x+1| > |x| + 1.
 - (b) There exists some $z \in \mathbb{C}$ such that |z+3-4i| > |z| + 5.
 - (c) \Diamond There exists some $x \in \mathbb{R}$ such that |x+4| > 2|x+1| + |x-2|.
 - (d) There exist some $a, b, c, r, s, t \in \mathbb{R}$ such that

$$\sqrt{(a-r)^2+(b-s)^2+(c-t)^2}>\sqrt{(a-1)^2+(b-2)^2+(c-3)^2}+\sqrt{(r-1)^2+(s-2)^2+(t-3)^2}$$

(e) There exists some
$$z, w \in \mathbb{C}$$
 such that $w \neq 2z$ and $\frac{2|z-2w-3-6i|+3|w+2+4i|}{|2z-w|} < 1$.

- 3. Let $a, b, c, d \in \mathbb{C}$. Let r = 1 + 2(|a| + |b| + |c| + |d|).
 - (a) Prove the statement (\sharp):

$$(\sharp) \ \text{Let } \zeta \in \mathbb{C}. \ \text{Suppose} \ |\zeta| \ge r. \ \text{Then} \ \left| 1 + \frac{a}{\zeta} + \frac{b}{\zeta^2} + \frac{c}{\zeta^3} + \frac{d}{\zeta^4} \right| \ge \frac{1}{2}.$$

- (b) Hence, or otherwise, dis-prove the statement (1):
 - (\$\\\) There exists some $\alpha \in \mathbb{C}$ such that $\alpha^4 + a\alpha^3 + b\alpha^2 + c\alpha + d = 0$ and $|\alpha| \ge r$.
- 4. (a) Dis-prove the statement (\star) :
 - (*) There exist some positive real numbers x, y such that $(x+y)^2 \le x^2 + y^2$.

- (b) \Diamond Hence, or otherwise, dis-prove the statement (**):
 - $(\star\star) \ \ \text{There exist some positive real numbers } u,v \text{ such that } \sqrt{u}+\sqrt{v} \leq \sqrt{u+v}.$
- 5. Dis-prove the statement (\star):
 - (\star) There exists some $k \in \mathbb{N} \setminus \{0,1\}$ such that for any positive integer n, the number $k^{1/n}$ is an integer.

Remark. You will probably need the Well-ordering Principle for Integers.