MATH1050/1058 Proof-writing Exercise 7 (Answers and selected solutions)

1. (a) **Answer.**

There exist some $x, y, z \in \mathbb{N}$ such that x + y, y + z are divisible by 3 and x + z is not divisible by 3.

(b) Solution.

Take x = z = 1, y = 2.

We have $x, y, z \in \mathbb{N}$.

Note that $x + y = y + z = 3 = 1 \cdot 3$. We have $1 \in \mathbb{Z}$.

Then, by definition, x + y, y + z are divisible by 3.

Note that x + z = 2. We verify that 2 is not divisible by 3:

Suppose 2 were divisible by 3.

Then there would exist some $k \in \mathbb{Z}$ such that 2 = 3k.

For the same k, we would have $k = \frac{2}{3}$. Then k is not an integer.

Contradiction arises.

2. Answer.

- (a) One possible counter-example is given by: x = y = 10, and z = 5.
- (b) One possible counter-example is given by: x = 1, y = 2.
- (c) One possible counter-example is given by: $s = \sqrt{2}$, $t = -\sqrt{2}$.
- (d) One possible counter-example is given by: $a=8,\,b=9,\,c=6.$
- (e) One possible counter-example is given by: n = 3, $\zeta = \cos\left(\frac{2\pi}{9}\right) + i\sin\left(\frac{2\pi}{9}\right)$.
- (f) One possible counter-example is given by: n = 3, $\zeta = \cos\left(\frac{2\pi}{9}\right) + i\sin\left(\frac{2\pi}{9}\right)$.

3. (a) **Answer.**

There exist some sets A, B, C such that $A \setminus (C \setminus B) \not\subset A \cap B$.

(b) Solution.

Regard 0, 1, 2 as distinct objects.

Let
$$A = \{0, 1\}, B = \{1\}, C = \{2\}.$$

We have
$$A \cap B = B = \{1\}, C \setminus B = C = \{2\}, A \setminus (C \setminus B) = A = \{0, 1\}.$$

Note that $0 \in A \setminus (C \setminus B)$ and $0 \notin A \cap B$.

Hence $A \setminus (C \setminus B) \not\subset A \cap B$.

4. Answer.

- (a) One possible counter-example is given by: $A = \{0\}$, $B = \{1\}$, $C = \{2\}$.
- (b) One possible counter-example is given by: $A = \{0\}, B = \{1\}, C = \{2\}.$
- (c) One possible counter-example is given by: $A = \{0\}$ and $B = C = \{0, 1\}$.
- (d) One possible counter-example is given by: $A = \{1\}, B = \{2\}, C = \{0, 1, 2\}.$
- (e) One possible counter-example is given by: $A = \{0, 2\}, B = \{1\}, C = \{1, 2\}.$
- (f) One possible counter-example is given by: $A = \{1\}, B = \{2\}, C = \{0, 1\}, D = \{0, 2\}.$

5. Answer.

- (a) One possible counter-example is given by: $I = \mathbb{R}$, $f: I \longrightarrow \mathbb{R}$ given by $f(x) = x^3$ for any $x \in I$.
- (b) One possible counter-example is given by: $I = \mathbb{R}$, $f: I \longrightarrow \mathbb{R}$ given by f(x) = 0 for any $x \in \mathbb{R}$.
- (c) One possible counter-example is given by: I = (0, 1), J = (1, 2),

$$f: I \cup J \longrightarrow \mathbb{R}$$
 given by $f(x) = \begin{cases} 0 & \text{if} \quad x \in I \\ 1 & \text{if} \quad x \in J \end{cases}$

6. Answer.

- (a) One possible counter-example is given by: $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.
- (b) One possible counter-example is given by: $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, B = A.
- (c) One possible counter-example is given by: $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$.
- (d) One possible counter-example is given by: $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$.

7. (a) Solution.

[We want to prove this statement: 'Suppose S is a subset of \mathbb{R} . Further suppose λ , μ are greatest elements of S. Then $\lambda = \mu$.']

Suppose S is a subset of \mathbb{R} . Further suppose λ, μ are greatest element of S.

By definition of greatest element, we have $x \leq \lambda$ for any $x \in S$. Also by definition of greatest element, $\mu \in S$. Then $\mu \leq \lambda$.

Modifying the argument above (by interchanging the roles of λ, μ), we have $\lambda \leq \mu$.

We have $\mu \leq \lambda$ and $\lambda \leq \mu$. Then $\lambda = \mu$.

(b) Comment.

The statement to be proved should be formulated as:

• Let ζ be a complex number. Suppose ζ is neither real nor purely imaginary. Let z be a complex number. Let a, b, c, d be real numbers. Suppose $z = a\zeta + b\overline{\zeta}$ and $z = c\zeta + d\overline{\zeta}$. Then a = c and b = d.

The argument should start in this way:

Let ζ be a complex number. Suppose ζ is neither real nor purely imaginary.

Pick any complex number z. Let a, b, c, d be real numbers. Suppose $z = a\zeta + b\overline{\zeta}$ and $z = c\zeta + d\overline{\zeta}$.

(c) Comment.

The statement to be proved should be formulated as:

• Let p be a positive real number, and q be a real number. Suppose f(x) be the cubic polynomial given by $f(x) = x^3 + px + q$.

Let v be a real number. Let α, β be real numbers. Suppose ' $u = \alpha$ ', ' $u = \beta$ ' are real solutions of the equation f(u) = v with unknown u.

Then $\alpha = \beta$.

8. Solution.

[We want to prove this statement: 'Let I be an interval in \mathbb{R} , and $f, g: I \longrightarrow \mathbb{R}$ be functions. Suppose f is strictly increasing on I and g is strictly decreasing on I.

Let
$$c, c' \in I$$
. Suppose $f(c) = g(c)$ and $f(c') = g(c')$. Then $c = c'$.

Let I be an interval in \mathbb{R} , and $f, g: I \longrightarrow \mathbb{R}$ be functions. Suppose f is strictly increasing on I and g is strictly decreasing on I.

Pick any $c, c' \in I$. Suppose f(c) = g(c) and f(c') = g(c'). We verify that c = c' by the proof-by-contradiction method:

• Suppose it were true that $c \neq c'$.

Without loss of generality, assume c < c'.

Since f is strictly increasing on I, we would have f(c) < f(c').

Since g is strictly decreasing on I we would have g(c) > g(c').

Recall that f(c) = g(c) and f(c') = g(c').

Then f(c) < f(c') = g(c') < g(c) = f(c). Therefore f(c) < f(c). Contradiction arises.

2

9. Solution.

[We want to prove this statement: 'For any $\mathbf{v} \in \mathbb{R}^n$, for any $c_1, c_2, \dots, c_k, d_1, d_2, \dots, d_k \in \mathbb{R}$, if $\mathbf{v} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_k \mathbf{u}_k$ and $\mathbf{v} = d_1 \mathbf{u}_1 + d_2 \mathbf{u}_2 + \dots + d_k \mathbf{u}_k$ then $c_1 = d_1, c_2 = d_2, \dots$ and $c_k = d_k$.']

Pick any $\mathbf{v} \in \mathbb{R}^n$.

Let $c_1, c_2, \dots, c_k, d_1, d_2, \dots, d_k \in \mathbb{R}$.

Suppose that $\mathbf{v} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_k \mathbf{u}_k$ and $\mathbf{v} = d_1 \mathbf{u}_1 + d_2 \mathbf{u}_2 + \dots + d_k \mathbf{u}_k$.

Then $c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \dots + c_k\mathbf{u}_k = \mathbf{v} = d_1\mathbf{u}_1 + d_2\mathbf{u}_2 + \dots + d_k\mathbf{u}_k$.

Therefore $(c_1 - d_1)\mathbf{u}_1 + (c_2 - d_2)\mathbf{u}_2 + \dots + (c_k - d_k)\mathbf{u}_k = \mathbf{0}$.

Since $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k$ are linearly independent, we have $c_1 - d_1 = c_2 - d_2 = \cdots = c_k - d_k = 0$.

Then $c_1 = d_1$, $c_2 = d_2$, ..., and $c_k = d_k$.

10. —

11. —