MATH1050/1058 Proof-writing Exercise 6

Advice.

- All the questions are concerned with arguments in set language.
- Study the Handout Set operations, Examples of proofs for properties of basic set operations, Power set before answering the questions.
- Besides the handouts mentioned above, Question (7) of Assignment 6 may also be relevant.
- When giving an argument, remember to adhere to definition, always.
- 1. (a) Explain the word *subset* by stating an appropriate definition.
 - (b) Explain the phrase union of two sets by stating its appropriate definition.
 - (c) Prove the statement (#) below, with reference to the definitions of set equality, subset relation, intersection, union, complement, where appropriate.
 - (#) Let A, B, C, D be sets. Suppose $A \subset C$ and $B \subset D$. Then $A \cup B \subset C \cup D$.
- 2. (a) Formulate the definition for the notion of set equality in terms of subset relation.
 - (b) Prove the statement (#), with reference to the definitions for the notions of set equality and subset relation.
 - (\sharp) Let A, B, C be sets. Suppose $A \subset B$, $B \subset C$, and $C \subset A$. Then A = B.
- 3. (a) Explain the phrases intersection of two sets and complement of a set in another (not distinct) set by stating their appropriate definitions.
 - (b) Prove the statements below, with reference to the definitions of set equality, subset relation, intersection, union, complement, where appropriate.
 - i. Let A, B be sets. Suppose $A \subset A \setminus B$. Then $A \cap B = \emptyset$.
 - ii. Let A, B be sets. Suppose $A \cap B = \emptyset$. Then $A \subset A \setminus B$.
 - (c) Prove the statements (\$\pmi\$), with reference to the definitions of set equality, subset relation, intersection, union, complement, where appropriate.
 - (\natural) Suppose A, B are sets. Then $A \subset A \cap B$ iff $A \setminus B = \emptyset$.
- 4. Prove the statements below, with reference to the definitions of set equality, subset relation, intersection, union, complement, where appropriate.
 - (a) Suppose A, B are sets. Then $(A \cup B) \setminus A = B \setminus (A \cap B)$.
 - (b) Suppose A, B, C are sets. Then $A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C)$.
 - (c) Let A, B be sets. Suppose $A \cup B = A \cap B$. Then A = B.
 - (d) Let A, B, C be sets. Suppose $A \subset C$ and $B \subset C$. Then $(C \setminus A) \setminus (C \setminus B) = B \setminus A$.
- 5. Prove the statements below:
 - (a) Suppose A, B are sets. Then $A \subsetneq B$ iff $(A \subset B \text{ and } B \not\subset A)$.
 - (b) Let A, B, C be sets. Suppose $A \subseteq B$ and $B \subseteq C$. Further suppose $A \subsetneq B$ or $B \subsetneq C$. Then $A \subsetneq C$.
- 6. Prove the statements below:
 - (a) Suppose A, B are sets. Then A, B are disjoint iff the statement (\sharp) holds:
 - (\sharp) For any object x, if $x \in A$ then $x \notin B$.
 - **Remark.** Hence we have a re-formulation for the notion of *disjointness* for sets.
 - (b) Let A, B, C, D be sets. Suppose A, B are disjoint. Further suppose C is a subset of A, and D is a subset of B. Then C, D are disjoint.
 - (c) Let A, B, S be sets. Suppose A, B are disjoint. Then $S \cap A, S \cap B$ are disjoint.

- 7. (a) Explain the phrase power set of a set by stating its appropriate definition.
 - (b) \diamondsuit Prove the statement (\sharp):
 - (#) Let A, B be sets. Suppose $\mathfrak{P}(B) \in \mathfrak{P}(A)$. Then $S \in A$ for any subset S of B.
- 8. Let M be a set, and C be a subset of $\mathfrak{P}(M)$.

Define $I = \{x \in M : x \in V \text{ for any } V \in C\}, J = \{x \in M : x \in V \text{ for some } V \in C\}.$

Prove the statements below:

- (a) $^{\diamondsuit}$ Let P be a subset of M. Suppose $P \subset V$ for any $V \in C$. Then $P \subset I$.
- (b) $^{\diamondsuit}$ Let Q be a subset of M. Suppose $V \subset Q$ for any $V \in C$. Then $J \subset Q$.
- (c) Let R be a subset of M. Suppose $D = \{V \cap R \mid V \in C\}$, and $K = \{x \in M : x \in U \text{ for some } U \in D\}$. Then $K = J \cap R$.