Advice.

- All the questions are concerned with the handling of 'there exists' and/or with proof-by-contradiction argument.
- When doing proofs, remember to adhere to definition, always.

 Study the handouts Basic results on divisibility, and Rationals and irrationals.
- Besides the handout mentioned above, Question (1), Question (2), Question (5) in Assignment 2 are also suggestive on what it takes to give the types of argument meant to be written here, and on the level of rigour required.
- 1. Prove the statements below (with direct reference to the definition of rational numbers):
 - (a) Let x, y be real numbers. Suppose x, y are rational. Then x y is rational.
 - (b) Let x, y be real numbers. Suppose x, y are rational and $y \neq 0$. Then $\frac{x}{y}$ is rational.
- 2. Prove the statements below (with direct reference to the definition of divisibility):
 - (a) Let $x, y \in \mathbb{Z}$. Suppose x is divisible by y and y is divisible by x. Then |x| = |y|.
 - (b) Let $x, y, z \in \mathbb{Z}$. Suppose x is divisible by y^2 , and y is divisible by z^3 . Then x is divisible by z^6 .
 - (c) Let $x, n \in \mathbb{Z}$. Suppose x is divisible by n. Then for any $y \in \mathbb{Z}$, $(3x^2 + 4y)^5 + (3x^2 4y)^5$ is divisible by $6n^2$. Remark. Where appropriate, make good use of what you know about geometric progressions (or the Binomial Theorem).
- 3. Prove the statements below (with direct reference to the definition of arithmetic progressions and geometric progressions):
 - (a) Suppose $\{a_n\}_{n=0}^{\infty}$, $\{b_n\}_{n=0}^{\infty}$ are arithmetic progressions. Then $\{a_n+b_n\}_{n=0}^{\infty}$ is an arithmetic progression.
 - (b) Let $\{a_n\}_{n=0}^{\infty}$ be an infinite sequence of integers. Suppose $\{a_n\}_{n=0}^{\infty}$ is an arithmetic progression. Then, for any non-zero complex number ζ , the infinite sequence $\{\zeta^{a_n}\}_{n=0}^{\infty}$ is a geometric progression.
- 4. Prove the statements below (with direct reference to boundedness):
 - (a) Let $\{a_n\}_{n=0}^{\infty}$ be an infinite sequence of real numbers. Suppose $\{a_n\}_{n=0}^{\infty}$ is bounded above in \mathbb{R} . Then, for any positive real number c, $\{ca_n\}_{n=0}^{\infty}$ is bounded above in \mathbb{R} .
 - (b) Let $\{a_n\}_{n=0}^{\infty}$ be an infinite sequence of real numbers. Suppose $\{a_n\}_{n=0}^{\infty}$ is bounded in \mathbb{R} . Then $\{a_n+a_{2n}\}_{n=0}^{\infty}$ is bounded in \mathbb{R} .
 - (c) Let $\{a_n\}_{n=0}^{\infty}$ be an infinite sequence of real numbers. Suppose $\{a_n\}_{n=0}^{\infty}$ is bounded in \mathbb{R} . Then $\{a_n a_{2n}\}_{n=0}^{\infty}$ is bounded in \mathbb{R} .
- 5. We introduce (or recall from your *calculus* course) the definitions on *relative extremum* for real-valued functions of one real variable.
 - Let $h: D \longrightarrow \mathbb{R}$ be a real-valued function of one real variable with domain D. Suppose $p \in D$.
 - h is said to be attain a **relative maximum** at p if the statement (RelMax) holds: (RelMax) There exists some positive real number δ such that for any $x \in D$, if $|x - p| < \delta$ then $h(x) \leq h(p)$.
 - h is said to be attain a **relative minimum** at p if the statement (RelMin) holds: (RelMin) There exists some positive real number δ such that for any $x \in D$, if $|x - p| < \delta$ then $h(x) \ge h(p)$.

Prove the statement (\sharp) :

(\sharp) Let I be an open interval, and $f: I \longrightarrow \mathbb{R}$ be a real-valued function with one real variable. Suppose $a, c, b \in I$ and a < c < b. Further suppose f is strictly decreasing on [a, c] and f is strictly increasing on [c, b]. Then f attains a relative minimum at c.

Remark. The statement (\$\pm\$), when combined with consequences of the Mean-Value Theorem which link up strict monotonicity and the 'signs' of the first derivative, give rise to the *First Derivative Test (on relative minimum)* that you learnt in your *calculus* course. There are also the corresponding statements and results concerned with relative maximum.

Further remark. The converse of the statement (\sharp) is false.