1. Solution.

- (a) Take n=3. Note that $3 \in \mathbb{N}$. Note that 3+2=5, 3+4=7. The integers 3, 5, 7 are prime numbers.
- (b) Take $x = \sqrt{2}$. Note that $x \in \mathbb{R}$. We have $x^2 2 = (\sqrt{2})^2 2 = 2 2 = 0$.
- (c) Take $z_0 = \frac{1+i}{\sqrt{2}}$. Note that $z_0 \in \mathbb{C}$.

Also note that
$${z_0}^4 = \left(\frac{1+i}{\sqrt{2}}\right)^4 = \frac{1+4i+6i^2+4i^3+i^4}{4} = \frac{1+4i-6-4i+1}{4} = 1.$$

(d) Take $x = -\frac{1}{2}$. By definition, $x \in \mathbb{Q}$.

Note that
$$(\log_2(-2x))^2 = (\log_2(-2 \cdot (-\frac{1}{2})))^2 = (\log_2(1))^2 = 0^2 = 0.$$

Also note that
$$-\log_2(4x^2) = -\log_2\left(4 \cdot \left(-\frac{1}{2}\right)^2\right) = -\log_2(1) = 0.$$

Then
$$(\log_2(-2x))^2 = -\log_2(4x^2)$$
.

2. Answer.

- (a) There are many correct answers for (II), (III), ..., (IX) collectively, dependent on the choices made in (II).
 - (I) There exist some $x, y, z \in \mathbb{Z}$ such that each of xy, xz is divisible by 4 and xyz is not divisible by 8.
 - (II) y = z = 1
 - (III) 4
 - (IV) 4
 - (V) $4 = 1 \cdot 4$ and $1 \in \mathbb{Z}$
 - (VI) 4
 - (VII) 4 were divisible by 8
 - (VIII) 4 = 8k
 - (IX) $\frac{1}{2}$
- (b) (I) There exist some sets A, B, C such that $A \cap B \neq \emptyset$ and $A \cap B \subset C$ and $A \not\subset C$ and $B \not\subset C$.
 - (II) $C = \{3\}$
 - (III) ∅
 - (IV) $A \cap B \subset C$
 - (V) and $1 \notin C$
 - (VI) $A \not\subset C$
 - (VII) $2 \in B$ and $2 \notin C$
 - (VIII) $B \not\subset C$
- (c) (I) There exist some $x, y \in \mathbb{R}$ such that x > 0 and y > 0 and $|x^2 2x| < |y^2 2y|$ and $|x^2 2y| < |y^2 2y|$ and $|x^2 2y| < |y^2 2y|$ and $|x^2 2y| < |y^2 2y|$.
 - (II) y = 1
 - (III) x > 0 and y > 0
 - (IV) 0
 - (V) $|y^2 2y| = 1$
 - (VI) $|x^2 x|$
 - (VII) $|y^2 y|$
 - (VIII) $x^2 = 4$
 - (IX) $x^2 > y^2$
- (d) (I) There exist some $m, n \in \mathbb{N} \setminus \{0, 1, 2\}$, $\zeta, \omega \in \mathbb{C}$ such that $m \neq n$ and $\zeta \neq \omega$ and ζ is an m-th root of unity and ω is an n-th root of unity and $\zeta \omega$ is not an (m+n)-th root of unity.

(II) Take

(III)
$$\omega = \cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)$$

(IV) $m \neq n$ and $\zeta \neq \omega$

(V) ζ is an m-th root of unity

$$(\text{VI})\ \omega^n = \left(\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right)^8 = \cos\left(8\cdot\frac{\pi}{4}\right) + i\sin\left(8\cdot\frac{\pi}{4}\right) = \cos(2\pi) + i\sin(2\pi) = 1$$

(VII) 12

$$(\text{VIII}) \ (\zeta \omega)^{m+n} = \left(\cos\left(\frac{3\pi}{4}\right) + i\sin\left(\frac{3\pi}{4}\right)\right)^{12} = \cos\left(12 \cdot \frac{3\pi}{4}\right) + i\sin\left(12 \cdot \frac{3\pi}{4}\right) = \cos(9\pi) + i\sin(9\pi) = -1$$

 $(IX) \neq$

(X) $\zeta \omega$ is not an (m+n)-th root of unity

3. Solution.

- (a) Let $z \in \mathbb{C}\setminus\{0\}$. Suppose it were true that Re(z) = 0 and Im(z) = 0. Then $z = \text{Re}(z) + i\text{Im}(z) = 0 + i \cdot 0 = 0$. Contradiction arises. Hence $\text{Re}(z) \neq 0$ or $\text{Im}(z) \neq 0$ in the first place.
- (b) The statement 'for any $z \in \mathbb{C} \setminus \{0\}$, $\text{Re}(z) \neq 0$ ' is false: we have $i \in \mathbb{C} \setminus \{0\}$ and Re(i) = 0. The statement 'for any $w \in \mathbb{C} \setminus \{0\}$, $\text{Im}(w) \neq 0$ ' is also false: we have $1 \in \mathbb{C}$ and Im(1) = 0.

Hence the statement '(for any $z \in \mathbb{C} \setminus \{0\}$, $\text{Re}(z) \neq 0$) or (for any $w \in \mathbb{C} \setminus \{0\}$, $\text{Im}(w) \neq 0$)' is false.

4. Solution.

- (a) i. $-2 \in \mathbb{Z}$. -2 + 1 = -1 < 0. ii. $2 \in \mathbb{Z}$. 2 - 1 = 1 > 0.
- (b) Suppose it were true that there existed some $x \in \mathbb{Z}$ such that (x+1 < 0 and x-1 > 0). For this x, we would have x < -1 and x > 1. Then x < -1 < 1 < x. Therefore $x \neq x$. Contradiction arises.

Hence it is false that there exists some $x \in \mathbb{Z}$ such that (x+1 < 0 and x-1 > 0).

Alterntative argument: The negation of the statement 'there exists some $x \in \mathbb{Z}$ such that (x+1 < 0 and x-1 > 0)' is given by:

• For any $x \in \mathbb{Z}$, (x+1 > 0 or x-1 < 0).

We give a proof of the latter:

• Let $x \in \mathbb{Z}$. We have $x \ge 0$ or $x \le 0$. Where $x \ge 0$, we have $x + 1 \ge 1 \ge 0$. Where $x \le 0$, we have $x - 1 \le -1 \le 0$.

5. Answer.

(a) (I) Suppose

(II) $u \in \mathbb{R} \setminus \{-1, 0, 1\}$

(III) $u^6 + v^6 \le 2v^4$

(IV) $u^6 - 2u^4 + u^2 + v^6 - 2v^4 + v^2 \le 0$

(V) $u^2(u^2-1)^2=0$

(VI) $u \in \mathbb{R} \setminus \{-1, 0, 1\}$

- (b) (I) Suppose there existed some $\zeta \in \mathbb{C} \setminus \mathbb{R}$ such that ζ was both an 89-th root of unity and a 55-th root of unity.
 - (II) 1
 - (III) $\zeta^{89} = 1$

(IV)
$$\zeta^{21} = \zeta^{55}/\zeta^{34} = 1$$
, $\zeta^{13} = \zeta^{34}/\zeta^{21} = 1$, $\zeta^{8} = \zeta^{21}/\zeta^{13} = 1$, $\zeta^{5} = \zeta^{13}/\zeta^{8} = 1$, $\zeta^{3} = \zeta^{8}/\zeta^{5} = 1$, $\zeta^{2} = \zeta^{5}/\zeta^{3} = 1$, $\zeta = \zeta^{3}/\zeta^{2} = 1$.

 $(V) \mathbb{C} \backslash \mathbb{R}$

(VI) and

6. Answer.

(a) Least element: -1.

Greatest element: None.

The set concerned is bounded above by 1 in R. (Every real number no less than 1 is an upper bound.)

(b) Least element: None.

The set concerned is bounded below by -1 in \mathbb{R} . (Every real number no greater than -1 is a lower bound.) Greatest element: *None*.

The set concerned is bounded above by 1 in R. (Every real number no less than 1 ia an upper bound.)

(c) Least element: None.

The set concerned is bounded below by 0 in \mathbb{R} . (Every real number no greater than 0 is a lower bound.) Greatest element: 1.

(d) Least element: None.

The set concerned is bounded below by -1 in \mathbb{R} . (Every real number no greater than -1 is a lower bound.) Greatest element: 2.

(e) Least element: None.

The set concerned is bounded below by 1 in \mathbb{R} . (Every real number no greater than 1 is a lower bound.) Greatest element: *None*.

The set concerned is not bounded above in \mathbb{R} .

(f) Least element: None.

The set concerned is bounded below by 1 in \mathbb{R} . (Every real number no greater than 1 is a lower bound.) Greatest element: *None*.

The set concerned is not bounded above in \mathbb{R} .

(g) Least element: None.

The set concerned is bounded below by $-\frac{3}{2}$ in \mathbb{R} . (Every real number no greater than $-\frac{3}{2}$ is a lower bound.)

Greatest element: None

The set concerned is not bounded above in \mathbb{R} .

(h) Least element: -1.

Greatest element: 2.

(i) Least element: None.

The set concerned is not bounded below in \mathbb{R} .

Greatest element: None.

The set concerned is bounded above by 1 in R. (Every real number no less than 1 is a upper bound.)

(i) Least element: None.

The set concerned is bounded below by -3 in \mathbb{R} . (Every real number no greater than -3 is a lower bound.) Greatest element: *None*.

The set concerned is bounded above by 1 in R. (Every real number no less than 1 is a upper bound.)

(k) Least element: None.

The set concerned is bounded below by 0 in \mathbb{R} . (Every real number no greater than 0 is a lower bound.) Greatest element: 2.

(1) Least element: None.

The set concerned is bounded below by -1 in \mathbb{R} . (Every real number no greater than -1 is a lower bound.) Greatest element: *None*.

The set concerned is bounded below by 1 in R. (Every real number no less than 1 is a upper bound.)

7. Answer.

(a) (I) $\frac{1}{\sqrt{2}}$

(II)
$$\lambda = 0 \cdot 1 + \frac{1}{2} \cdot \sqrt{2}$$

(III) Q

(IV)
$$\frac{1}{\sqrt{2}} \le \lambda < \sqrt{2}$$

- (V) $\lambda \in B$
- (VI) and
- (VII) Pick any $x \in C$
- (VIII) and $x \in B$

$$(\mathrm{IX}) \ \frac{1}{\sqrt{2}} \le x < \sqrt{2}$$

- (X) $x \ge \lambda$
- (b) (I) Suppose
 - (II) a greatest element in R
 - (III) $\mu \in A$ and $\mu \in B$
 - (IV) there would exist some $a, b \in \mathbb{Q}$ such that
 - (V) $\mu \in B$

(VI)
$$\frac{1}{\sqrt{2}} \le \mu < x_0 < \sqrt{2}$$

(VII)
$$\frac{a}{2} + \frac{b+1}{2}\sqrt{2}$$

- (VIII) $a \in \mathbb{Q}$
- $(\mathrm{IX}) \ \frac{b+1}{2} \in \mathbb{Q}$
- $(X) x_0 \in A$
- (XI) $x_0 \in C$
- (XII) μ was a greatest element of C

8. Answer.

- (a) —
- (b) $\frac{1}{25}$ is the least element of T.
- (c) Hint. $\frac{1}{125}$ is an element of S and is not an element of T.
- (d) *Hint*. Given that $u, v \in S$ and u < v, is it true that $\frac{4u + v}{5} \in S$ and $u < \frac{4u + v}{5} < v$?

9. Answer.

- (a) This infinite sequence is strictly decreasing.0 is a lower bound for this infinite sequence.
- (b) This infinite sequence is strictly decreasing.0 is a lower bound for this infinite sequence.
- (c) This infinite sequence is strictly decreasing.0 is a lower bound for this infinite sequence.
- (d) This infinite sequence is strictly decreasing.0 is a lower bound for this infinite sequence.
- (e) This infinite sequence is strictly decreasing.0 is a lower bound for this infinite sequence
- (f) This infinite sequence is strictly decreasing.

 0 is a lower bound for this infinite sequence.
- (g) This infinite sequence is strictly decreasing.0 is a lower bound for this infinite sequence.

- (h) This infinite sequence is strictly increasing. 3/2 is an upper bound of this infinite sequence.
- (i) This infinite sequence is strictly increasing.3/2 is an upper bound of this infinite sequence.
- (j) This infinite sequence is strictly decreasing.0 is a lower bound for this infinite sequence.
- (k) This infinite sequence is strictly increasing.1 is an upper bound of this infinite sequence.
- (l) This infinite sequence is strictly decreasing.

 0 is a lower bound of this infinite sequence.
- (m) This infinite sequence is strictly increasing.1 is an upper bound of this infinite sequence.
- (n) This infinite sequence is strictly increasing.1 is an upper bound of this infinite sequence.

10. —

- 11. (a)
 - (b) **Answer.**

 $\lim_{n \to \infty} a_n = \alpha.$