1.	This is a review question on the framework of proofs of statements starting with there exists.
	Prove each of the 'existence statements' below. (The proofs are easy: conceive the candidates and verify the candidacty Do not think too hard.)
	(a) There exists some $n \in \mathbb{N}$ such that $n, n+2, n+4$ are prime numbers.
	(b) There exists some $x \in \mathbb{R}$ such that $x^2 - 2 = 0$.
	(c) There exists some $z \in \mathbb{C}$ such that $z^4 = -1$.
	(d) There exists some $x \in \mathbb{Q}$ such that $(\log_2(-2x))^2 = -\log_2(4x^2)$.
2.	Fill in the blanks in the block below, all labelled by capital-letter Roman numerals, with appropriate words so that it gives a dis-proof against the statement (A) , a dis-proof against the statement (C) and a dis-proof against the statement (D) . (The 'underline' for each blank bears no definite relation with the length of the answer for that blank.) (a) We dis-prove the statement (A) :
	(A) Let $x, y, z \in \mathbb{Z}$. Suppose each of xy , xz is divisible by 4. Then xyz is divisible by 8.
	[The negation of the statement (A) is given by:
	$(\sim A)$]
	• We verify the negation of the statement (A) below:
	Take $x=4,$ (II) . We have $x,y,z\in\mathbb{Z}.$
	Note that $xy = (III)$, and $xz = (IV)$.
	Note that (V) . Then xy is divisible by 4.
	By a similar argument, we also deduce that xz is divisible by 4.
	Note that $xyz = (VI)$, which is not divisible by 8.
	Below is the justification of this claim:
	* Suppose it were true that (VII)
	Then there would exist some $k \in \mathbb{Z}$ such that (VIII) .
	For the same k , we would have $k = \underline{(IX)}$, which is not an integer. Contradiction arises.
	(b) We dis-prove the statement (B) : (B) Let A, B, C be sets. Suppose $A \cap B \neq \emptyset$ and $A \cap B \subset C$. Then $A \subset C$ or $B \subset C$.
	[The negation of the statement (B) is given by:
	$(\sim B)$]
	We verify the negation of the statement (B) below:
	• Take $A = \{1, 3\}$, $B = \{2, 3\}$ and (II)
	We have $A \cap B = \{3\}$. Then $A \cap B \neq \underline{ (III) }$. Moreover $A \cap B = C$. Then $\underline{ (IV) }$.
	We verify $A \not\subset C$ and $B \not\subset C$:
	* We have $1 \in A$ (V) Then (VI)
	We have (VII) Then (VIII)
	Hence $A \not\subset C$ and $B \not\subset C$ (simultaneously).

- (c) We dis-prove the statement (C):
 - (C) Let $x, y \in \mathbb{R}$. Suppose x > 0 and y > 0 and $|x^2 2x| < |y^2 2y|$. Then $x^2 \le y^2$.

[The negation of the statement (C) is given by:

 $(\sim C)$ (I)

We verify the negation of the statement (C) below:

• Take x=2, (II) . We have $x,y\in\mathbb{R},$ and (III) .

Note that $|x^2 - 2x| = (IV)$ and (V) . Then (VI) < (VII) .

We have (VIII) and $y^2 = 1$. Then (IX)

- (d) We dis-prove the statement (D):
 - (D) Let $m, n \in \mathbb{N} \setminus \{0, 1, 2\}$ and $\zeta, \omega \in \mathbb{C}$. Suppose $m \neq n, \zeta \neq \omega, \zeta$ is an m-th root of unity and ω is an n-th root of unity. Then $\zeta \omega$ is an (m+n)-th root of unity.

The negation of the statement (D) is given by:

 $(\sim D)$ ______]

We verify the negation of the statement (D) below:

• (II) $m = 4, n = 8, \zeta = i \text{ and }$ (III) .

We have $m, n \in \mathbb{N} \setminus \{0, 1, 2\}$ and $\zeta, \omega \in \mathbb{C}$. Also, (IV)

Note that $\zeta^m = i^4 = 1$. Then _____ (V)_____.

Note that _____ . Then ω is an n-th root of unity.

Now note that $m + n = \underline{\quad (\text{VII}) \quad}$ and $\zeta \omega = \cos \left(\frac{3\pi}{4}\right) + i \sin \left(\frac{3\pi}{4}\right)$.

We have $({\rm VIII}) \qquad \qquad . \ {\rm Then} \ (\zeta \omega)^{m+n} \quad ({\rm IX}) \quad \ 1.$

Therefore (X).

- 3. (a) Prove the statement (\sharp) :
 - (#) For any $z \in \mathbb{C} \setminus \{0\}$, $(\operatorname{Re}(z) \neq 0 \text{ or } \operatorname{Im}(z) \neq 0)$.
 - (b) Dis-prove the statement (b):
 - (b) (For any $z \in \mathbb{C} \setminus \{0\}$, $\text{Re}(z) \neq 0$) or (for any $w \in \mathbb{C} \setminus \{0\}$, $\text{Im}(w) \neq 0$).

Remark. It can happen that $(\forall x)[H(x) \to (P(x) \lor Q(x))]$ is true and $[(\forall x)(H(x) \to P(x))] \lor [(\forall y)(H(y) \to Q(y))]$ is false. In general, $(\forall x)[H(x) \to (P(x) \lor Q(x))]$ does not imply $[(\forall x)(H(x) \to P(x))] \lor [(\forall y)(H(y) \to Q(y))]$.

- 4. (a) Prove each of the statements below:
 - i. There exists some $x \in \mathbb{Z}$ such that x + 1 < 0.
 - ii. There exists some $x \in \mathbb{Z}$ such that x 1 > 0.
 - (b) Dis-prove the statement (\pmu):
 - (#) There exists some $x \in \mathbb{Z}$ such that (x+1 < 0 and x-1 > 0).

Remark. It can happen that $[(\exists x)P(x)] \wedge [(\exists y)Q(y)]$ is true while $(\exists x)(P(x) \wedge Q(x))$ is false. In general, $[(\exists x)P(x)] \wedge [(\exists y)Q(y)]$ does not imply $(\exists x)(P(x) \wedge Q(x))$.

- 5. Fill in the blanks in the block below, all labelled by capital-letter Roman numerals, with appropriate words so that it gives a dis-proof against the statement (D) and a dis-proof for the statement (E). (The 'underline' for each blank bears no definite relation with the length of the answer for that blank.)
 - (a) We dis-prove the statement (D):
 - (D) There exist some $u \in \mathbb{R} \setminus \{-1,0,1\}$, $v \in \mathbb{R}$ such that $u^2 + v^2 < 2u^4$ and $u^6 + v^6 < 2v^4$.

[We dis-prove the statement (D) by obtaining a contradiction from it.]

(I) there existed some (II) , $v \in \mathbb{R}$ such that $u^2 + v^2 \le 2u^4$ and (III)

For the same u, v, we would have $u^2 + v^2 - 2u^4 \le 0$ and $u^6 + v^6 - 2v^4 \le 0$.

Then
$$u^2(u^2-1)^2 + v^2(v^2-1)^2 =$$
 (IV)

Then $u^2(u^2-1)^2+v^2(v^2-1)^2=$ _______. Since u, v are real, $u^2(u^2-1)^2 \ge 0$ and $v^2(v^2-1)^2 \ge 0$. Then $u^2(u^2-1)^2=0$ and $v^2(v^2-1)^2=0$ respectively.

In particular, (V) . Then u = 0 or u = -1 or u = 1. But (VI)

Contradiction arises.

- (b) We dis-prove the statement (E):
 - (E) There exist some $\zeta \in \mathbb{C}\backslash\mathbb{R}$ such that ζ is both an 89-th root of unity and a 55-th root of unity.

[We dis-prove the statement (E) by obtaining a contradiction from it.]

For the same ζ , we would have $\zeta^{55} = (II)$ and (III) by the definition of root of unity.

(Note that $\zeta \neq 0$.) Then we would have $\zeta^{34} = \zeta^{89-55} = \overline{\zeta^{89}/\zeta^{55}} = 1$.

Repeating the above argument, we would have:

(IV)

Recall that by assumption, $\zeta \in (V)$. Then $\zeta \neq 1$.

Now $\zeta = 1$ (VI) $\zeta \neq 1$.

Contradiction arises.

- 6. Consider each of the subsets of R below.
 - Determine whether it has any least element. If yes, name it as well. If it has no least element, determine whether it has a lower bound in IR.
 - Determine whether it has any greatest element. If yes, name it as well. If it has no greatest element, determine whether it has an upper bound in \mathbb{R} .

There is no need to justify your answers. (Drawing appropriate pictures, on the real line or on the coordinate plane, may help you find the answers.)

(a)
$$[-1,1) \cap \mathbb{Q}$$

$$(d)^{\diamond} \left\{ \left. \frac{1}{n+1} + (-1)^n \right| n \in \mathbb{R} \right\}$$

(g)
$$\{x \in \mathbb{R} : 2x + 3 > 0.\}$$

$$(\mathbf{k})^{\diamondsuit} \left\{ \left. \frac{1}{2^m} + \frac{1}{3^n} \right| m, n \in \mathbb{N}. \right\}$$

(b)
$$[-1,1)\setminus \mathbb{Q}$$

(e)
$$(1 + \infty) \cap \mathbf{0}$$

(i)
$$\left(m \in \mathbb{IP} : m < m^{-1}\right)$$

(c)
$$\left\{ \frac{1}{n+1} \middle| n \in \mathbb{N}. \right\}$$

(f)
$$(1, +\infty) \setminus \mathbb{Q}$$

(j)
$$\{x \in \mathbb{R} : x^2 - 2x - 3 < 0.\}$$

7. Let
$$A = \{x \in \mathbb{R} : x = a + b\sqrt{2} \text{ for some } a, b \in \mathbb{Q}\}, B = \left[\frac{1}{\sqrt{2}}, \sqrt{2}\right) \text{ and } C = A \cap B.$$

Fill in the blanks in the blocks below, all labelled by capital-letter Roman numerals, with appropriate words so that they gives a proof for the statement (P) and a dis-proof against the statement (Q).

- (a) Here we prove the statement (P):
 - (P) C has a least element.

Take $\lambda = (I)$.

• We have ____(II)____, and $0, \frac{1}{2} \in$ ___(III)___. Then by the definition of A, we have $\lambda \in A$.

Note that \qquad (IV) \qquad . Then by the definition of B, we have \qquad (V)

Now we have $\lambda \in A$ (VI) $\lambda \in B$. Therefore, by the definition of C, we have $\lambda \in C$.

(VII) . Then by the definition of C, we have $x \in A$ (VIII) . Therefore $x \in B$ in particular.

Then by the definition of B, we have (IX) .

Recall that $\lambda = \frac{1}{\sqrt{2}}$. Therefore ____(X)___.

It follows that λ is a least element of C.

- (b) Here we dis-prove the statement (Q):
 - (Q) C has a greatest element.

```
(I) it were true that C had _____ , which we denote by \mu.
```

Then, by definition, $\mu \in C$. Therefore by the definition of C. (III)

Since
$$\mu \in A$$
, (IV) $\mu = a + b\sqrt{2}$

Since (V), we would have
$$\frac{1}{\sqrt{2}} \le \mu < \sqrt{2}$$
.

Define
$$x_0 = \frac{\mu + \sqrt{2}}{2}$$
. By definition, we would have _____ (VI) _____ . Then $x_0 > \mu$ and $x_0 \in B$.

Also by definition,
$$x_0 = \frac{\mu + \sqrt{2}}{2} = \frac{a + b\sqrt{2} + \sqrt{2}}{2} = \underline{\qquad (\text{VII})}$$
.

Since
$$(VIII)$$
, we would have $\frac{a}{2} \in \mathbb{Q}$. Since $b \in \mathbb{Q}$, we would have (IX) . Then (X) .

Now
$$x_0 \in A$$
 and $x_0 \in B$. Then (XI) by definition.

But
$$x_0 > \mu$$
, and _____ (XII) ____ . Contradiction arises.

8. Let
$$S = \left\{x \in \left(0, \frac{1}{24}\right) : x = \frac{b}{5^a} \text{ for some } a, b \in \mathbb{N}\right\}$$
, and $T = \left\{y \in \mathbb{R} : y = \sum_{k=1}^n \frac{1}{25^k} \text{ for some } n \in \mathbb{N} \setminus \{0\}\right\}$.

- (a) Verify that $T \subset S$.
- (b) Does T have a least element? Justify your answer.
- (c) Prove that $S \not\subset T$.

Remark. The result you obtain in part (b) may be useful.

- (d) Prove the statement (\sharp):
 - (\sharp) For any $u, v \in S$, if u < v then there exists some $w \in S$ such that u < w < v.
- 9. Consider each of the infinite sequences (of non-negative real numbers) below. Determine whether it is strictly increasing or strictly decreasing or neither. Where it is strictly increasing/decreasing, determine whether it is bounded above/below in R; if it is bounded above/below in R, name an upper/lower bound for it.

There is no need to justify your answers.

(a)
$$\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$$

(e)
$$\left\{\frac{5^n}{n!}\right\}_{n=5}^{\infty}$$

$$(\mathrm{i})^{\diamondsuit} \left\{ \sum_{k=2}^{n} \frac{2}{k^2 - 1} \right\}_{n=2}^{\infty}$$

(i)
$$\left\{ \sum_{k=2}^{n} \frac{2}{k^2 - 1} \right\}_{n=2}^{\infty}$$
 (l) $\left\{ 1 - \prod_{k=2}^{n} \cos\left(\frac{\pi}{2^k}\right) \right\}_{n=2}^{\infty}$

(b)
$$\left\{\frac{1}{n^2}\right\}_{n=1}^{\infty}$$

(f)
$$\left\{\frac{(n!)^2}{(2n)!}\right\}_{n=0}^{\infty}$$

(j)
$$\left\{\frac{n^2}{3^n}\right\}_{n=2}^{\infty}$$

(j)
$$\left\{\frac{n^2}{3^n}\right\}_{n=2}^{\infty}$$
 (m) $\left\{\prod_{k=1}^n \frac{1}{2^k}\right\}_{n=1}^{\infty}$

(b)
$$\left\{\frac{1}{n^2}\right\}_{n=1}^{\infty}$$
 (f) $\left\{\frac{(n!)^2}{(2n)!}\right\}_{n=0}^{\infty}$ (c) $\left\{\frac{n+1}{n^2+n+1}\right\}_{n=0}^{\infty}$ (g) $\left\{\sqrt[n]{2}\right\}_{n=2}^{\infty}$ (d) $\left\{\frac{2}{3^n}\right\}_{n=0}^{\infty}$ (h) $\left\{\sum_{k=0}^{n} \frac{1}{3^k}\right\}_{n=0}^{\infty}$

(h)
$$\left\{\sum_{k=0}^{n} \frac{1}{3^k}\right\}^{\infty}$$

(k)
$$\left\{\sqrt[n]{\frac{2}{3}}\right\}_{n=2}^{\infty}$$

(n)
$$\left\{1 - \frac{1}{2^n} + \frac{(-1)^n}{5^n}\right\}_{n=1}^{\infty}$$

10. Define
$$a_n = \sum_{k=1}^n \frac{1}{k^2}$$
, $b_n = \sum_{k=1}^n \frac{1}{k^3}$ for each $n \ge 1$.

- (a) Prove that $a_{2^{m+1}-1} a_{2^m-1} \leq \frac{1}{2^m}$ for each $m \geq 1$. Hence deduce that $\{a_n\}_{n=1}^{\infty}$ is bounded above by 2. (*Hint.* It help to observe that $a_n \leq a_{2^n-1}$ for each n. But is this observation true? Why?)
- (b) \Diamond By applying the result in the previous part, or otherwise, prove that $\{b_n\}_{n=1}^{\infty}$ is bounded above by 2.
- 11. Let p be a positive real number, and $\alpha = \sqrt[3]{p}$. Suppose $b \in (\alpha, +\infty)$. Let $\{a_n\}_{n=0}^{\infty}$ be the infinite sequence defiend by

$$\left\{ \begin{array}{lcl} a_0 & = & b \\ \\ a_{n+1} & = & \frac{1}{3} \left(2a_n + \frac{\alpha^3}{a_n{}^2} \right) & \text{ for any } n \in \mathbb{N} \end{array} \right.$$

- (a) Prove the statements below:
 - i. $\{a_n\}_{n=0}^{\infty}$ is bounded below by α in \mathbb{R} .
 - ii. $\{a_n\}_{n=0}^{\infty}$ is strictly decreasing.
- (b) Apply the Bounded-Monotone Theorem to prove that $\{a_n\}_{n=0}^{\infty}$ converges in \mathbb{R} . Also find the value of $\lim_{n\to\infty} a_n$.