- 1. (a) (I) $r = a + b\sqrt{2}$ and $r = a' + b'\sqrt{2}$
 - (II) a = a' and b = b'
 - (III) and $r = a' + b'\sqrt{2}$
 - (IV) $(b b')\sqrt{2}$
 - (V) Suppose it were true that $b \neq b'$
 - $(VI) \sqrt{2} = \frac{a' a}{b b'}$
 - (VII) $\sqrt{2}$ would be a rational number
 - (VIII) b = b'
 - (b) (I) $\zeta \in \mathbb{C} \setminus \mathbb{R}$ and $\eta \in \mathbb{C}$
 - (II) For any $a, a', b, b' \in \mathbb{R}$, if $\eta = a\zeta + b\zeta^2$ and $\eta = a'\zeta + b'\zeta^2$ then a = a' and b = b'.
 - (III) Pick any $a, a', b, b' \in \mathbb{R}$.
 - (IV) Suppose
 - (V) $\eta = a'\zeta + b'\zeta^2$
 - (VI) $\zeta \neq 0$
 - (VII) a' a
 - (VIII) Suppose it were true that $b \neq b'$
 - (IX) $\frac{a'-a}{b-b'}$
 - (X) real
 - (XI) ζ is not real
 - (XII) a' = a
 - (c) (I) Suppose $r \in \mathbb{R}$.
 - (II) For any $n, n' \in \mathbb{Z}$, if $n \le r < n+1$ and $n' \le r < n'+1$ then n = n'.
 - (III) Pick any $n, n' \in \mathbb{Z}$. Suppose $n \le r < n+1$ and $n' \le r < n'+1$.
 - (IV) (r-n')-(r-n)<1-0
 - (V) (r-n') (r-n) > 0-1
 - (VI) n, n' are integers
 - (VII) an integer
 - (VIII) only
 - (IX) 0
 - (X) n n' = 0
- 2. (a) **Answer.**
 - (I) Suppose
 - (II) Suppose s is not divisible by 2.
 - (III) there exist some $k, r \in \mathbb{Z}$ such that s = 2k + r and $0 \le r \le 2$
 - (IV) s is not divisible by 2
 - (V) 0 < r < 2
 - (VI) $r \in \mathbb{Z}$
 - (VII) s = 2k + 1
 - (VIII) if there exists some $k \in \mathbb{Z}$ such that s = 2k + 1 then s is not divisible by 2
 - (IX) Suppose it were true that s was divisible by 2.
 - (X) there would exist some $\ell \in \mathbb{Z}$ such that $s = 2\ell$
 - (XI) s = 2k + 1 and $s = 2\ell + 0$
 - (XII) By the Division Algorithm for Integers

(XIII)
$$0 = 1$$

- (b) —
- (c) —
- 3. —

4. Solution.

Let n be a positive integer.

Since n is a positive integer, we have $n^7 + n^6 + n^5 + n^4 + n^3 + n^2 + n + 1 > n^4 + n^3 + n^2 + n + 1 > 0$.

Repeatedly applying Division Algorithm, we obtain:

$$\begin{cases} n^7 + n^6 + n^5 + n^4 + n^3 + n^2 + n + 1 &= n^3(n^4 + n^3 + n^2 + n + 1) &+ (n^2 + n + 1) \\ n^4 + n^3 + n^2 + n + 1 &= n^2(n^2 + n + 1) &+ (n + 1) \\ n^2 + n + 1 &= n(n + 1) &+ 1 \end{cases}$$

Since n is a positive integer, we indeed have the inequalities $n^4 + n^3 + n^2 + n + 1 > n^2 + n + 1 > n + 1 > 1 > 0$.

Hence the greatest common divisor of $n^7 + n^6 + n^5 + n^4 + n^3 + n^2 + n + 1$ and $n^4 + n^3 + n^2 + n + 1$ is 1.

- 5. —
- 6. (a) **Answer.**
 - (I) Suppose a, c are relatively prime and ab is divisible by c
 - (II) ab is divisible by c
 - (III) $k \in \mathbb{Z}$
 - (IV) gcd(a,c) = 1
 - (V) there exist some $s, t \in \mathbb{Z}$
 - (VI) sa + tc
 - (VII) gcd(a, c)
 - (VIII) (sa + tc)b = sab + tbc = skc + tbc = (sk + tb)c
 - (IX) sk + tb
 - (X) b is divisible by c
 - (b) i.
 - ii. Hint.

Apply the result in part (b.i).

- iii. ——
- iv. Hint.

Apply the result in part (b.iii).

- v. —
- 7. (a) (I) $A \cup B \subset B$
 - (II) it were true that $A \setminus B \neq \emptyset$
 - (III) $x_0 \in A \backslash B$
 - (IV) $x_0 \in A$
 - (V) $x_0 \in B$
 - (VI) $x_0 \in A \cup B$
 - (VII) $x_0 \in B$
 - (VIII) Contradiction arises
 - (b) (I) Suppose $S \in \mathfrak{P}(C) \cup \mathfrak{P}(D)$
 - (II) $S \in \mathfrak{P}(C)$ or $S \in \mathfrak{P}(D)$
 - (III) Suppose $S \in \mathfrak{P}(C)$.
 - (IV) $S \subset C$
 - (V) Since $x \in S$ and $S \subset C$, we have $x \in C$
 - (VI) $x \in C$ or $x \in D$

- (VII) $x \in C \cup D$
- (VIII) $S \subset C \cup D$
- (IX) $S \in \mathfrak{P}(C \cup D)$
- $(X) S \in \mathfrak{P}(C \cup D)$
- (c) (I) if $x \in A \cap B$ then $x \in A$
 - (II) Suppose $x \in A \cap B$
 - (III) $x \in A$ and $x \in B$
 - (IV) $x \in A$
 - (V) For any object x, if $x \in A$ then $x \in A \cap B$
 - (VI) Pick any object x. Suppose $x \in A$.
 - (VII) $x \in A$ and $A \subset B$
 - (VIII) $x \in A$ and $x \in B$
 - (IX) $x \in A \cap B$
 - (X) $A \cap B \subset A$
 - (XI) $A \cap B = A$
 - (XII) For any object x, if $x \in A$ then $x \in B$
 - (XIII) $x \in A$
 - (XIV) $A \cap B = A$
 - (XV) by the definition of intersection, we have $x \in A$ and $x \in B$
 - (XVI) $x \in B$
- (d) (I) Suppose $x \in C \backslash B$.
 - (II) complement
 - (III) $x \in C$ and $x \notin B$
 - (IV) Suppose it were true that $x \in A$.
 - (V) since $x \in A$ and
 - (VI) $x \in B$
 - (VII) and
 - (VIII) $x \in C$ and $x \notin A$
 - (IX) $x \in C \backslash A$
 - (X) Pick any object x. Suppose $x \in A$.
 - (XI) Suppose it were true that $x \notin B$.
 - (XII) and $A \subset C$
 - (XIII) $x \in C$
 - (XIV) $x \in C$ and $x \notin B$
 - (XV) $x \in C \backslash B$
 - (XVI) $x \in C \backslash A$
 - (XVII) complement
 - (XVIII) $x \in C$ and $x \notin A$
 - (XIX) $x \notin A$
 - (XX) $x \in A$ and $x \notin A$