
MATH1050/1058 Assignment 4

1. Let ζ = sin

(
2π

3

)
+ i cos

(
2π

3

)
.

(a) Express ζ in polar form.
(b) Hence, or otherwise, find the three cubic roots of ζ, expressing your answer in polar form.

2. In this question, there is no need to justify your answer.

(a) Give a full and explicit description of all solutions of the equation z5 − 32i = 0 with complex unknown z.
Express your answer in polar form.

(b) Write down all the complex solutions of the system of inequalities{
z5 − 32i = 0
Re(z) ≥ Im(z)

3. Let f(z) be the polynomial given by f(z) = z10 + z5 + 1. Let ω = cos

(
2π

3

)
+ i sin

(
2π

3

)
.

(a) Write down the quintic roots of ω.
(b) Express the polynomial f(z) first in the form (z5 + P )(z5 +Q), and hence further in the form

(z2 +Az + 1)(z2 +Bz + 1)(z2 + Cz + 1)(z2 +Dz + 1)(z2 + Ez + 1)

in which P,Q are some appropriate complex numbers, and A,B,C,D,E are some appropriate real numbers. You
have to give the values of P,Q,A,B,C,D,E explicitly.

(c)♢ By applying the result above, or otherwise, determine the values of the numbers below. Justify your answers.

i. cos

(
2π

15

)
+ cos

(
8π

15

)
+ cos

(
14π

15

)
+ cos

(
4π

3

)
+ cos

(
26π

15

)
.

ii.

cos

(
2π

15

)
cos

(
8π

15

)
+cos

(
2π

15

)
cos

(
14π

15

)
+cos

(
2π

15

)
cos

(
4π

3

)
+cos

(
2π

15

)
cos

(
26π

15

)
+cos

(
8π

15

)
cos

(
14π

15

)
+ cos

(
8π

15

)
cos

(
4π

3

)
+cos

(
8π

15

)
cos

(
26π

15

)
+cos

(
14π

15

)
cos

(
4π

3

)
+cos

(
14π

15

)
cos

(
26π

15

)
+cos

(
4π

3

)
cos

(
26π

15

)
4. Fill in the blanks in the blocks below, all labelled by capital-letter Roman numerals, with appropriate words so that they

give respectively a proof for the statement (A) and a proof for the statement (B). (The ‘underline’ for each blank bears
no definite relation with the length of the answer for that blank.)

(a) Here we prove the statement (A):

(A) 1 +
1√
2
+

1√
3
+ · · ·+ 1√

n
≤ 2

√
n− 1 whenever n is a positive integer.

Denote by P (n) the proposition (I) .

• We have 1 ≤ 1 = 2
√
1− 1. Hence (II) .

• Let k be a positive integer. Suppose (III) .

Then (2
√
k − 1)−

(
1 +

1√
2
+

1√
3
+ · · ·+ 1√

k

)
≥ (IV) .

We verify that P (k + 1) is true:

We have

(2
√
k + 1− 1)−

(
1 +

1√
2
+

1√
3
+ · · ·+ 1√

k
+

1√
k + 1

)
= (V) ≥ 0

Then 1 +
1√
2
+

1√
3
+ · · ·+ 1√

k
+

1√
k + 1

≤ (VI) . Hence (VII) .

(VIII)

(b) Here we prove the statement (B):
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(B) n(n2 + 2) is divisible by 3 for any n ∈ N.

(I)

• We have (II) . By definition of divisibility, (III) . Then P (0) is true.

• (IV)

Then (V) is divisible by 3. By definition of divisibility, (VI) .

We verify that P (k + 1) is true:

We have (VII) . Since q, k are integers, (VIII) is an integer.

Then by definition of divisibility, (IX) . Hence P (k + 1) is true.

(X)

5. Fill in the blanks in the blocks below, all labelled by capital-letter Roman numerals, with appropriate words so that they
give respectively a proof for the statement (C) and a proof for the statement (D). (The ‘underline’ for each blank bears
no definite relation with the length of the answer for that blank.)

(a) We prove the statement (C):

(C) Let {an}∞n=0 be an infinite sequence of positive real numbers. Suppose
n∑

j=0

aj =

(
1 + an

2

)2

for each n ∈ N.

Then an = 2n+ 1 for each n ∈ N.

Let {an}∞n=0 be an infinite sequence of positive real numbers. (I)
Denote by P (n) the proposition (II) .

• We verify that P (0) is true:

(III) Hence P (0) is true.

• (IV)
We verify that P (k + 1) is true:

(V) Therefore P (k + 1) is true.

(VI)

(b) We prove the statement (D):
(D) Let α, β are the two distinct roots of the polynomial f(x) = x2−x−1. Suppose {an}∞n=1 is the infinite sequence

of real numbers defined by {
a1 = 1, a2 = 3,

an+2 = an+1 + an if n ≥ 1
.

Then an = αn + βn for each positive integer n.

(I)
Denote by P (n) the proposition ‘an = αn + βn and an+1 = αn+1 + βn+1’.

• We verify that P (1) is true:

We have a1 = (II) . We also have a2 = (III) .

Hence P (1) is true.

• (IV) Then ak = αk + βk, and ak+1 = αk+1 + βk+1.
We verify that P (k + 1) is true:

We have ak+1 = (V) by (VI) immediately.
Now we verify that a(k+1)+1 = α(k+1)+1 + β(k+1)+1:

(VII)

Therefore P (k + 1) is true.

(VIII)
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6. We introduce (or recall from your calculus course) the definition for the notion of strict monotonicity for infinite sequences
of real numbers:

Let {an}∞n=0 be an infinite sequence of real numbers.
• We say that {an}∞n=0 is strict increasing if for any n ∈ N, an < an+1.
• We say that {an}∞n=0 is strictly decreasing if for any n ∈ N, an > an+1.

Consider the statement (E):

(E) Suppose {an}∞n=0 is the infinite sequence of real numbers defined by{
a0 = 1

an+1 =
an

3

1 + an2
sin2(an)

Then {an}∞n=0 is strictly decreasing.

Fill in the blanks in the blocks below, all labelled by capital-letter Roman numerals, with appropriate words so that they
give a proof for the statement (E). (The ‘underline’ for each blank bears no definite relation with the length of the answer
for that blank.)

(I)

• We verify that P (0) is true:

We have a0 = 1 and a1 =
1

2
sin2(1). Then 1 ≥ a0 > a1 > 0.

Therefore P (0) is true.

• (II) Then 1 ≥ ak > ak+1 > 0.

We verify that P (k + 1) is true:

By (III) , we have 1 ≥ ak+1 > 0. Then 0 < sin2(ak+1) < 1 and 0 < cos2(ak+1) < 1.

Since ak+1 > 0 and 1+ ak+1
2 > 0 and (IV) , we have ak+2 =

ak+1
3

1 + ak+1
2
sin2(ak+1) > 0.

Also, (V) . Then ak+1 > ak+2.

Now we have 1 ≥ ak+1 > ak+2 > 0.
Therefore P (k + 1) is true.

(VI)
It follows that {an}∞n=0 is strictly decreasing.

7. (a) i. Consider the statement (G):

(G) Suppose {an}∞n=0 is an infinite sequence of complex numbers. Then
n∑

k=0

(ak+1 − ak) = an+1 − a0.

Fill in the blanks in the blocks below, all labelled by capital-letter Roman numerals, with appropriate words so
that they give a proof for the statement (G). (The ‘underline’ for each blank bears no definite relation with the
length of the answer for that blank.)

Suppose {an}∞n=0 is an infinite sequence of complex numbers.
Denote by P (n) the proposition (I) .

• We verify that P (0) is true:

We have (II) . Hence P (0) is true.

• Let m ∈ N. (III) . Then
m∑

k=0

(ak+1 − ak) = (IV) .

We verify P (m+ 1):

We have (V) . Hence P (m+ 1) is true.

(VI)
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ii. Prove the statement (H):

(H) Suppose {an}∞n=0 is an infinite sequence of non-zero complex numbers. Then
n∏

k=0

ak+1

ak
=

an+1

a0
.

Remarks. The statements (G), (H) give the mechanism for a useful method for computing sums/products of
consecutive terms of sequences. This method is known as the Telescopic Method.

(b)♢ Apply the result described in the statement (G) to prove the statement (♯):
(♯) Let {cn}∞n=0 be an infinite sequence of numbers. Let α, β be numbers, with α ̸= 1. Suppose cn+1 = αcn + β for

each n ∈ N. Then cn = αnc0 +
β(1− αn)

1− α
for each n ≥ 1.

(c) Prove the statements below. (The Telescopic Method may be useful.)

i. Let θ ∈ R. Suppose sin(θ) ̸= 0. Then cos(θ) cos(2θ) cos(22θ) · ... · cos(2nθ) = sin(2n+1θ)

2n+1 sin(θ)
for any n ∈ N.

ii. Let θ ∈ R. Suppose sin

(
θ

2

)
̸= 0. Then 1 + 2

n∑
k=1

cos(kθ) =
sin((n+ 1/2)θ)

sin(θ/2)
for any n ∈ N.

iii. Let θ ∈ R. Suppose sin(2pθ) ̸= 0 for any p ∈ N. Then
n∑

k=0

2k tan(2kθ) = cot(θ)− 2n+1 cot(2n+1θ) for any n ∈ N.

iv. Let θ ∈ R. Suppose sin(2pθ) ̸= 0 for any p ∈ N. Then
n∑

k=1

csc(2kθ) = cot(θ)− cot(2nθ) for any n ∈ N\{0}.

8. (a) Fill in the blanks in the blocks below, all labelled by capital-letter Roman numerals, with appropriate words so that
they give respectively a proof for the statement (K), and a proof for the statement (L). Both statements are referred
to as (the ‘non-strict inequality part’ of) the Triangle Inequality ‘on the complex plane’. (The ‘underline’ for
each blank bears no definite relation with the length of the answer for that blank.)

i. We prove the statement (K):
(K) Suppose µ, ν ∈ C. Then |µ+ ν| ≤ |µ|+ |ν|.

Suppose µ, ν ∈ C. We have

(|µ|+ |ν|)2 − |µ+ ν|2 = (I) = 2|µν| − 2Re(µν) = 2(|µν| − Re(µν)) ——(⋆)

Note that (II) ≤ (III) = |µν|2.
Then Re(µν) ≤ |Re(µν)| ≤ |µν|. Therefore |µν| − Re(µν) ≥ 0.
Then by (⋆), (IV) . Since |µ+ ν| ≥ 0 and (V) , we have |µ+ ν| ≤ |µ|+ |ν|.

ii. We prove the statement (L):

(L) Let n ∈ N\{0, 1}. Suppose µ1, µ2, · · · , µn ∈ C. Then

∣∣∣∣∣∣
n∑

j=1

µj

∣∣∣∣∣∣ ≤
n∑

j=1

|µj |.

Denote by P (n) the proposition below:

(I) . Then (II) .

• By the statement (K), (III) .

• (IV)

We verify that P (k + 1) is true:

Suppose (V) . Then (VI)

Therefore P (k + 1) is true.

By (VII) , P (n) is true for any n ∈ N\{0, 1}.

(b) By applying the results above, or otherwise, prove the statements below:

i. Let ζ ∈ C. Suppose 0 < |ζ| < 1. Then
∣∣∣∣∣

4060∑
k=1050

ζk

∣∣∣∣∣ < |ζ|1050

1− |ζ|
.

ii.♢ Let α ∈ C, and n ∈ N\{0}. Suppose |α| > 5. Then
∣∣∣∣∣

n∑
k=0

5k

αk
− α

α− 5

∣∣∣∣∣ ≤ 5n+1

|α|n(|α| − 5)
.
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