1. Let
$$\zeta = \sin\left(\frac{2\pi}{3}\right) + i\cos\left(\frac{2\pi}{3}\right)$$
.

- (a) Express ζ in polar form.
- (b) Hence, or otherwise, find the three cubic roots of ζ , expressing your answer in polar form.
- 2. In this question, there is no need to justify your answer.
 - (a) Give a full and explicit description of all solutions of the equation $z^5 32i = 0$ with complex unknown z. Express your answer in polar form.
 - (b) Write down all the complex solutions of the system of inequalities

$$\left\{ \begin{array}{lcl} z^5 - 32i & = & 0 \\ \operatorname{Re}(z) & \geq & \operatorname{Im}(z) \end{array} \right.$$

- 3. Let f(z) be the polynomial given by $f(z) = z^{10} + z^5 + 1$. Let $\omega = \cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right)$.
 - (a) Write down the quintic roots of ω .
 - (b) Express the polynomial f(z) first in the form $(z^5 + P)(z^5 + Q)$, and hence further in the form

$$(z^{2} + Az + 1)(z^{2} + Bz + 1)(z^{2} + Cz + 1)(z^{2} + Dz + 1)(z^{2} + Ez + 1)$$

in which P,Q are some appropriate complex numbers, and A,B,C,D,E are some appropriate real numbers. You have to give the values of P,Q,A,B,C,D,E explicitly.

(c)[♦] By applying the result above, or otherwise, determine the values of the numbers below. Justify your answers.

i.
$$\cos\left(\frac{2\pi}{15}\right) + \cos\left(\frac{8\pi}{15}\right) + \cos\left(\frac{14\pi}{15}\right) + \cos\left(\frac{4\pi}{3}\right) + \cos\left(\frac{26\pi}{15}\right)$$
.

ii.

$$\cos\left(\frac{2\pi}{15}\right)\cos\left(\frac{8\pi}{15}\right) + \cos\left(\frac{2\pi}{15}\right)\cos\left(\frac{14\pi}{15}\right) + \cos\left(\frac{2\pi}{15}\right)\cos\left(\frac{4\pi}{3}\right) + \cos\left(\frac{2\pi}{15}\right)\cos\left(\frac{26\pi}{15}\right) + \cos\left(\frac{8\pi}{15}\right)\cos\left(\frac{14\pi}{15}\right) + \cos\left(\frac{14\pi}{15}\right)\cos\left(\frac{4\pi}{15}\right)\cos\left(\frac{4\pi}{15}\right)\cos\left(\frac{4\pi}{15}\right)\cos\left(\frac{4\pi}{15}\right) + \cos\left(\frac{4\pi}{15}\right)\cos\left(\frac{4\pi$$

- 4. Fill in the blanks in the blocks below, all labelled by capital-letter Roman numerals, with appropriate words so that they give respectively a proof for the statement (A) and a proof for the statement (B). (The 'underline' for each blank bears no definite relation with the length of the answer for that blank.)
 - (a) Here we prove the statement (A):

(A)
$$1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} \le 2\sqrt{n} - 1$$
 whenever n is a positive integer.

Denote by P(n) the proposition _____ (I)

- We have $1 \le 1 = 2\sqrt{1} 1$. Hence _____(II)_____
- \bullet Let k be a positive integer. Suppose ____(III)

Then
$$(2\sqrt{k}-1) - \left(1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{k}}\right) \ge (IV)$$

We verify that P(k+1) is true:

We have

$$(2\sqrt{k+1} - 1) - \left(1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{k}} + \frac{1}{\sqrt{k+1}}\right) = \underline{\qquad (V)} \ge 0$$

Then
$$1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{k}} + \frac{1}{\sqrt{k+1}} \le \underline{\text{(VI)}}$$
. Hence $\underline{\text{(VII)}}$.

(VIII)

(b) Here we prove the statement (B):

-	(I)
	\bullet We have (II) By definition of divisibility, (III) Then $P(0)$ is true.
	• (IV)
	Then (V) is divisible by 3. By definition of divisibility, (VI) .
	We verify that $P(k+1)$ is true:
	We have (VII) Since q,k are integers,(VIII) is an integer.
	Then by definition of divisibility, (IX) Hence $P(k+1)$ is true.
-	(X)
respe	e blanks in the blocks below, all labelled by capital-letter Roman numerals, with appropriate words so the ectively a proof for the statement (C) and a proof for the statement (D) . (The 'underline' for each blank te relation with the length of the answer for that blank.)
We	prove the statement (C) :
(C)	Let $\{a_n\}_{n=0}^{\infty}$ be an infinite sequence of positive real numbers. Suppose $\sum_{j=0}^{n} a_j = \left(\frac{1+a_n}{2}\right)^2$ for each
	Then $a_n = 2n + 1$ for each $n \in \mathbb{N}$.
	Let $\{a_n\}_{n=0}^{\infty}$ be an infinite sequence of positive real numbers. (I)
	Denote by $P(n)$ the proposition (II) .
	• We verify that $P(0)$ is true:
	(III) Hence $P(0)$ is true.
	• (IV)
	We verify that $P(k+1)$ is true:
	(V) Therefore $P(k+1)$ is true.
	(VI)
W _e	prove the statement (D) :
(D)	Let α, β are the two distinct roots of the polynomial $f(x) = x^2 - x - 1$. Suppose $\{a_n\}_{n=1}^{\infty}$ is the infinite se
	of real numbers defined by
	$\begin{cases} a_1 = 1, & a_2 = 3, \\ a_{n+2} = a_{n+1} + a_n & \text{if } n \ge 1 \end{cases}$
	Then $a_n = \alpha^n + \beta^n$ for each positive integer n .
	(I)
Ī	Denote by $P(n)$ the proposition $a_n = \alpha^n + \beta^n$ and $a_{n+1} = \alpha^{n+1} + \beta^{n+1}$.
	• We verify that $P(1)$ is true:
	We have $a_1 = \underline{\hspace{1cm}}$. We also have $a_2 = \underline{\hspace{1cm}}$.
	Hence $P(1)$ is true.
	• (IV) Then $a_k = \alpha^k + \beta^k$, and $a_{k+1} = \alpha^{k+1} + \beta^{k+1}$.
	We verify that $P(k+1)$ is true:
	We have $a_{k+1} = \underline{(V)}$ by $\underline{(VI)}$ immediately. Now we verify that $a_{(k+1)+1} = \alpha^{(k+1)+1} + \beta^{(k+1)+1}$:
	Now we verify that $a_{(k+1)+1} = \alpha^{(k+1)+1} + \beta^{(k+1)+1}$: (VII)
	Now we verify that $a_{(k+1)+1} = \alpha^{(k+1)+1} + \beta^{(k+1)+1}$:

6. We introduce (or recall from your calculus course) the definition for the notion of strict monotonicity for infinite sequences of real numbers:
Let $\{a_n\}_{n=0}^{\infty}$ be an infinite sequence of real numbers.
• We say that $\{a_n\}_{n=0}^{\infty}$ is strict increasing if for any $n \in \mathbb{N}$, $a_n < a_{n+1}$.
• We say that $\{a_n\}_{n=0}^{\infty}$ is strictly decreasing if for any $n \in \mathbb{N}$, $a_n > a_{n+1}$.

Consider the statement (E):

(E) Suppose $\{a_n\}_{n=0}^{\infty}$ is the infinite sequence of real numbers defined by

$$\begin{cases} a_0 = 1 \\ a_{n+1} = \frac{a_n^3}{1 + a_n^2} \sin^2(a_n) \end{cases}$$

Then $\{a_n\}_{n=0}^{\infty}$ is strictly decreasing.

Fill in the blanks in the blocks below, all labelled by capital-letter Roman numerals, with appropriate words so that they give a proof for the statement (E). (The 'underline' for each blank bears no definite relation with the length of the answer for that blank.)

(T)
(I)
• We verify that $P(0)$ is true:
We have $a_0 = 1$ and $a_1 = \frac{1}{2}\sin^2(1)$. Then $1 \ge a_0 > a_1 > 0$.
Therefore $P(0)$ is true.
• Then $1 \ge a_k > a_{k+1} > 0$.
We verify that $P(k+1)$ is true:
By(III), we have $1 \ge a_{k+1} > 0$. Then $0 < \sin^2(a_{k+1}) < 1$ and $0 < \cos^2(a_{k+1}) < 1$.
Since $a_{k+1} > 0$ and $1 + a_{k+1}^2 > 0$ and(IV), we have $a_{k+2} = \frac{a_{k+1}^3}{1 + a_{k+1}^2} \sin^2(a_{k+1}) > 0$.
Also, Then $a_{k+1} > a_{k+2}$.
Now we have $1 \ge a_{k+1} > a_{k+2} > 0$.
Therefore $P(k+1)$ is true.
(VI)
It follows that $\{a_n\}_{n=0}^{\infty}$ is strictly decreasing.

7. (a) i. Consider the statement (G):

(G) Suppose
$$\{a_n\}_{n=0}^{\infty}$$
 is an infinite sequence of complex numbers. Then $\sum_{k=0}^{n} (a_{k+1} - a_k) = a_{n+1} - a_0$.

Fill in the blanks in the blocks below, all labelled by capital-letter Roman numerals, with appropriate words so that they give a proof for the statement (G). (The 'underline' for each blank bears no definite relation with the length of the answer for that blank.)

	(111)	m	(77.7)
• Let $m \in \mathbb{N}$.	(III)	Then $\sum_{k=0}^{\infty} (a_{k+1} - a_k)$	=(IV)
We verify $P(m)$	+1):	$\kappa = 0$	
We have		(V)	. Hence $P(m+1)$ is true.

- ii. Prove the statement (H):
 - (H) Suppose $\{a_n\}_{n=0}^{\infty}$ is an infinite sequence of non-zero complex numbers. Then $\prod_{k=0}^{n} \frac{a_{k+1}}{a_k} = \frac{a_{n+1}}{a_0}$.

Remarks. The statements (G), (H) give the mechanism for a useful method for computing sums/products of consecutive terms of sequences. This method is known as the **Telescopic Method**.

- (b) \Diamond Apply the result described in the statement (G) to prove the statement (\sharp):
 - (#) Let $\{c_n\}_{n=0}^{\infty}$ be an infinite sequence of numbers. Let α, β be numbers, with $\alpha \neq 1$. Suppose $c_{n+1} = \alpha c_n + \beta$ for each $n \in \mathbb{N}$. Then $c_n = \alpha^n c_0 + \frac{\beta(1-\alpha^n)}{1-\alpha}$ for each $n \geq 1$.
- (c) Prove the statements below. (The Telescopic Method may be useful.)
 - i. Let $\theta \in \mathbb{R}$. Suppose $\sin(\theta) \neq 0$. Then $\cos(\theta)\cos(2\theta)\cos(2^2\theta) \cdot \ldots \cdot \cos(2^n\theta) = \frac{\sin(2^{n+1}\theta)}{2^{n+1}\sin(\theta)}$ for any $n \in \mathbb{N}$.
 - ii. Let $\theta \in \mathbb{R}$. Suppose $\sin\left(\frac{\theta}{2}\right) \neq 0$. Then $1 + 2\sum_{k=1}^{n}\cos(k\theta) = \frac{\sin((n+1/2)\theta)}{\sin(\theta/2)}$ for any $n \in \mathbb{N}$.
 - iii. Let $\theta \in \mathbb{R}$. Suppose $\sin(2^p \theta) \neq 0$ for any $p \in \mathbb{N}$. Then $\sum_{k=0}^n 2^k \tan(2^k \theta) = \cot(\theta) 2^{n+1} \cot(2^{n+1}\theta)$ for any $n \in \mathbb{N}$.
 - iv. Let $\theta \in \mathbb{R}$. Suppose $\sin(2^p \theta) \neq 0$ for any $p \in \mathbb{N}$. Then $\sum_{k=1}^n \csc(2^k \theta) = \cot(\theta) \cot(2^n \theta)$ for any $n \in \mathbb{N} \setminus \{0\}$.
- 8. (a) Fill in the blanks in the blocks below, all labelled by capital-letter Roman numerals, with appropriate words so that they give respectively a proof for the statement (K), and a proof for the statement (L). Both statements are referred to as (the 'non-strict inequality part' of) the **Triangle Inequality 'on the complex plane'**. (The 'underline' for each blank bears no definite relation with the length of the answer for that blank.)
 - i. We prove the statement (K):
 - (K) Suppose $\mu, \nu \in \mathbb{C}$. Then $|\mu + \nu| \le |\mu| + |\nu|$.

Suppose $\mu, \nu \in \mathbb{C}$. We have

$$(|\mu|+|\nu|)^2-|\mu+\nu|^2 \quad = \quad \underline{\hspace{1cm}} = 2|\mu\overline{\nu}|-2\mathsf{Re}(\mu\overline{\nu}) = 2(|\mu\overline{\nu}|-\mathsf{Re}(\mu\overline{\nu})) \quad \overline{\hspace{1cm}} (\star)$$

Note that ____(II) ___ \leq ____(III) ____ = $|\mu\overline{\nu}|^2$.

Then $\operatorname{Re}(\mu\overline{\nu}) \leq |\operatorname{Re}(\mu\overline{\nu})| \leq |\mu\overline{\nu}|$. Therefore $|\mu\overline{\nu}| - \operatorname{Re}(\mu\overline{\nu}) \geq 0$.

Then by (\star) , ______ . Since $|\mu + \nu| \ge 0$ and _____ (V) _____ , we have $|\mu + \nu| \le |\mu| + |\nu|$.

- ii. We prove the statement (L):
 - (L) Let $n \in \mathbb{N} \setminus \{0, 1\}$. Suppose $\mu_1, \mu_2, \dots, \mu_n \in \mathbb{C}$. Then $\left| \sum_{j=1}^n \mu_j \right| \leq \sum_{j=1}^n |\mu_j|$.

Denote by P(n) the proposition below:

$$(I)$$
 . Then (II)

- By the statement (K), (III)
- (IV)

We verify that P(k+1) is true:

Therefore P(k+1) is true.

By ______, P(n) is true for any $n \in \mathbb{N} \setminus \{0, 1\}$.

(b) By applying the results above, or otherwise, prove the statements below:

i. Let
$$\zeta \in \mathbb{C}$$
. Suppose $0 < |\zeta| < 1$. Then $\left| \sum_{k=1050}^{4060} \zeta^k \right| < \frac{|\zeta|^{1050}}{1 - |\zeta|}$.

ii. Let
$$\alpha \in \mathbb{C}$$
, and $n \in \mathbb{N} \setminus \{0\}$. Suppose $|\alpha| > 5$. Then $\left| \sum_{k=0}^{n} \frac{5^k}{\alpha^k} - \frac{\alpha}{\alpha - 5} \right| \le \frac{5^{n+1}}{|\alpha|^n (|\alpha| - 5)}$.