| ` | Fill in the blanks in the passage below so as to give the definition for the notion of rational numbers: Suppose $x \in \mathbb{R}$. Then we say that x is rational if (I) such that (II) Fill in the blanks in the block below, all labelled by capital-letter Roman numerals, with appropriate words so the gives a proof for the statement (A) and a proof for the statement (B) . (The 'underline' for each blank bears definite relation with the length of the answer for that blank.) i. Here we prove the statement (A) : (A) Let $x, y \in \mathbb{R}$. Suppose x, y are rational. Then $x + y$ is rational. [Let $x, y \in \mathbb{R}$ (I) [We want to deduce that $x + y$ is rational. This amounts to verifying the statement 'there exist | |---|--| | (| it gives a proof for the statement (A) and a proof for the statement (B) . (The 'underline' for each blank bears definite relation with the length of the answer for that blank.) i. Here we prove the statement (A) : $(A) \ \ Let \ x,y \in \mathbb{R}. \ \ Suppose \ x,y \ are \ rational. \ Then \ x+y \ is \ rational.$ Let $x,y \in \mathbb{R}$. (I) [We want to deduce that $x+y$ is rational. This amounts to verifying the statement 'there exist' | | | (A) Let $x, y \in \mathbb{R}$. Suppose x, y are rational. Then $x + y$ is rational. Let $x, y \in \mathbb{R}$ | | | Let $x, y \in \mathbb{R}$ [We want to deduce that $x+y$ is rational. This amounts to verifying the statement 'there exist | | | [We want to deduce that $x+y$ is rational. This amounts to verifying the statement 'there exist | | | | | | some $s, t \in \mathbb{Z}$ such that $t \neq 0$ and $s = t(x + y)$ '.] | | | By definition, (II) $m, n \in \mathbb{Z}$ such that (III) $m = nx$. | | | Also, (IV) $q \neq 0$ and $p = qy$. | | | Note that $mq + pn = nxq + qyn = nq(x + y)$. | | | Since (V) and (VI), we have $nq \neq 0$. | | | Also, since $m, n, p, q \in \mathbb{Z}$, we have (VII) | | | Hence, by definition, (VIII) | | | ii. Here we prove the statement (B) : | | | (B) Let x, y be real numbers. Suppose x, y are rational. Then xy is rational. | | | Let x, y be real numbers. Suppose x, y are rational. | | | | | | [We want to deduce that xy is rational. This amounts to verifying the statement 'there exist some $s, t \in \mathbb{Z}$ such that $t \neq 0$ and $s = t(xy)$ '.] | | | By definition, (I) $n \neq 0$ and $m = nx$. | | | By definition, (I) $n \neq 0$ and $m = nx$.
Also, (II) | | | Note that (III) . | | | Since $n \neq 0$ (IV) , we have (V) . | | | Also, (VI) , we have $mp \in \mathbb{Z}$ and $nq \in \mathbb{Z}$. | | | Hence, by definition, xy is rational. | | | | | ` | a) Explain the phrase divisibility for integers by stating the appropriate definition. | | (| b) Fill in the blanks in the block below, all labelled by capital-letter Roman numerals, with appropriate words so the it gives a proof for the statement (C) and a proof for the statement (D). (The 'underline' for each blank bears definite relation with the length of the answer for that blank.) | | | i. Here we prove the statement (C) : | | | (C) Let $x, y, n \in \mathbb{Z}$. Suppose x is divisible by n and y is divisible by n. Then $x + y$ is divisible by n. | | | (I) | | | Since x is divisible by n , | | | Since y is divisible by n , (III) | | | We have (IV) Then $x + y = kn + \ell n = (k + \ell)n$. | | | Since $k \in \mathbb{Z}$ and $\ell \in \mathbb{Z}$, we have (V) | | | Therefore, by definition, (VI) | | | ii. Here we prove the statement (D) : | | | (I) | | | | |-----------------------|---|---------------------|----------------|---------------------------| | • (Case 1). Supp | ose(II) | Then | (III) | x = kn. | | Note that | (IV) | Also, | (V) | · | | Then | (VI) . | | | | | • (Case 2)deduce that | $ \begin{array}{ccc} (VII) & & y \text{ is divisi} \\ \hline (VIII) & & \end{array} $ | ble by n . Modify | ving the argum | ent for (Case 1), we also | | Hence,(I | X) . | | | | - 3. Fill in the blanks in the block below, all labelled by capital-letter Roman numerals, with appropriate words so that it gives a proof for the statement (E), a proof for the statement (F), and a proof for the statement (G). (The 'underline' for each blank bears no definite relation with the length of the answer for that blank.) - (a) Here we prove the statement (E): - (E) Let a, b be real numbers. Suppose a > b > 0. Then $\sqrt{a^2 b^2} + \sqrt{2ab b^2} > a$. Let a, b be real numbers. Suppose a > b > 0. Further suppose that (I) $[Reminder.\ \, Under\ \, what\ \, we\ \, have\ \, supposed\ \, and\ \, what\ \, we\ \, have\ \, further\ \, supposed,\ \, we\ \, try\ \, to\ \, obtain\ \, a\ \, contradiction.]$ Note that $\sqrt{a^2 - b^2} \ge 0$ ______ . Then $a \ge \sqrt{a^2 - b^2} + \sqrt{2ab - b^2}$ _____ (III) _____ 0. Since a > b > 0, we have $a^2 - b^2 = (a - b)(a + b) \ge 0$. Then $(\sqrt{a^2 - b^2})^2 = (IV)$. Similarly, $({\rm V}) \qquad \quad . \ \, {\rm Then} \,\, (\sqrt{2ab-b^2})^2 = 2ab-b^2.$ Therefore we would have $$\begin{array}{ccc} (\text{VI}) & \geq & (\text{VII}) \\ & = & (a^2 - b^2) + (2ab - b^2) + 2\sqrt{(a^2 - b^2)(2ab - b^2)} \\ & = & a^2 - 2b^2 + 2ab + 2\sqrt{(a - b)(a + b)(2a - b)b}. \end{array}$$ Hence $$0 \le \underline{\qquad} (VIII) \underline{\qquad} \le \underline{\qquad} (IX) \underline{\qquad} = b(b-a).$$ Recall that by assumption, a > b > 0. Then _____ . Therefore $0 \le b(b-a) < 0$. Contradiction arises. It follows that, in the first place, $\sqrt{a^2 - b^2} + \sqrt{2ab - b^2} > a$. - (b) Here we prove the statement (F): - (F) Let $m, n \in \mathbb{Z}$. Suppose 0 < |m| < |n|. Then m is not divisible by n. [Reminder. Under what we have supposed and what we have further supposed, we try to obtain a contradiction.] Since m was divisible by n, by definition _____ (IV) ____ . By assumption, ____(V) ____ . Then $m \neq 0$. Since $m \neq 0$ and m = kn, we would have _____(VI)_____. Then $|k| \neq 0$. (VII) , |k| would also be an integer. Then $|k| \ge 1$. By assumption |n| > 0. Then |m| = |kn| = (VIII) = |n|. Also, by $\underline{\hspace{1cm}}(IX)$, |n| > |m|. Then $|m| \ge |n| > |m|$. Therefore |m| > |m|. Contradiction arises. It follows that, in the first place, $\qquad \qquad (X) \qquad \qquad .$ | (| (c) | Here | we | prove | the | statement | (G) |): | |---|-------|------|----|-------|------|-------------|--------------|----| | ١ | . ~ , | | | P-0.0 | 0110 | DUCCUCITION | (\smile) | , | (G) Let x be a positive real number. Suppose x is irrational. Then \sqrt{x} is irrational. | Let x be a positive rea | ıl number. | | | |--------------------------------|----------------------------|--------------------------------------|-----------------------| | Suppose | (I) | · | | | Further suppose | (II | | | | [Reminder. Undobtain a contrad | _ | supposed and what we have further | r supposed, we try to | | Since (III) | , we have (\sqrt{x}) | $)^2 = \underline{ (IV) }.$ | | | Since (V) | _ , $(\sqrt{x})^2$ would l | be rational as well. | | | Therefore x would be | (VI) | | | | By assumption, x is _ | (VII) | . Then x would be simultaneously _ | (VIII) . | | (IX) | | | | | It follows that, in the | first place, | (X) . | | - 4. (a) Explain the phrase common divisor for integers by stating the appropriate definition. - (b) Explain the phrase *prime number* by stating the appropriate definition. - (c) State, without proof, Euclid's Lemma. - (d) Here we prove the statement (H), with the help of Euclid's Lemma: - (H) $\sqrt[3]{3}$ is irrational. | (I) | | | | | |---|-------------------|----------------|----------------------------|----------------------| | Then $\sqrt[3]{3}$ would be a rational number. There | fore(I | (I) | such that | (III) . | | Without loss of generality, we may assume the | at m, n have | no commo | on divisors of | ther than $1, -1$. | | Since $m = n \cdot \sqrt[3]{3}$, we would have $m^3 = 3n^3$. | | | | | | Note that n^3 was an integer. Then | (IV) | | • | | | Now also note that 3 is a prime number. The | en, by | (V) | $\underline{}$, m would | be divisible by 3. | | Therefore (VI) | | | | | | Then we would have $27k^3 = (3k)^3 = m^3 = 3n^3$ | i^3 . Therefore | $n^3 = 9k^3 :$ | $= 3(3k^3).$ | | | (VII) | | | | | | Note that $_$ (VIII) . The | en, by Euclid | l's Lemma | , | (IX) . | | Therefore both m, n would be divisible by 3. | Hence 3 wou | ld be a cor | mmon diviso | r of m, n . | | Recall that we have assumed that | (X) | Cont | tradiction ar | ises. | | Therefore the assumption that $\sqrt[3]{3}$ was not in first place. | rational is fal | lse. It follo | ows that $\sqrt[3]{3}$ | is irrational in the | $5.^{\diamondsuit}$ We introduce (or recall from your *calculus* course) the definitions on *boundedness* for infinite sequences of real numbers: Let $\{a_n\}_{n=0}^{\infty}$ be an infinite sequence of real numbers. - $\{a_n\}_{n=0}^{\infty}$ is said to be **bounded above in** \mathbb{R} if the statement (BoAb) holds: - (BoAb) There exists some $\kappa \in \mathbb{R}$ such that for any $n \in \mathbb{N}$, $a_n \leq \kappa$. Such a real number κ , if it exists, is called an **upper bound** of $\{a_n\}_{n=0}^{\infty}$. - $\{a_n\}_{n=0}^{\infty}$ is said to be **bounded below in** \mathbb{R} if the statement (BoBe) holds: - (BoBe) There exists some $\lambda \in \mathbb{R}$ such that for any $n \in \mathbb{N}$, $a_n \geq \lambda$. Such a real number λ , if it exists, is called an **lower bound** of $\{a_n\}_{n=0}^{\infty}$. • $\{a_n\}_{n=0}^{\infty}$ is said to be **bounded in** \mathbb{R} if $\{a_n\}_{n=0}^{\infty}$ is both bounded above in \mathbb{R} and bounded below in \mathbb{R} . Fill in the blanks in the block below, all labelled by capital-letter Roman numerals, with appropriate words so that it gives a proof for the statement (I), and a proof for the statement (J). (a) Here we prove the statement (I): | | Let $\{a_n\}_{n=0}^{\infty}$, $\{b_n\}_{n=0}^{\infty}$ be infinite sequences of real numbers. | |--------|---| | | | | | [We want to deduce that $\{a_n + b_n\}_{n=0}^{\infty}$ is bounded above in \mathbb{R} . This amounts to verifying that there exists some $\mu \in \mathbb{R}$ such that for any $n \in \mathbb{N}$, $a_n + b_n \leq \mu$.] | | | Since $\{a_n\}_{n=0}^{\infty}$ is(II), there exists some $\kappa \in \mathbb{R}$ such that(III)(*)
Since $\{b_n\}_{n=0}^{\infty}$ is bounded above in \mathbb{R} ,(IV) such that(V), $b_n \leq \lambda$ | | | Since $\{b_n\}_{n=0}^{\infty}$ is bounded above in \mathbb{R} , | | | [For such a number μ , we verify that for any $n \in \mathbb{N}$, $a_n + b_n \leq \mu$.] | | | Pick any (VI) . | | | For this n , by $(*)$, we have (VII) . $(**)$ | | | For the same n , by $(**)$, we also have $\underline{\hspace{1cm}}(VIII)$. $(**')$ | | | Then by $(**), (**')$, we have for the same n . | | | Therefore, by definition, $\underline{\hspace{1cm}}(X)$. | | Here v | we prove the statement (J) : | | | uppose $\{a_n\}_{n=0}^{\infty}$ is an infinite sequence of real numbers. Then $\{a_n\}_{n=0}^{\infty}$ is bounded in \mathbb{R} iff there exis | | | $\in \mathbb{R}$ such that for any $n \in \mathbb{N}$, $ a_n \leq \nu$. | | | Suppose $\{a_n\}_{n=0}^{\infty}$ be an infinite sequence of real numbers. | | | • Suppose (I) . | | | [We deduce that there exists some $\nu \in \mathbb{R}$ such that for any $n \in \mathbb{N}$, $ a_n \leq \nu$.] | | | By definition, $\{a_n\}_{n=0}^{\infty}$ is both | | | $(III) \{a_n\}_{n=0}^{\infty} \text{ is bounded above in } \mathbb{R}, \qquad (IV)$ | | | Since (V) , there exists some $\lambda \in \mathbb{R}$ such that (VI) . | | | Define $\nu = \kappa + \lambda $. By definition, since $\kappa, \lambda \in \mathbb{R}$, we have $\nu \in \mathbb{R}$. | | | | | | [For such a number ν , we verify that for any $n \in \mathbb{N}$, $ a_n \leq \nu$.] | | | Pick any $n \in \mathbb{N}$. | | | For this n , we have $-(\kappa + \lambda) \leq \underline{\qquad (VII) \qquad } \leq \kappa \leq \kappa \leq \underline{\qquad (VIII) \qquad }$. | | | | | | Then $\underline{\hspace{1cm}}(IX)$. | | | Then(IX)
•(X) there exists some $\nu \in \mathbb{R}$ such that for any $n \in \mathbb{N}, \ a_n \leq \nu.$ | | | | | | • (X) there exists some $\nu \in \mathbb{R}$ such that for any $n \in \mathbb{N}$, $ a_n \leq \nu$. | | | • (X) there exists some $\nu \in \mathbb{R}$ such that for any $n \in \mathbb{N}$, $ a_n \leq \nu$. [We deduce that $\{a_n\}_{n=0}^{\infty}$ is bounded in \mathbb{R} .] | | | •(X) there exists some $\nu \in \mathbb{R}$ such that for any $n \in \mathbb{N}$, $ a_n \leq \nu$. [We deduce that $\{a_n\}_{n=0}^{\infty}$ is bounded in \mathbb{R} .] We verify that $\{a_n\}_{n=0}^{\infty}$ is(XI): * Define $\kappa = \nu $. By definition, since $\nu \in \mathbb{R}$, we have $\kappa \in \mathbb{R}$. (XII) | | | • (X) there exists some $\nu \in \mathbb{R}$ such that for any $n \in \mathbb{N}$, $ a_n \leq \nu$. [We deduce that $\{a_n\}_{n=0}^{\infty}$ is bounded in \mathbb{R} .] We verify that $\{a_n\}_{n=0}^{\infty}$ is(XI): * Define $\kappa = \nu $. By definition, since $\nu \in \mathbb{R}$, we have $\kappa \in \mathbb{R}$. | | | •(X) there exists some $\nu \in \mathbb{R}$ such that for any $n \in \mathbb{N}$, $ a_n \leq \nu$. [We deduce that $\{a_n\}_{n=0}^{\infty}$ is bounded in \mathbb{R} .] We verify that $\{a_n\}_{n=0}^{\infty}$ is(XI): * Define $\kappa = \nu $. By definition, since $\nu \in \mathbb{R}$, we have $\kappa \in \mathbb{R}$. (XII) | | | • (X) there exists some $\nu \in \mathbb{R}$ such that for any $n \in \mathbb{N}$, $ a_n \leq \nu$. [We deduce that $\{a_n\}_{n=0}^{\infty}$ is bounded in \mathbb{R} .] We verify that $\{a_n\}_{n=0}^{\infty}$ is(XI): * Define $\kappa = \nu $. By definition, since $\nu \in \mathbb{R}$, we have $\kappa \in \mathbb{R}$. (XII) | | | • there exists some $\nu \in \mathbb{R}$ such that for any $n \in \mathbb{N}$, $ a_n \leq \nu$. [We deduce that $\{a_n\}_{n=0}^{\infty}$ is bounded in \mathbb{R} .] We verify that $\{a_n\}_{n=0}^{\infty}$ is (XI) : * Define $\kappa = \nu $. By definition, since $\nu \in \mathbb{R}$, we have $\kappa \in \mathbb{R}$. (XII) Therefore, by definition, $\{a_n\}$ is bounded above in \mathbb{R} . We verify that $\{a_n\}_{n=0}^{\infty}$ is bounded below in \mathbb{R} : |