
MATH1050/1058 Assignment 2

1. (a) Fill in the blanks in the passage below so as to give the definition for the notion of rational numbers:
Suppose x ∈ R. Then we say that x is rational if (I) such that (II) .

(b) Fill in the blanks in the block below, all labelled by capital-letter Roman numerals, with appropriate words so that
it gives a proof for the statement (A) and a proof for the statement (B). (The ‘underline’ for each blank bears no
definite relation with the length of the answer for that blank.)

i. Here we prove the statement (A):
(A) Let x, y ∈ R. Suppose x, y are rational. Then x+ y is rational.

Let x, y ∈ R. (I) .

[We want to deduce that x+y is rational. This amounts to verifying the statement ‘there exist
some s, t ∈ Z such that t ̸= 0 and s = t(x+ y)’.]

By definition, (II) m,n ∈ Z such that (III) m = nx.
Also, (IV) q ̸= 0 and p = qy.
Note that mq + pn = nxq + qyn = nq(x+ y) .
Since (V) and (VI) , we have nq ̸= 0.
Also, since m,n, p, q ∈ Z, we have (VII) .
Hence, by definition, (VIII) .

ii. Here we prove the statement (B):
(B) Let x, y be real numbers. Suppose x, y are rational. Then xy is rational.

Let x, y be real numbers. Suppose x, y are rational.

[We want to deduce that xy is rational. This amounts to verifying the statement ‘there exist
some s, t ∈ Z such that t ̸= 0 and s = t(xy)’.]

By definition, (I) n ̸= 0 and m = nx.
Also, (II) .
Note that (III) .
Since n ̸= 0 (IV) , we have (V) .
Also, (VI) , we have mp ∈ Z and nq ∈ Z.
Hence, by definition, xy is rational.

2. (a) Explain the phrase divisibility for integers by stating the appropriate definition.
(b) Fill in the blanks in the block below, all labelled by capital-letter Roman numerals, with appropriate words so that

it gives a proof for the statement (C) and a proof for the statement (D). (The ‘underline’ for each blank bears no
definite relation with the length of the answer for that blank.)

i. Here we prove the statement (C):
(C) Let x, y, n ∈ Z. Suppose x is divisible by n and y is divisible by n. Then x+ y is divisible by n.

(I)
Since x is divisible by n, (II) .
Since y is divisible by n, (III) .
We have (IV) . Then x+ y = kn+ ℓn = (k + ℓ)n.
Since k ∈ Z and ℓ ∈ Z, we have (V) .
Therefore, by definition, (VI) .

ii. Here we prove the statement (D):
(D) Let x, y, n ∈ Z. Suppose x is divisible by n or y is divisible by n. Then xy is divisible by n.
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(I)

• (Case 1). Suppose (II) . Then (III) x = kn.

Note that (IV) . Also, (V) .

Then (VI) .

• (Case 2). (VII) y is divisible by n. Modifying the argument for (Case 1), we also
deduce that (VIII) .

Hence, (IX) .

3. Fill in the blanks in the block below, all labelled by capital-letter Roman numerals, with appropriate words so that it
gives a proof for the statement (E), a proof for the statement (F ), and a proof for the statement (G). (The ‘underline’
for each blank bears no definite relation with the length of the answer for that blank.)

(a) Here we prove the statement (E):

(E) Let a, b be real numbers. Suppose a > b > 0. Then
√
a2 − b2 +

√
2ab− b2 > a.

Let a, b be real numbers. Suppose a > b > 0.
Further suppose that (I) .

[Reminder. Under what we have supposed and what we have further supposed, we try to
obtain a contradiction.]

Note that
√
a2 − b2 ≥ 0 (II) . Then a ≥

√
a2 − b2 +

√
2ab− b2 (III) 0.

Since a > b > 0, we have a2 − b2 = (a− b)(a+ b) ≥ 0. Then (
√
a2 − b2)2 = (IV) .

Similarly, (V) . Then (
√
2ab− b2)2 = 2ab− b2.

Therefore we would have

(VI) ≥ (VII)

= (a2 − b2) + (2ab− b2) + 2
√
(a2 − b2)(2ab− b2)

= a2 − 2b2 + 2ab+ 2
√
(a− b)(a+ b)(2a− b)b.

Hence
0 ≤ (VIII) ≤ (IX) = b(b− a).

Recall that by assumption, a > b > 0. Then (X) .
Therefore 0 ≤ b(b− a) < 0. Contradiction arises.
It follows that, in the first place,

√
a2 − b2 +

√
2ab− b2 > a.

(b) Here we prove the statement (F ):
(F ) Let m,n ∈ Z. Suppose 0 < |m| < |n|. Then m is not divisible by n.

Let (I) . Suppose (II) .
Further suppose (III) .

[Reminder. Under what we have supposed and what we have further supposed, we try to
obtain a contradiction.]

Since m was divisible by n, by definition (IV) .
By assumption, (V) . Then m ̸= 0.
Since m ̸= 0 and m = kn, we would have (VI) . Then |k| ̸= 0.

(VII) , |k| would also be an integer. Then |k| ≥ 1.
By assumption |n| > 0. Then |m| = |kn| = (VIII) = |n|.
Also, by (IX) , |n| > |m|.
Then |m| ≥ |n| > |m|. Therefore |m| > |m|. Contradiction arises.
It follows that, in the first place, (X) .
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(c) Here we prove the statement (G):
(G) Let x be a positive real number. Suppose x is irrational. Then

√
x is irrational.

Let x be a positive real number.
Suppose (I) .
Further suppose (II) .

[Reminder. Under what we have supposed and what we have further supposed, we try to
obtain a contradiction.]

Since (III) , we have (
√
x)2 = (IV) .

Since (V) , (
√
x)2 would be rational as well.

Therefore x would be (VI) .
By assumption, x is (VII) . Then x would be simultaneously (VIII) .

(IX) .
It follows that, in the first place, (X) .

4. (a) Explain the phrase common divisor for integers by stating the appropriate definition.
(b) Explain the phrase prime number by stating the appropriate definition.
(c) State, without proof, Euclid’s Lemma.
(d) Here we prove the statement (H), with the help of Euclid’s Lemma:

(H) 3
√
3 is irrational.

(I) .

Then 3
√
3 would be a rational number. Therefore (II) such that (III) .

Without loss of generality, we may assume that m,n have no common divisors other than 1,−1.
Since m = n · 3

√
3, we would have m3 = 3n3.

Note that n3 was an integer. Then (IV) .
Now also note that 3 is a prime number. Then, by (V) , m would be divisible by 3.
Therefore (VI) .
Then we would have 27k3 = (3k)3 = m3 = 3n3. Therefore n3 = 9k3 = 3(3k3).

(VII)
Note that (VIII) . Then, by Euclid’s Lemma, (IX) .
Therefore both m,n would be divisible by 3. Hence 3 would be a common divisor of m,n.
Recall that we have assumed that (X) . Contradiction arises.

Therefore the assumption that 3
√
3 was not irrational is false. It follows that 3

√
3 is irrational in the

first place.

5.♢ We introduce (or recall from your calculus course) the definitions on boundedness for infinite sequences of real numbers:

Let {an}∞n=0 be an infinite sequence of real numbers.
• {an}∞n=0 is said to be bounded above in R if the statement (BoAb) holds:

(BoAb) There exists some κ ∈ R such that for any n ∈ N, an ≤ κ.
Such a real number κ, if it exists, is called an upper bound of {an}∞n=0.

• {an}∞n=0 is said to be bounded below in R if the statement (BoBe) holds:
(BoBe) There exists some λ ∈ R such that for any n ∈ N, an ≥ λ.

Such a real number λ, if it exists, is called an lower bound of {an}∞n=0.
• {an}∞n=0 is said to be bounded in R if {an}∞n=0 is both bounded above in R and bounded below in R.

Fill in the blanks in the block below, all labelled by capital-letter Roman numerals, with appropriate words so that it
gives a proof for the statement (I), and a proof for the statement (J).

(a) Here we prove the statement (I):
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(I) Let {an}∞n=0, {bn}∞n=0 be infinite sequences of real numbers. Suppose {an}∞n=0, {bn}∞n=0 are bounded above in
R. Then {an + bn}∞n=0 is bounded above in R.

Let {an}∞n=0, {bn}∞n=0 be infinite sequences of real numbers.
(I)

[We want to deduce that {an + bn}∞n=0 is bounded above in R. This amounts to verifying that
there exists some µ ∈ R such that for any n ∈ N, an + bn ≤ µ.]

Since {an}∞n=0 is (II) , there exists some κ ∈ R such that (III) —— (∗)
Since {bn}∞n=0 is bounded above in R , (IV) such that (V) , bn ≤ λ . ——
(∗′)
Define µ = κ+ λ. By definition, since κ ∈ R and λ ∈ R, we have µ ∈ R.

[For such a number µ, we verify that for any n ∈ N, an + bn ≤ µ.]

Pick any (VI) .
For this n, by (∗), we have (VII) . —— (∗∗)
For the same n, by (∗∗), we also have (VIII) . —— (∗∗′)
Then by (∗∗), (∗∗′), we have (IX) for the same n.
Therefore, by definition, (X) .

(b) Here we prove the statement (J):
(J) Suppose {an}∞n=0 is an infinite sequence of real numbers. Then {an}∞n=0 is bounded in R iff there exists some

ν ∈ R such that for any n ∈ N, |an| ≤ ν.

Suppose {an}∞n=0 be an infinite sequence of real numbers.

• Suppose (I) .

[We deduce that there exists some ν ∈ R such that for any n ∈ N, |an| ≤ ν.]

By definition, {an}∞n=0 is both (II) .

(III) {an}∞n=0 is bounded above in R, (IV) .

Since (V) , there exists some λ ∈ R such that (VI) .

Define ν = |κ|+ |λ|. By definition, since κ, λ ∈ R, we have ν ∈ R.

[For such a number ν, we verify that for any n ∈ N, |an| ≤ ν.]

Pick any n ∈ N.

For this n, we have −(|κ|+ |λ|) ≤ (VII) ≤ κ ≤ |κ| ≤ (VIII) .

Then (IX) .

• (X) there exists some ν ∈ R such that for any n ∈ N, |an| ≤ ν.

[We deduce that {an}∞n=0 is bounded in R.]

We verify that {an}∞n=0 is (XI) :

∗ Define κ = |ν|. By definition, since ν ∈ R, we have κ ∈ R.
(XII)

Therefore, by definition, {an} is bounded above in R.

We verify that {an}∞n=0 is bounded below in R:

∗ (XIII) . By definition, since ν ∈ R, we have λ ∈ R.

(XIV)

Therefore, by definition, (XV) .
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