`	Fill in the blanks in the passage below so as to give the definition for the notion of rational numbers: Suppose $x \in \mathbb{R}$. Then we say that x is rational if (I) such that (II) Fill in the blanks in the block below, all labelled by capital-letter Roman numerals, with appropriate words so the gives a proof for the statement (A) and a proof for the statement (B) . (The 'underline' for each blank bears definite relation with the length of the answer for that blank.) i. Here we prove the statement (A) : (A) Let $x, y \in \mathbb{R}$. Suppose x, y are rational. Then $x + y$ is rational. [Let $x, y \in \mathbb{R}$ (I) [We want to deduce that $x + y$ is rational. This amounts to verifying the statement 'there exist
(it gives a proof for the statement (A) and a proof for the statement (B) . (The 'underline' for each blank bears definite relation with the length of the answer for that blank.) i. Here we prove the statement (A) : $(A) \ \ Let \ x,y \in \mathbb{R}. \ \ Suppose \ x,y \ are \ rational. \ Then \ x+y \ is \ rational.$ Let $x,y \in \mathbb{R}$. (I) [We want to deduce that $x+y$ is rational. This amounts to verifying the statement 'there exist'
	(A) Let $x, y \in \mathbb{R}$. Suppose x, y are rational. Then $x + y$ is rational. Let $x, y \in \mathbb{R}$
	Let $x, y \in \mathbb{R}$ [We want to deduce that $x+y$ is rational. This amounts to verifying the statement 'there exist
	[We want to deduce that $x+y$ is rational. This amounts to verifying the statement 'there exist
	some $s, t \in \mathbb{Z}$ such that $t \neq 0$ and $s = t(x + y)$ '.]
	By definition, (II) $m, n \in \mathbb{Z}$ such that (III) $m = nx$.
	Also, (IV) $q \neq 0$ and $p = qy$.
	Note that $mq + pn = nxq + qyn = nq(x + y)$.
	Since (V) and (VI), we have $nq \neq 0$.
	Also, since $m, n, p, q \in \mathbb{Z}$, we have (VII)
	Hence, by definition, (VIII)
	ii. Here we prove the statement (B) :
	(B) Let x, y be real numbers. Suppose x, y are rational. Then xy is rational.
	Let x, y be real numbers. Suppose x, y are rational.
	[We want to deduce that xy is rational. This amounts to verifying the statement 'there exist some $s, t \in \mathbb{Z}$ such that $t \neq 0$ and $s = t(xy)$ '.]
	By definition, (I) $n \neq 0$ and $m = nx$.
	By definition, (I) $n \neq 0$ and $m = nx$. Also, (II)
	Note that (III) .
	Since $n \neq 0$ (IV) , we have (V) .
	Also, (VI) , we have $mp \in \mathbb{Z}$ and $nq \in \mathbb{Z}$.
	Hence, by definition, xy is rational.
`	a) Explain the phrase divisibility for integers by stating the appropriate definition.
(b) Fill in the blanks in the block below, all labelled by capital-letter Roman numerals, with appropriate words so the it gives a proof for the statement (C) and a proof for the statement (D). (The 'underline' for each blank bears definite relation with the length of the answer for that blank.)
	i. Here we prove the statement (C) :
	(C) Let $x, y, n \in \mathbb{Z}$. Suppose x is divisible by n and y is divisible by n. Then $x + y$ is divisible by n.
	(I)
	Since x is divisible by n ,
	Since y is divisible by n , (III)
	We have (IV) Then $x + y = kn + \ell n = (k + \ell)n$.
	Since $k \in \mathbb{Z}$ and $\ell \in \mathbb{Z}$, we have (V)
	Therefore, by definition, (VI)
	ii. Here we prove the statement (D) :

	(I)			
• (Case 1). Supp	ose(II)	Then	(III)	x = kn.
Note that	(IV)	Also,	(V)	·
Then	(VI) .			
• (Case 2)deduce that	$ \begin{array}{ccc} (VII) & & y \text{ is divisi} \\ \hline (VIII) & & \end{array} $	ble by n . Modify	ving the argum	ent for (Case 1), we also
Hence,(I	X) .			

- 3. Fill in the blanks in the block below, all labelled by capital-letter Roman numerals, with appropriate words so that it gives a proof for the statement (E), a proof for the statement (F), and a proof for the statement (G). (The 'underline' for each blank bears no definite relation with the length of the answer for that blank.)
 - (a) Here we prove the statement (E):
 - (E) Let a, b be real numbers. Suppose a > b > 0. Then $\sqrt{a^2 b^2} + \sqrt{2ab b^2} > a$.

Let a, b be real numbers. Suppose a > b > 0.

Further suppose that (I)

 $[Reminder.\ \, Under\ \, what\ \, we\ \, have\ \, supposed\ \, and\ \, what\ \, we\ \, have\ \, further\ \, supposed,\ \, we\ \, try\ \, to\ \, obtain\ \, a\ \, contradiction.]$

Note that $\sqrt{a^2 - b^2} \ge 0$ ______ . Then $a \ge \sqrt{a^2 - b^2} + \sqrt{2ab - b^2}$ _____ (III) _____ 0.

Since a > b > 0, we have $a^2 - b^2 = (a - b)(a + b) \ge 0$. Then $(\sqrt{a^2 - b^2})^2 = (IV)$.

Similarly, $({\rm V}) \qquad \quad . \ \, {\rm Then} \,\, (\sqrt{2ab-b^2})^2 = 2ab-b^2.$

Therefore we would have

$$\begin{array}{ccc} (\text{VI}) & \geq & (\text{VII}) \\ & = & (a^2 - b^2) + (2ab - b^2) + 2\sqrt{(a^2 - b^2)(2ab - b^2)} \\ & = & a^2 - 2b^2 + 2ab + 2\sqrt{(a - b)(a + b)(2a - b)b}. \end{array}$$

Hence

$$0 \le \underline{\qquad} (VIII) \underline{\qquad} \le \underline{\qquad} (IX) \underline{\qquad} = b(b-a).$$

Recall that by assumption, a > b > 0. Then _____ .

Therefore $0 \le b(b-a) < 0$. Contradiction arises.

It follows that, in the first place, $\sqrt{a^2 - b^2} + \sqrt{2ab - b^2} > a$.

- (b) Here we prove the statement (F):
 - (F) Let $m, n \in \mathbb{Z}$. Suppose 0 < |m| < |n|. Then m is not divisible by n.

[Reminder. Under what we have supposed and what we have further supposed, we try to obtain a contradiction.]

Since m was divisible by n, by definition _____ (IV) ____ .

By assumption, ____(V) ____ . Then $m \neq 0$.

Since $m \neq 0$ and m = kn, we would have _____(VI)_____. Then $|k| \neq 0$.

(VII) , |k| would also be an integer. Then $|k| \ge 1$.

By assumption |n| > 0. Then |m| = |kn| = (VIII) = |n|.

Also, by $\underline{\hspace{1cm}}(IX)$, |n| > |m|.

Then $|m| \ge |n| > |m|$. Therefore |m| > |m|. Contradiction arises.

It follows that, in the first place, $\qquad \qquad (X) \qquad \qquad .$

((c)	Here	we	prove	the	statement	(G)):
١	. ~ ,			P-0.0	0110	DUCCUCITION	(\smile)	,

(G) Let x be a positive real number. Suppose x is irrational. Then \sqrt{x} is irrational.

Let x be a positive rea	ıl number.		
Suppose	(I)	·	
Further suppose	(II		
[Reminder. Undobtain a contrad	_	supposed and what we have further	r supposed, we try to
Since (III)	, we have (\sqrt{x})	$)^2 = \underline{ (IV) }.$	
Since (V)	_ , $(\sqrt{x})^2$ would l	be rational as well.	
Therefore x would be	(VI)		
By assumption, x is _	(VII)	. Then x would be simultaneously _	(VIII) .
(IX)			
It follows that, in the	first place,	(X) .	

- 4. (a) Explain the phrase common divisor for integers by stating the appropriate definition.
 - (b) Explain the phrase *prime number* by stating the appropriate definition.
 - (c) State, without proof, Euclid's Lemma.
 - (d) Here we prove the statement (H), with the help of Euclid's Lemma:
 - (H) $\sqrt[3]{3}$ is irrational.

(I)				
Then $\sqrt[3]{3}$ would be a rational number. There	fore(I	(I)	such that	(III) .
Without loss of generality, we may assume the	at m, n have	no commo	on divisors of	ther than $1, -1$.
Since $m = n \cdot \sqrt[3]{3}$, we would have $m^3 = 3n^3$.				
Note that n^3 was an integer. Then	(IV)		•	
Now also note that 3 is a prime number. The	en, by	(V)	$\underline{}$, m would	be divisible by 3.
Therefore (VI)				
Then we would have $27k^3 = (3k)^3 = m^3 = 3n^3$	i^3 . Therefore	$n^3 = 9k^3 :$	$= 3(3k^3).$	
(VII)				
Note that $_$ (VIII) . The	en, by Euclid	l's Lemma	,	(IX) .
Therefore both m, n would be divisible by 3.	Hence 3 wou	ld be a cor	mmon diviso	r of m, n .
Recall that we have assumed that	(X)	Cont	tradiction ar	ises.
Therefore the assumption that $\sqrt[3]{3}$ was not in first place.	rational is fal	lse. It follo	ows that $\sqrt[3]{3}$	is irrational in the

 $5.^{\diamondsuit}$ We introduce (or recall from your *calculus* course) the definitions on *boundedness* for infinite sequences of real numbers:

Let $\{a_n\}_{n=0}^{\infty}$ be an infinite sequence of real numbers.

- $\{a_n\}_{n=0}^{\infty}$ is said to be **bounded above in** \mathbb{R} if the statement (BoAb) holds:
 - (BoAb) There exists some $\kappa \in \mathbb{R}$ such that for any $n \in \mathbb{N}$, $a_n \leq \kappa$.

Such a real number κ , if it exists, is called an **upper bound** of $\{a_n\}_{n=0}^{\infty}$.

- $\{a_n\}_{n=0}^{\infty}$ is said to be **bounded below in** \mathbb{R} if the statement (BoBe) holds:
 - (BoBe) There exists some $\lambda \in \mathbb{R}$ such that for any $n \in \mathbb{N}$, $a_n \geq \lambda$.

Such a real number λ , if it exists, is called an **lower bound** of $\{a_n\}_{n=0}^{\infty}$.

• $\{a_n\}_{n=0}^{\infty}$ is said to be **bounded in** \mathbb{R} if $\{a_n\}_{n=0}^{\infty}$ is both bounded above in \mathbb{R} and bounded below in \mathbb{R} .

Fill in the blanks in the block below, all labelled by capital-letter Roman numerals, with appropriate words so that it gives a proof for the statement (I), and a proof for the statement (J).

(a) Here we prove the statement (I):

	Let $\{a_n\}_{n=0}^{\infty}$, $\{b_n\}_{n=0}^{\infty}$ be infinite sequences of real numbers.
	[We want to deduce that $\{a_n + b_n\}_{n=0}^{\infty}$ is bounded above in \mathbb{R} . This amounts to verifying that there exists some $\mu \in \mathbb{R}$ such that for any $n \in \mathbb{N}$, $a_n + b_n \leq \mu$.]
	Since $\{a_n\}_{n=0}^{\infty}$ is(II), there exists some $\kappa \in \mathbb{R}$ such that(III)(*) Since $\{b_n\}_{n=0}^{\infty}$ is bounded above in \mathbb{R} ,(IV) such that(V), $b_n \leq \lambda$
	Since $\{b_n\}_{n=0}^{\infty}$ is bounded above in \mathbb{R} ,
	[For such a number μ , we verify that for any $n \in \mathbb{N}$, $a_n + b_n \leq \mu$.]
	Pick any (VI) .
	For this n , by $(*)$, we have (VII) . $(**)$
	For the same n , by $(**)$, we also have $\underline{\hspace{1cm}}(VIII)$. $(**')$
	Then by $(**), (**')$, we have for the same n .
	Therefore, by definition, $\underline{\hspace{1cm}}(X)$.
Here v	we prove the statement (J) :
	uppose $\{a_n\}_{n=0}^{\infty}$ is an infinite sequence of real numbers. Then $\{a_n\}_{n=0}^{\infty}$ is bounded in \mathbb{R} iff there exis
	$\in \mathbb{R}$ such that for any $n \in \mathbb{N}$, $ a_n \leq \nu$.
	Suppose $\{a_n\}_{n=0}^{\infty}$ be an infinite sequence of real numbers.
	• Suppose (I) .
	[We deduce that there exists some $\nu \in \mathbb{R}$ such that for any $n \in \mathbb{N}$, $ a_n \leq \nu$.]
	By definition, $\{a_n\}_{n=0}^{\infty}$ is both
	$(III) \{a_n\}_{n=0}^{\infty} \text{ is bounded above in } \mathbb{R}, \qquad (IV)$
	Since (V) , there exists some $\lambda \in \mathbb{R}$ such that (VI) .
	Define $\nu = \kappa + \lambda $. By definition, since $\kappa, \lambda \in \mathbb{R}$, we have $\nu \in \mathbb{R}$.
	[For such a number ν , we verify that for any $n \in \mathbb{N}$, $ a_n \leq \nu$.]
	Pick any $n \in \mathbb{N}$.
	For this n , we have $-(\kappa + \lambda) \leq \underline{\qquad (VII) \qquad } \leq \kappa \leq \kappa \leq \underline{\qquad (VIII) \qquad }$.
	Then $\underline{\hspace{1cm}}(IX)$.
	Then(IX) •(X) there exists some $\nu \in \mathbb{R}$ such that for any $n \in \mathbb{N}, \ a_n \leq \nu.$
	• (X) there exists some $\nu \in \mathbb{R}$ such that for any $n \in \mathbb{N}$, $ a_n \leq \nu$.
	• (X) there exists some $\nu \in \mathbb{R}$ such that for any $n \in \mathbb{N}$, $ a_n \leq \nu$. [We deduce that $\{a_n\}_{n=0}^{\infty}$ is bounded in \mathbb{R} .]
	•(X) there exists some $\nu \in \mathbb{R}$ such that for any $n \in \mathbb{N}$, $ a_n \leq \nu$. [We deduce that $\{a_n\}_{n=0}^{\infty}$ is bounded in \mathbb{R} .] We verify that $\{a_n\}_{n=0}^{\infty}$ is(XI): * Define $\kappa = \nu $. By definition, since $\nu \in \mathbb{R}$, we have $\kappa \in \mathbb{R}$. (XII)
	• (X) there exists some $\nu \in \mathbb{R}$ such that for any $n \in \mathbb{N}$, $ a_n \leq \nu$. [We deduce that $\{a_n\}_{n=0}^{\infty}$ is bounded in \mathbb{R} .] We verify that $\{a_n\}_{n=0}^{\infty}$ is(XI): * Define $\kappa = \nu $. By definition, since $\nu \in \mathbb{R}$, we have $\kappa \in \mathbb{R}$.
	•(X) there exists some $\nu \in \mathbb{R}$ such that for any $n \in \mathbb{N}$, $ a_n \leq \nu$. [We deduce that $\{a_n\}_{n=0}^{\infty}$ is bounded in \mathbb{R} .] We verify that $\{a_n\}_{n=0}^{\infty}$ is(XI): * Define $\kappa = \nu $. By definition, since $\nu \in \mathbb{R}$, we have $\kappa \in \mathbb{R}$. (XII)
	• (X) there exists some $\nu \in \mathbb{R}$ such that for any $n \in \mathbb{N}$, $ a_n \leq \nu$. [We deduce that $\{a_n\}_{n=0}^{\infty}$ is bounded in \mathbb{R} .] We verify that $\{a_n\}_{n=0}^{\infty}$ is(XI): * Define $\kappa = \nu $. By definition, since $\nu \in \mathbb{R}$, we have $\kappa \in \mathbb{R}$. (XII)
	• there exists some $\nu \in \mathbb{R}$ such that for any $n \in \mathbb{N}$, $ a_n \leq \nu$. [We deduce that $\{a_n\}_{n=0}^{\infty}$ is bounded in \mathbb{R} .] We verify that $\{a_n\}_{n=0}^{\infty}$ is (XI) : * Define $\kappa = \nu $. By definition, since $\nu \in \mathbb{R}$, we have $\kappa \in \mathbb{R}$. (XII) Therefore, by definition, $\{a_n\}$ is bounded above in \mathbb{R} . We verify that $\{a_n\}_{n=0}^{\infty}$ is bounded below in \mathbb{R} :