MATH1050/1058 Assignment 2

1. (a) Fill in the blanks in the passage below so as to give the definition for the notion of rational numbers:

Suppose x € R. Then we say that x is rational if 1) such that (II)

(b) Fill in the blanks in the block below, all labelled by capital-letter Roman numerals, with appropriate words so that
it gives a proof for the statement (A) and a proof for the statement (B). (The ‘underline’ for each blank bears no
definite relation with the length of the answer for that blank.)

i. Here we prove the statement (A):

(A) Let x,y € IR. Suppose x,y are rational. Then x + y is rational.

Let 2,y € R. (I

[We want to deduce that x +y is rational. This amounts to verifying the statement ‘there exist
some s,t € Z such that t # 0 and s = t(z + y)’]

By definition, (1) m,n € Z such that  (IIT)  m = nz.

Also, (IV) q # 0 and p = qy.

Note that mq + pn = nzq + qyn = nq(x +y) .

Since (V) and (VI) , we have ng # 0.

Also, since m,n,p,q € Z, we have (VII) .

Hence, by definition, (VIII)

ii. Here we prove the statement (B):

(B) Let x,y be real numbers. Suppose x,y are rational. Then xy is rational.

Let z,y be real numbers. Suppose x,y are rational.

[We want to deduce that zy is rational. This amounts to verifying the statement ‘there exist
some s,t € Z such that t # 0 and s = t(zy)’]

By definition, I n # 0 and m = nz.
Also, (IT)

Note that (I11)

Since n # 0 (IV) , we have (V) .

Also, (VI) , we have mp € Z and nq € Z.

Hence, by definition, zy is rational.

2. (a) Explain the phrase divisibility for integers by stating the appropriate definition.

(b) Fill in the blanks in the block below, all labelled by capital-letter Roman numerals, with appropriate words so that
it gives a proof for the statement (C) and a proof for the statement (D). (The ‘underline’ for each blank bears no
definite relation with the length of the answer for that blank.)

i. Here we prove the statement (C):
(C) Let x,y,n € Z. Suppose z is divisible by n and y is divisible by n. Then x + y is divisible by n.

(n
Since z is divisible by n, (I1)
Since y is divisible by n, (IIT)
We have (IV) . Then z+y =kn+In = (k+ )n.
Since k € Z and ¢ € Z, we have V)
Therefore, by definition, (VI)

ii. Here we prove the statement (D):
(D) Let z,y,n € Z. Suppose x is divisible by n or y is divisible by n. Then xy is divisible by n.



)
e (Case 1). Suppose (Im) . Then (I11) x = kn.
Note that (IV) . Also, (V)
Then (VI)
e (Case 2). (VII) y is divisible by n. Modifying the argument for (Case 1), we also
deduce that (VIII)
Hence, (IX)

3. Fill in the blanks in the block below, all labelled by capital-letter Roman numerals, with appropriate words so that it
gives a proof for the statement (E), a proof for the statement (F), and a proof for the statement (G). (The ‘underline’
for each blank bears no definite relation with the length of the answer for that blank.)

(a) Here we prove the statement (E):

(E) Let a,b be real numbers. Suppose a > b > 0. Then v/a? — b2 + /2ab — b2 > a.

Let a,b be real numbers. Suppose a > b > 0.
Further suppose that (1)

[Reminder. Under what we have supposed and what we have further supposed, we try to
obtain a contradiction.]

Note that v/aZ —b% > 0 (I1) . Then a > v/a2 — b2 +/2ab— b2 (III) 0.
Since a > b > 0, we have a® — b> = (a — b)(a +b) > 0. Then (Va2 — b2)? = (IV) .
Similarly, (V) . Then (v/2ab — b2)? = 2ab — b?.
Therefore we would have

(VI) > (VII)

= (a® = b%) + (2ab — b?) + 2¢/(a® — b2)(2ab — b?)
= a®— 2% + 2ab + 2v/(a — b)(a + b)(2a — b)b.

Hence
0< (VIII) < (IX) =b(b—a).

Recall that by assumption, a > b > 0. Then (X)

Therefore 0 < b(b — a) < 0. Contradiction arises.
It follows that, in the first place, Va2 — b2 + v2ab — b2 > a.

(b) Here we prove the statement (F'):
(F) Let m,n € Z. Suppose 0 < |m| < |n|. Then m is not divisible by n.

Let ) . Suppose (IT)
Further suppose (I11)

[Reminder. Under what we have supposed and what we have further supposed, we try to
obtain a contradiction.]

Since m was divisible by n, by definition (IV)

By assumption, (V) . Then m # 0.

Since m # 0 and m = kn, we would have (VI) . Then |k| # 0.
(VII) , |k| would also be an integer. Then |k| > 1.

By assumption |n| > 0. Then |m| = |kn| = (VIII) = |n|.

Also, by (IX) , In| > |m|.

Then |m| > |n| > |m|. Therefore |m| > |m|. Contradiction arises.

It follows that, in the first place, (X)




(c) Here we prove the statement (G):

(G) Let x be a positive real number. Suppose x is irrational. Then +/x is irrational.

Let x be a positive real number.
Suppose (I)

Further suppose (I1)

[Reminder. Under what we have supposed and what we have further supposed, we try to
obtain a contradiction.]

Since (I1I) , we have (yz)?= (IV) .

Since (V) , (v/2)? would be rational as well.

Therefore x would be (VI)

By assumption, z is (VII) . Then z would be simultaneously (VIII)
(1X)

It follows that, in the first place, (X)

4. (a
(b
(c

(d) Here we prove the statement (H), with the help of Euclid’s Lemma:
(H) /3 is irrational.

Explain the phrase common divisor for integers by stating the appropriate definition.
Explain the phrase prime number by stating the appropriate definition.

State, without proof, Euclid’s Lemma.

)
)
)
)

(D
Then /3 would be a rational number. Therefore (1) such that (III)

Without loss of generality, we may assume that m,n have no common divisors other than 1, —1.

Since m=n - {"/57 we would have m3 = 3n?.

Note that n® was an integer. Then (IV)
Now also note that 3 is a prime number. Then, by (V) , m would be divisible by 3.
Therefore (VI)
Then we would have 27k% = (3k)3 = m3 = 3n3. Therefore n3 = 9k% = 3(3k3).
(VII)
Note that (VIII) . Then, by Euclid’s Lemma, (IX)

Therefore both m,n would be divisible by 3. Hence 3 would be a common divisor of m, n.
Recall that we have assumed that (X) . Contradiction arises.

Therefore the assumption that /3 was not irrational is false. It follows that /3 is irrational in the
first place.

5.% We introduce (or recall from your calculus course) the definitions on boundedness for infinite sequences of real numbers:

Let {an}22, be an infinite sequence of real numbers.
o {a,}22, is said to be bounded above in R if the statement (BoAb) holds:
(BoAb)  There exists some k € R such that for any n € N, a,, < k.
Such a real number &, if it exists, is called an upper bound of {a, }>%,.
o {a,}22, is said to be bounded below in R if the statement (BoBe) holds:
(BoBe)  There exists some A € IR such that for any n € N, a, > .
Such a real number A, if it exists, is called an lower bound of {a, }32.

o {a,}52, is said to be bounded in R if {a,}32, is both bounded above in R and bounded below in IR.

Fill in the blanks in the block below, all labelled by capital-letter Roman numerals, with appropriate words so that it
gives a proof for the statement (I), and a proof for the statement (.J).

(a) Here we prove the statement (I):



(I) Let {an}S%q, {bn}22, be infinite sequences of real numbers. Suppose {a,}22 ., {b,}52, are bounded above in
IR. Then {a, + b,}52 is bounded above in IR.

Let {an}2, {bn}52 be infinite sequences of real numbers.
(D

[We want to deduce that {a,, + b, }52 is bounded above in R. This amounts to verifying that
there exists some p € R such that for any n € N, a,, + b, < 1.

Since {a,}22, is (II) , there exists some x € IR such that (I11) (%)

Since {b,}52 is bounded above in R, (Iv) such that (V) s by <AL ——
()

Define y = k + A. By definition, since x € IR and A € R, we have u € IR.

[For such a number p, we verify that for any n € N, a,, + b, < p.]

Pick any (VI)
For this n, by (), we have (VII) .

()

For the same n, by (x*), we also have  (VIII) . —— (xx')
Then by (%), (), we have (IX) for the same n.
Therefore, by definition, (X)

(b) Here we prove the statement (.J):

(J) Suppose {a,}32, is an infinite sequence of real numbers. Then {a, }>2 is bounded in R iff there exists some
v € R such that for any n € N, |ap| < v.

Suppose {a,}22, be an infinite sequence of real numbers.

e Suppose T

[We deduce that there exists some v € IR such that for any n € N, |a,| < v.]

By definition, {a,}22, is both (I1)
(II1)  {an}S, is bounded above in RR, (IV)
Since (V) , there exists some A € R such that (VI)

Define v = |k| + |A|. By definition, since x, A € IR, we have v € R.
[For such a number v, we verify that for any n € N, |a,| < v.]

Pick any n € N.
For this n, we have —(|&| + |A]) < (VII) <k <|kl < (VIO .

Then  (IX) .
e (X) there exists some v € R such that for any n € N, |a,| < v.
[We deduce that {a,}52, is bounded in R.]
We verify that {a,}22, is (XT) :

* Define k = |v|. By definition, since v € IR, we have x € R.

(X1I)

Therefore, by definition, {a,} is bounded above in IR.

We verify that {a, }>2, is bounded below in IR:

* (XTII1) . By definition, since v € IR, we have A € IR.
(XIV)
Therefore, by definition, (XV)




