
MATH1050 Spanning sets, linearly independent sets, and bases.

0. (a) The handout is a continuation of the Handout Linear algebra beyond systems of linear equations and manip-
ulation of matrices.

(b) The justification for the theoretical results and the claims in the concrete examples are left as exercises in
the use of sets and functions in set language.

1. Definition.
Let V be a vector space over a field F, and x ∈ V .

(a) Let u1,u2, · · · ,uk ∈ V .
x is said to be a linear combination of u1,u2, · · · ,uk over F if there exists some α1, α2, · · · , αk ∈ F such
that x = α1u1 + α2u2 + · · ·+ αkuk.

(b) Let S be a subset of V .
x is a linear combination in S over F if there exist some k ∈ N\{0}, w1,w2, · · · ,wk ∈ S such that x is a
linear combination of w1,w2, · · · ,wk over F.

2. Definition.
Let V be a vector space over a field F. Let S be a subset of V .

(a) The span of S over F is defined to be the set {x ∈ V : x is a linear combination in S over F.}. It is denoted
by SpanF(S).

(b) S is called a spanning set for V over F (or a generating set for V over F) if V = SpanF(S). (We may
also say S spans V over F.)

3. Theorem (1).
Let V be a vector space over a field F.

(a) Suppose S is a subset of V . Then SpanF(S) is a subspace of V over F.

(b) Suppose U is a subset of V . Then U is a subspace of V over F iff SpanF(U) = U .

(c) Let S, T be subsets of V . Suppose S ⊂ T . Then SpanF(S) is a subspace of SpanF(T ) over F.

(d) Let S, T be subsets of V . Suppose S ⊂ T , and SpanF(S) = V . Then SpanF(T ) = V .

(e) Suppose S is a subset of V . Then SpanF(S) = SpanF(SpanF(S)).

(f) Let S, T be subsets of V . Suppose S ⊂ SpanF(T ). Then SpanF(S) is a subspace of SpanF(T ) over F.

4. Definition.
Let V be a vector space over a field F.

(a) Let u1,u2, · · · ,uk ∈ V . Suppose u1,u2, · · · ,uk are pairwise distinct.
i. u1,u2, · · · ,uk are said to be linearly dependent over F if there exists some α1, α2, · · · , αk ∈ F, not

all zero, such that α1u1 + α2u2 + · · ·+ αkuk = 0.
ii. u1,u2, · · · ,uk are said to be linearly independent over F if u1,u2, · · · ,uk are not linearly depen-

dent over F.
(b) Let S be a subset of V .

i. S is said to be linear dependent over F if there exist some k ∈ N\{0} and some u1,u2, · · · ,uk ∈ S

such that u1,u2, · · · ,uk are pairwise distinct and u1,u2, · · · ,uk are linearly dependent over F.
ii. S is said to be linearly independent over F if S is not linearly dependent over F. (We may also say

S is a linear independent set over F.)

5. Lemma (2).
Let V be a vector space over a field F.

(a) Let u1,u2, · · · ,uk ∈ V . Suppose u1,u2, · · · ,uk are pairwise distinct. Then the statements below are logically
equivalent:

i. u1,u2, · · · ,uk are linearly independent over F.
ii. For any α1, α2, · · · , αk ∈ F, if α1u1 + α2u2 + · · ·+ αkuk = 0 then α1 = α2 = · · · = αk = 0.
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(b) Let S be a subset of V . The statements below are logically equivalent:
i. S is linearly independent over F.
ii. For any k ∈ N\{0}, for any u1,u2, · · · ,uk ∈ S, if u1,u2, · · · ,uk are pairwise distinct and α1u1 +α2u2 +

· · ·+ αkuk = 0 then α1 = α2 = · · · = αk = 0.

Remark. Lemma (2) provides a useful re-formulation for the notion of linear independence, in which the word
‘not’ has been eliminated.

6. Theorem (3).
Let V be a vector space over a field F. The statements below hold:

(a) For any subsets S, T of V , if S is a subset of T and S is linearly dependent over F, then T is linearly dependent
over F.

(b) For any subsets S, T of V , if S is a subset of T and T is linearly independent over F, then S is linearly
independent over F.

7. Definition.
Let V be a vector space over a field F, and S be a subset of V .
S is said to be a base for V over F if S is a spanning set for V over F and S is linearly independent over F.

8. Theorem (4).
Let V be a vector space over a field F. The statements below hold:

(a) SpanF(∅) = {0}.

(b) ∅ is linear independent over F.

(c) ∅ is a base for the zero subspace {0} of V over F.

9. Examples (and non-examples) of spanning sets, linearly independent sets and bases.

(a) Let F be a field. Denote by e(n)
j the column vector whose j-th entry is 1 and whose other entries are all 0.

{e(n)
j | j ∈ J1, nK} is a spanning set for Fn over F. It is a linearly independent set over F. Hence it is a base

for Fn.
{e(n)

j | j ∈ J1, nK} is called the standard base for Fn (over F).

(b) Let F be a field. Denote by Em,n
i,j the (m × n)-matrix with entries in F whose (i, j)-th entry is 1 and whose

other entries are all 0.
i. {Em,n

i,j | i ∈ J1,mK and j ∈ J1, nK} is a spanning set for Matm×n(F) over F. It is a linearly independent
set over F. Hence it is a base for Matm×n(F) over F.

ii. Recall that Symn(F) is the of all symmetric (n × n)-square matrices with entries in the field F. It is a
vector space over F.{
1

2
(En,n

i,j + En,n
j,i )

∣∣∣∣ i, j ∈ J1, nK and i ≤ j

}
is a spanning set for Symn(F). It is a linearly independent

set over F. Hence it is a base for Symn(F) over F.
iii. Recall that Skewn(F) is the set of all skew-symmetric (n× n)-square matrices with entries in the field F.

It is a vector space over F.{
1

2
(En,n

i,j − En,n
j,i )

∣∣∣∣ i, j ∈ J1, nK and i < j

}
is a spanning set for Skewn(F). It is a linearly independent

set over F. Hence it is a base for Skewn(F) over F.

(c) Denote by ej(x) the polynomial xj for each j ∈ N. (e0(x) is the constant polynomial 1.)

i. {ej(x) | j ∈ N} is a spanning set for the vector space R[x] over R. It is a linearly independent set over
R. Hence it is a base for R[x] over R.

ii. Recall that for each non-negative integer n, R≤n
[x] is the set of all polynomials with real coefficients and

of degree at most n. It is a vector space over R.
{ej(x) | j ∈ J0, nK} is a spanning set for R≤n

[x] over R. It is a linearly independent set over R. Hence it
is a base for R≤n

[x] over R.
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(d) i. Let n ∈ N. Write S = J0, nK.
Let F be a field. Recall that Map(S,F) is the set of all functions with domain S and range F. It is a
vector space over F.

For each j ∈ S, define the function δj : S −→ F by δj(x) =

{
1 if x = j

0 if x ̸= j
.

{δj | j ∈ S} is a spanning set for Map(S,F) over F. It is linearly independent over F. Hence it is a base
for Map(S,F) over F.

ii. Let F be a field. Recall that Map(N,F) is the set of all infinite sequences with entries in F. It is a vector
space over F.

For each j ∈ N, define δj : N −→ F by δj(x) =

{
1 if x = j

0 if x ̸= j
.

{δj | j ∈ N} is linearly independent over F. However, it is not a spanning set for Map(N,F) over F.
iii. Recall that Map(R,R) is the set of all real-valued functions with domain R. It is a vector space over R.

For each r ∈ R, define the function δr : R −→ R by δr : R −→ R by δr(x) =

{
1 if x = r

0 if x ̸= r
.

{δj | j ∈ S} is a linearly independent subset of Map(R,R) over R. However, it is not a spanning set for
Map(R,R) over R.

(e) i. C is a vector space over R.
{1, i} is a spanning set for C over R. It is linearly independent over R. Hence it is a base for C over R.

ii. Write E = {a+ b
√
2 | a, b ∈ Q}.

E is a field extension of Q. Therefore E is a vector space over Q.
{1,

√
2} is a spanning set of E over Q. It is linearly independent over Q. Hence it is a base for E over Q.

iii. Write E = {a+ bi+ c
√
2 + di

√
2 | a, b, c, d ∈ Q}.

E is a field extension of Q. Therefore E is a vector space over Q.
{1, i,

√
2,
√
2i} is a spanning set of E over Q. It is linearly independent over Q. Hence it is a base for E

over Q.
iv. R is a vector space over Q.

A. {1}∪ {√p | p is a positive prime number.} is linearly independent over Q. However, it is not a span-
ning set for R over Q.

B. (Take for granted that the number e is transcendental over Q in the sense that for any polynomial
f(x) with rational coefficients, if f(x) is not the zero polynomial then f(e) ̸= 0.)
{ej | j ∈ Z} is linearly independent over Q. However, it is not a spanning set for R over Q.

10. Theorem (5).
Let V be a vector space over a field F, and S be a subset of V . The statements below are logically equivalent:

(a) S is a base for V over F.

(b) For any x ∈ V \{0}, there exist some unique u1,u2, · · · ,uk ∈ S, α1, α2, · · · , αk ∈ F such that u1,u2, · · · ,uk

are pairwise distinct and x = α1u1 + α2u2 + · · ·+ αkuk.

Remark. Theorem (5) describes the significance of bases for vector spaces: every non-zero vector in a vector
space is expressed as a uniquely determined linear combination of vectors in a given base for that vector space.
Bases for vector spaces are characterized as such.

11. Theorem (6).
Let V be a vector space over a field F. The statements below hold:

(a) Let u1,u2, · · · ,uk ∈ V . Suppose u1,u2, · · · ,uk are pairwise distinct. The statements below are logically
equivalent:

i. u1,u2, · · · ,uk are linearly dependent over F.
ii. One of u1,u2, · · · ,uk is a linear combination of the others over F.

(b) Let S be a subset of V . Suppose S is linearly dependent over F. Then there exists some x ∈ S such that
SpanF(S) = SpanF(S\{x}).
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(c) Let T be a subset of V . Suppose T is linearly independent over F. Further suppose SpanF(T ) $ V . Then
there exists some y ∈ V \SpanF(T ) such that T ∪ {y} is linearly independent over F.

Remark. The idea in Statement (b) has been used in your introductory linear algebra course. To determine a
basis for the column space C(A) of a given (m× n)-matrix A with, say, real entries, first view C(A) as the vector
space spanned by the set of columns of the matrix A (which are regarded as vectors in Rm). If this set of vectors is
not linearly independent over R, then we apply Statement (b) repeatedly, by ‘deleting’ one vector from S at each
step, to obtain ‘smaller and smaller’ subsets of S which still span thw whole of C(A), until we obtain a linearly
independent subset of S which spans C(A).

12. Corollary to Theorem (6).
Let V be a vector space over a field F, and S be a base for V over F.
Let y ∈ V \{0}. Suppose y /∈ S. Then there exists some x ∈ S such that (S\{x}) ∪ {y} is a base for V over F.
Remark. This result is known as the Replacement Theorem. In plain words, it says that given any given
base S for a vector space V over F and given any non-zero vector y ‘outside’ S, we may modify S to obtain
another base for V over F by replacing one appropriate vector in S with the vector y. ‘Inductively’, for any
y1,y2, · · · ,yk ∈ V \S, if y1,y2, · · · ,yk are pairwise distinct and linearly independent over F, then there exist some
x1,x2, · · · ,xk ∈ S such that x1,x2, · · · ,xk are pairwise distinct and (S\{x1,x2, · · · ,xk}) ∪ {y1,y2, · · · ,yk} is a
base for V over F.

13. Lemma (7).
Let V be a vector space over F, and S, T be subsets of V .
Suppose that S is a subset of T . Further suppose that S is a spanning set for V over F, and T is a linearly
independent set over F.
Then S = T .

14. Corollary to Lemma (7).
Let V be a vector space over F, and S, T be subsets of V .
Suppose that S is a subset of T . Further suppose that each of S, T is a base for V over F.
Then S = T .

15. Theorem (8).
Let V be a vector space over a field F, and S be a subset of V . The statements below are logically equivalent:

(a) S is a base for V over F.

(b) S is a spanning set for V over F, and the statement (mSP) holds:

(mSP) For any subset R of V , if R is a subset of S and R is a spanning set for V over F then R = S.

(c) S is a linearly independent set over F, and the statement (MLI) holds:

(MLI) For any subset T of V , if S is a subset of T and T is a linearly independent set over F then S = T .

Remarks.

• Under the assumption that S is a spanning set for V over F, the statement (mSP) tells us that S is minimal
amongst all spanning set for V over F in the sense that no proper subset of S can be a spanning set for V

over F. As a whole, Theorem (8) tells us that S is a base for V over F iff S is a minimal spanning set for V

over F.
• Under the assumption that S is linearly independent over F, the statement (MLI) tells us that S is maximal

amongst all linearly independent subsets of V over F in the sense that no subset of V which contains S as a
proper subset can be linearly independent over F. As a whole, Theorem (8) tells us that S is a base for V

over F iff S is a maximal linearly independent subset of V over F.

16. Definition.
Let V be a vector space over a field F.

(a) V is said to be finite-dimensional over F if there is a base B for V over F which is finite set.

(b) V is said to be infinite-dimensional over F if V is not finite-dimensional over F.
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17. Lemma (9).
Let V be a vector space over a field F.
Suppose V is finite-dimensional over F. Then every base for V over F contains the same number of elements.
Remark. This is a consequence of the Replacement Theorem.

18. Definition.
Let V be a finite-dimensional vector space over F. The number of elements in a base for V over F is called the
dimension of V over F, and is denoted by dimF(V ).

19. Examples and non-examples on finite-dimensional vector spaces.

(a) Let V be a vector space over a field F.
The zero subspace of V over F is the only zero-dimensional subspace of V over F.

(b) Let F be a field.
Fn is a n-dimensional vector space over F.

(c) Let F be a field.

i. Matm×n(F) over F is an (mn)-dimensional vector space over F.

ii. Symn(F) is an n(n+ 1)

2
-dimensional vector space over F.

iii. Skewn(F) is an n(n− 1)

2
-dimensional vector space over F.

(d) i. R[x] is an infinite-dimensional vector space over R.
ii. For each non-negative integer n, R≤n

[x] is an (n+ 1)-dimensional vector space over R.

(e) i. Let n ∈ N. Write S = J0, nK. Let F be a field.
Map(S,F) is an (n+ 1)-dimensional vector space over F.

ii. Map(N,F) is an infinite-dimensional vector space over F.
iii. Map(R,R) is an infinite dimensional vector space over R.
iv. Let I be an open interval in R. Recall that C(I) is the set of all real-valued functions of one real variable

with domain I which are continuous on I.
C(I) is an infinite-dimensionsal vector space over R.
Recall that for each positive integer n, Cn(I) is the set of all real-valued functions of one real variable
with domain I which are n-times continuously differentiable on I.
Cn(I) is an infinite-dimesional vector space over R.

v. Recall that ℓ2(R) is the set of all square-summable infinite sequences of real numbers.
ℓ2(R) is an infinite dimensional vector space over R.

(f) i. C is a two-dimensional vector space over R.
ii. Write E = {a+ b

√
2 | a, b ∈ Q}.

E is a two-dimensional vector space over Q.
iii. Write E = {a+ bi+ c

√
2 + di

√
2 | a, b, c, d ∈ Q}.

E is a four-dimensional vector space over Q.
iv. R is an infinite-dimensional vector space over Q.

20. Theorem (10).
Let V be a finite-dimensional vector space over a field F. Write n = dimF(V ). The statements below hold:

(a) Suppose U is a subspace of V over F.
Then U is finite-dimensional over F, and dimF(U) ≤ n. Equality holds iff W = V .

(b) Suppose U is a subspace of V over F. Write m = dimF(U), and k = n−m. Suppose k > 0 and B is a base
for U over F.
Then there exist some u1,u2, · · · ,uk ∈ V \U such that u1,u2, · · · ,uk are pairwise distinct and
B ∪ {u1,u2, · · · ,uk} is a base for V .

(c) Suppose U is a subspace of V over F. Then there exists some finite-dimensional subspace W over V over F

such that V = U +W and U ∩W = {0}. For the same U,W , the equality dimF(V ) = dimF(U) + dimF(W )

holds.
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Remarks.

• According to Statement (a), V itself is the only subspace of V over F which is of the same dimension of V
over F.

• Statement (c) is an immediately consequence of Statement (a) and Statement (b).
The proof of Statement (a) and Statement (b) in Theorem (10) relies on the application of Statement (c) in
Theorem (6).

21. How are finite-dimensional vector spaces linked up with matrices?
Let V be a finite-dimensional vector space over a field F. Write dimF(V ) = m.
Let B be a base for V over F. Denote the m elements of B by u1,u2, · · · ,um.
Let v1,v2, · · · ,vn ∈ V , and S = {v1,v2, · · · ,vn}.

For any j ∈ J1, nK, there exist some a1j , a2j , · · · , amj ∈ F such that vj = a1ju1 + a2ju2 + · · ·+ amjum.

For each j = 1, 2, · · · , n, write aj =


a1j
a2j
...

amj

. Define A =
[

a1 a2 · · · an

]
. (Note that A is an (m × n)-

matrix with entries in F, whose null space N (A) is a subspace of Fn over F and whose column space C(A) is a
subspace of Fm over F.)

Let w ∈ V . There exist some b1, b2, · · · , bm ∈ F such that w = b1u1 + b2u2 + · · ·+ bmum. Write b =


b1
b2
...
bm

.

Let c1, c2, · · · , cn ∈ F. Write c =


c1
c2
...
cn

.

Under the above assumptions, the statements (†), (‡) are logically equivalent:

(†) w = c1v1 + c2v2 + · · ·+ cnvn.

(‡) b = Ac.

As a consequence, the statements below hold:

(a) w ∈ SpanF(S) iff b ∈ C(A).

(b) Suppose v1,v2, · · · ,vn are pairwise distinct. Then v1,v2, · · · ,vn are linearly dependent over F iff N (A)

contains a non-zero vector in Fn.
(c) Suppose v1,v2, · · · ,vn are pairwise distinct. Then v1,v2, · · · ,vn are linearly independent over F iff N (A) =

{0}.

(d) Suppose m = n. Then S is a base for V over F iff A is non-singular (in the sense that N (A) = {0}).

22. Theorem (11).
Let V be a vector space over a field F. Suppose V is infinite-dimensional over F. Then the statements below hold:

(a) V has a base over F.

(b) Any two bases for V over F are of equal cardinality to each other, in the sense that there is a bijective function
from one of them to the other.

Remark. The proof is omitted. The argument relies on the axioms for set theory.
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