
1. Recall:
(a) Definition.

Let A,B be sets.
The set Map(A,B) is defined to be the set of all functions from A to B.
Remark. Map(N, B) is the set of all infinite sequences in B: each φ ∈ Map(N, B) is
the infinite sequence (φ(0), φ(1), φ(2), ..., φ(n), φ(n + 1), ...).

(b) Example (ϵ).
Let A be a set. P(A)∼Map(A, {0, 1}).

(c) Theorem (VI).
There is no surjective function from N to Map(N, {0, 1}).

(d) Corollary (VII).
There is no bijective function from N to Map(N, {0, 1}). (Hence N∼

∣∣ Map(N, {0, 1}).)

(e) Theorem (VIII).
Let A be a set. A ∼

∣∣ Map(A, {0, 1}). A ∼
∣∣ P(A).
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2. Theorem (XIII). (Baby version of Cantor’s Theorem.)
N < Map(N, {0, 1}).

Proof.
By Corollary (VII), N ∼

∣∣ Map(N, {0, 1}).

We now prove that N.Map(N, {0, 1}):
• For any n ∈ N, define δn : N −→ {0, 1} by

δn(k) =

{
1 if k = n

0 if k ̸= n

Define ∆ : N −→ Map(N, {0, 1}) by ∆(n) = δn for any n ∈ N.

∆ is an injective function. (Why?)
Hence N.Map(N, {0, 1}).

We now have N.Map(N, {0, 1}) and N ∼
∣∣ Map(N, {0, 1}).

It follows that N < Map(N, {0, 1}).
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3. Theorem (XIV). (Cantor’s Theorem.)
Suppose A is a set. Then A < Map(A, {0, 1}), and A < P(A).

Proof.
Let A be a set. By Theorem (VIII), A ∼

∣∣ Map(A, {0, 1}).

We prove that A.Map(A, {0, 1}):
• Recall that for any x ∈ A, the function χA

{x} : A −→ {0, 1} is given by

χA
{x}(y) =

{
1 if y = x

0 if y ̸= x

Define the function ∆ : A −→ Map(A, {0, 1}) by ∆(x) = χA
{x} for any x ∈ A.

∆ is an injective function from A to Map(A, {0, 1}). (Why?)
Hence A.Map(A, {0, 1}).

We now have A.Map(A, {0, 1}) and A ∼
∣∣ Map(A, {0, 1}).

It follows that A < Map(A, {0, 1}).
Since P(A)∼Map(A, {0, 1}), we have A < P(A). (Why?)
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Question. Note that Q.R. Is it true that Q∼R, or that Q < R?

Lemma (XV).
Let A,B,C be sets. Suppose A.B and B.C. Also suppose A < B or B < C. Then
A < C.

Theorem (XVI).
N < [0, 1], and N < R, and Q < R.

Proof.
N.Map(N, {0, 1}).Map(N, J0, 9K)∼[0, 1]∼R.

Also, N < Map(N, {0, 1}).

Then, by Lemma (XV), N < [0, 1] and N < R.

Since Q∼N, we also have Q < R.

Remark.
Hence there are much much more real numbers than there are rational numbers.
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5. Question. Why are‘Venn diagram arguments’ not good enough?

Theorem (XVII.)
There exists some set T such that S < T for any subset S of R2.
Proof.
Define T = P(R).
Pick any subset S of R2. We have S.R2∼R.
By Cantor’s Theorem, R < P(R) = T .
Then by Lemma (XV), we have S < T .

Remark.
When we draw a Venn diagram for a set, say, A, we are ‘identifying’ the set A with some
subset, say, B, of R2, in the sense that the elements of A are ‘identified’ as the points in B,
via some bijective function from A to B.
This bijective function guarantees that distinct elements of A are identified as distinct points
of B. So we are implicitly assuming that there is an injective function from A to R2.
But now we know that there are sets which are too ‘large’ to be draw in a Venn diagram.
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6. Question.
Is there any ‘universal set’, which contains every conceivable object as its element?

Theorem (XVIII).
Denote {x | x = x} by U . The mathematical object U is not a set.

Proof.
Suppose U were a set. Then, by Cantor’s Theorem, U < Map(U, {0, 1}).
For any φ ∈ Map(U, {0, 1}), we would have φ = φ, and hence φ ∈ U .
It would follow that Map(U, {0, 1}) ⊂ U .
Then Map(U, {0, 1}).U . Therefore U < Map(U, {0, 1}).U .
By Lemma (XV), U < U . In particular, U ∼

∣∣ U . There would be no bijective function from
U to U .
But idU is a bijective function from U to U . Contradiction arises.
Hence U is not a set in the first place.

Remark.
Hence if we insist Cantor’s Theorem to be a true statement, then there is no such thing as
a ‘universal set’. This is known as Cantor’s Paradox.
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