MATH1050 Examples: Relations.

1. Define the relation T'= (R, R,G) in R by G = {(x,y) € IR? : There exists some n € Z such that y = 2"x}.

(a) Verify that T is reflexive.
(b) Verify that T is transitive.

(c) Verify that T is an equivalence relation in IR.

2. Let p be a positive real number. Define the relation R = (C,C, E) in C by
E ={(¢,n) € €: There exists some n € Z such that n = ¢ - (cos(np) + isin(np)). }

(a) Verify that R is reflexive.
(b) Verify that R is transitive.

(¢) Is R an equivalence relation in €7 Justify your answer.
3. Write €* = C\{0}. Define the relation R = (C*, C*,G) in €* by
G ={(¢,n) € (€*)*: There exists some n € Z such that { =7 -2"(cos(n) + isin(n)). }.

(a) Verify that R is reflexive.
(b) Verify that R is transitive.

(¢) Is R an equivalence relation in €C*? Justify your answer.

4. Define the relation T'= (IR, R, G) in R by
G ={(z,y) | £ € Rand y € R and (there exists some m,n € Q such that y = 3™5"x)}.

(a) Verify that T is reflexive.
(b) Verify that T is transitive.
(¢) Verify that T' is an equivalence relation in IR.

5. Let Abeaset, G={(S,T)|S e€P(A) and T € P(A) and S C T} and R = (P(A4),B(4), G).

(a) Verify that R is a partial ordering.
(b) Suppose A has at least two distinct elements. Verify that R is not a total ordering.

6. (a) Let A be the set of all real-valued continuous functions on [0, 1]. Define the relation S = (A4, A, G) in A by

G:{(f,g)EAQ:/Oxuf(u)dUS/:ug(u)du for anyxe[O,l]}.

Is S a partial ordering in A? Justify your answer.

(b) Let B be the set of all real-valued piecewise-continuous functions on [0, 1]. Define the relation T'= (B, B, H) in
B by

H = {(f,g) € B%: /Oxuf(u)du < /Oxug(u)du for any = € [0, 1}}.

Is T a partial ordering in B? Justify your answer.

There exist m,n,p,q € N such that
7. Define the relation S = (N? N?, P) in N> by P = { (u,v) 2n+1  2¢+1
w=(m,n),v = (p,q) and or L < 204
Here < is the usual ordering in IR.
(a) Verify that S is a partial ordering in N,
(b) Is S a total ordering in N*? Why?
. ¢,m € C and
8. Define the relation R = (C,C, P) by P = {(C,n) ‘ .
(Re(¢) < Re(n) or (Re(¢) = Re(n) and Im(¢) <Im(n)))



10.

11.

12.

(a) Let ¢,n € C.
i. Verify that ({,n) € P iff (Re(¢) < Re(n) and (Re(¢) < Re(n) or Im(¢) < Im(n))).
ii. Verify that (¢,n) ¢ P iff (Re(n) < Re(¢) or (Re(n) < Re(¢) and Im(n) < Im(())).
(b) Verify that R is a total ordering in C.
Remark. Such a total ordering in € is known as a lexicographical ordering. Think of each complex number as a
word with two ‘letters’, the first ‘letter’ being its real part and the second ‘letter’ being its imaginary part respectively.
Now how do you arrange such ‘two-letter words’ in a dictionary?
Denote by ¥ the set of all infinite sequences in R. (Recall that each infinite sequence in R is a function from N to IR.)

Let k € N. Define the relation Ry, = (X, %, F) by

a, 8 € ¥ and there exist some N € N, C >0 }

b= {(a,ﬁ) such that (|a(z) — B(z)| < C/z* for any z > N).

(a) Verify that Ry, is reflexive and symmetric.
(b) Verify that Ry is an equivalence relation in 3.
(a) Let A ={0,1,2}, G = {(0,0),(1,1),(2,2),(0,1),(1,2)}, and R = (A, A,G). (Here 0,1,2 are pairwise distinct
objects.)
i. Verify that R is not symmetric.
ii. Verify that R is not transitive.
iii. Verify that R is reflexive.
(b) Let B={0,1}, H = {(0,0),(0,1),(1,0)}, and S = (B, B, H). (Here 0,1 are distinct objects.)
i. Verify that S is not reflexive.
ii. Verify that S is not transitive.
iii. Verify that S is symmetric.
(¢) Let C ={0,1,2}, J ={(0,1),(1,2),(0,2)}, and T = (C,C, J). (Here 0,1, 2 are pairwise distinct objects.)
i. Verify that T is not reflexive.
ii. Verify that T is not symmetric.

iii. Verify that T is transitive.

Remark. Can you construct a relation in a non-empty set which is reflexive and symmetric but not transitive? Can
you construct a relation in a non-empty set which is reflexive and transitive but not symmetric? Can you construct
a relation in a non-empty set which is symmetric and transitive but not reflexive?

Dis-prove each of the statements below by giving an appropriate counter-example.

(a) Let A be a non-empty set, and R be a relation in A. Suppose R is reflexive and symmetric. Then R is transitive.

(b) Let A be a non-empty set, and R be a relation in A. Suppose R is reflexive and transitive. Then R is symmetric.
(

(a) Let A be a non-empty set, and R be a relation in A with graph G. Suppose R is symmetric and transitive.

) Let A be a non-empty set, and R be a relation in A. Suppose R is symmetric and transitive. Then R is reflexive.

o

Prove that the statements below are logically equivalent:
(#) For any = € A, there exists some y € A such that (x,y) € G.
(b) R is reflexive.
(b) Let A be a non-empty set, and R be a relation in A with graph G. Suppose R is reflexive.
Prove that the statements below are logically equivalent:
(8) For any z,y,z € A, if (x,y) € G and (y,z) € G then (z,x) € G.
(b) R is symmetric and transitive.
(c) Let A be a non-empty set, and R be a relation in A with graph G. Suppose R is reflexive.
Prove that the statements below are logically equivalent:
(#) For any z,y,z € A, if (x,y) € G and (x,z) € G then (y,z) € G.

(b) R is symmetric and transitive.



13. Let A be a set, F be a subset of A%, and f = (A, A, F). Suppose f is a function from A to A. (Also think of f as a
relation in A.) Prove the statements below:

a) If f is reflexive as a relation in A then f =id4.

(a)

(b) If f is transitive as a relation in A then f o f = f as functions.

(c) If f is transitive as a relation in A and f is injective as a function then f =id4.
)

(d) If f is both symmetric and transitive as a relation in A then f =idy4.

14. We introduce the definition below:
e Let A, B be sets, f : A— B be a function, and @) be a relation in B with graph H.
Define the subset f*H of A% by f*H ={ (z,w) |z € Aand w € A and (f(z), f(w)) € H }.
The relation (A, A, f*H) is called pull-back relation of Q by f. It is denoted by f*Q in A.

Let A, B be sets, f : A — B be a function, and @ be a relation in B with graph H.

Prove the statements below:
(a)

(b) Suppose Q is symmetric. Then f*Q is symmetric.
(c)

(d

(e

(f

(g

Suppose Q is reflexive. Then f*@Q is reflexive.

Suppose @ is transitive. Then f*(Q is transitive.
) Suppose Q is an equivalence relation. Then f*Q@ is an equivalence relation.
) Suppose f*@ is an equivalence relation and f is surjective. Then @ is an equivalence relation.
) Suppose @ is reflexive and f*@ is anti-symmetric. Then f is injective.
) Suppose @ is a partial ordering and f is injective. Then f*Q is a partial ordering.

15. Let A be a non-empty set, and R be a relation in A with graph E.
For any x € A, we define R[z] = {y € A: (z,y) € E}. We define Q= { R[z] | z€ A }.

Suppose that R is an equivalence relation in A.

(a) Prove the statements below:
i. For any x € A, x© € R[x].
i.  0¢Q.
iii. For any x,y € A, if (x,y) € E then R[y] C R[z].
iv. For any z,y € A, the statements (), (), (b) are logically equivalent:

#  (zy)€E. (&) Rlz] = R[y]. () Rlz]NR[y] # 0.

Remark. R]z] is called the equivalence class of z under the equivalence relation R.

(b) Apply part (a), or otherwise, to prove that 2 is a partition of A, in the sense that the statements (N), (U), (D)
are true:

(N) 0¢Q.
(U) {ze A:z€ S for some S € Q} = A.
(D) For any S,T € Q, exactly one of the statements ‘S =T, ‘SNT = ()’ is true.

Remark. We call Q the quotient of A by the equivalence relation R, and usually write Q as A/R. We refer
to the elements of 2 as the equivalence classes under R.
(c) Let ® be the subset of A x Q given by ® = { (z,5) ‘ zre€Aand SeQandxzeS }. Define the relation
¢ =(4,9,2).
i. Prove that ¢ is a surjective function, and that ¢(x) = R[z] for any = € A.
Remark. We call ¢ the quotient mapping of the equivalence relation R.

ii. Let B be aset and f: A — B be a function. Suppose that for any =,y € A, if (z,y) € E then f(x) = f(y).
Prove that there exists some unique function g : Q@ — B such that go ¢ = f.

16. Define the relation R = (C,C, E) in C by E = {(¢,n) € €% : Re(¢) = Re(n)}.

(a) Verify that R is reflexive.



(b) Verify that R is symmetric.
(¢) Verify that R is an equivalence relation in C.

(d) For any ¢ € C, denote by [¢] the equivalence class of ¢ under R.
(Note that by definition, [(] ={n e C: ({,n) € E}.)
What are the respective equivalence classes of 1, 0, ¢ under R? Describe these sets in geometric terms in the

Argand plane.
17. Write €* = C\{0}, R* = R\{0}.

Define the relation R = (C*,C*, F) in C* by E = {(C,n) € (C*)*: Re(¢) _ Reln) }

2 P
(a) Verify that R is an equivalence relation in C*.
(b) For any ¢ € €*, denote by [(] the equivalence class of ¢ under R.
i. Let a € R*. Verify that [ai] = {ti | t € R*}.
¢I?
2Re(()

ii. Let ¢ € €*. Suppose Re({) # 0. Define 7,

() (G 2r) €k
() Suppose n € C*. Then n € [(] iff (Re(n) —1.)* + (Im(n))* = ().

. Verify the statements (7) and (}):

18. Define the relation T'= (C,C,G) in € by G = {(C,n) eC: = 774}'

(a) Verify that T is an equivalence relation in C.
(b) For any ¢ € €, denote by [¢] the equivalence class of ¢ under T.
Prove the statements below:
i. For any ¢,n € C, ifn € [(] then (n=C¢ orn =14 orn=— or n = —i().
ii. For any ¢ € C, [(] = {¢,i(,—¢, —iC}.
(c¢) Denote by € the quotient of € by T', and define the function 7 : € — Q by 7(¢) = [(] for any ¢ € C.
Let f: € — C be a function. Define

UecQandyxeCand }

v {(U’ X) ’ there exists ¢ € € such that U = [¢] and x = f(¢*).

Note that ¢ C Q x C.
Prove the statements below:

i. ¢ is a function from 2 to C.
ii. (pom)(¢)= f(¢*) for any ¢ € C.
iti. Let ¢ : Q — C is a function. Suppose (¢ o w)(¢) = f(¢*) for any ¢ € €. Then ¢ = .
19. Let A, B be non-empty sets, and f : A — B be a surjective function.
Define the relation Ry = (A, A, E¢) in Aby Ey = {(z,y) | z,y € A and f(z) = f(y)}.

(a) Verify that R; is an equivalence relation.
(b) For any x € A, denote the equivalence class of  under Ry by [z];.
Verify that [z]; = f~1({f(z)}) for any z € A.
(c) Define Q@ = {S € P(A) | S = [z]s for some = € A}.
Verify that  is a partition of A, in the sense that the statements (N), (U), (D) are true:
(N) 0&Q.
(U) {zre A:z€ S for some S € Q} = A.
(D) For any S,T € (Q, exactly one of the statements ‘S =T, ‘SNT = ()’ is true.
(d) Define Gy ={(z,5) |r € Aand S € Q and € S} and 7y = (4, Q, Gy).
Verify that 7 is a surjective function.

(e) Let ¢ : A — C be a function. Suppose that for any z,y € A, if f(z) = f(y) then p(x) = ¢(y). Prove that
there exists some unique function 1 : Q@ — C such that ¢ om = .



20.

21.

Recall that whenever n € N\{0, 1}, the relation R,, = (Z,Z, E,,) given by E,, = {(x,y) | z,y € Z and = y(mod n)}
is an equivalence relation in Z. The quotient of Z by R, is the set Z,,.

For each x € Z, we denote by [z],, the equivalence class of 2 under the equivalence relation R,, in Z. It is the element
of Z,, given explicitly by [z], ={z € Z : (x,y) € E,} ={x € Z : x = y(mod n)}.

Below are several ‘declarations’ through each of which some function is supposed to be defined. Determine whether
it makes sense or not. Justify your answer.

) ‘Define the function f : Z1g — Z by f([k]10) = 10k for any k € Z.

) ‘Define the function f : Z1o — Z100 by f([k]10) = [k]100 for any k € Z.

) ‘Define the function f : Z1oo — Z10 by f([k]100) = [k]10 for any k € Z.
(d) ‘Define the function f : Z1g — Z100 by f([k]10) = [10k]100 for any k € Z.
) ‘Define the function f : Z19 — Z10 by f([k]10) = [3k]10 for any k € Z.

) ‘Define the function f : Z10 — Z19 by f([3k
) ‘Define the function f : Z19 — Z19 by f([4k

l10) = [k]10 for any k € Z

li0) = [3k]io for any k € Z.

Let G ={C € C:Re(() € Z and Im(¢) € Z}. (G is the set of all Gaussian integers.)

Define the subset E of €2 by E = {({,n)| (,n € Cand ( —n € G}.

Define R = (C, C, E).

For each ¢ € €, define [(]={ne C: (¢,n) € E}.

Let T = {[c] | ¢ € €.

Throughout this question, you may take the validity of the statements (S1), (S2), (S3) for granted:

(S1) R is an equivalence relation in C.
(S2) For any ¢ € C, ¢ € [(].
(S3) For any (,n € C, the statements (), (1), (b) are equivalent:

® Cmek (@) =N 06 KNk #0.

(a) Define the subset X of 7% x T by

S {0 S e S, |

Define a = (T?,T,¥). Note that « is a relation from 72 to 7.

Verify that o is a function from 72 to 7.

(b) Let f: € — C be a surjective function. Consider the statements (%), (xx) below:

(%) There exists some surjective function h : T — T such that for any ¢ € C, h([¢]) = [f(Q)].

(xx) For any ¢,n € C, if ( —n € G then f(¢) — f(n) € G.
i. Suppose () holds. Prove that (xx) holds.
ii. Suppose (**) holds. Prove that (x) holds.

22. Let A € C\{0}.

Define the subset E of €2 by E = {(¢,n) € €% : Re(\() = Re(An)}.

Define R = (C, C, E).

For each ¢ € €, define [(]={ne C: (¢,n) € E}.

Let L ={[¢] | ¢ € C}.

Throughout this question, you may take the validity of the statements (S1), (S2), (S3) for granted:

(S1) R is an equivalence relation in C.

(S2) For any ¢ € C, ¢ € [(].

(S3) For any (,n € €, the statements (), (1), (b) are equivalent:
# (Cnek. = () I # 0.



(a) Define the subset ¥ of L? x L by

2= {00

p,q,7 € L and (there exist some (,n € C
such that p=[Cl,g=[n] and r=[C +7]). |~

Define a = (L?,L,Y). Note that « is a relation from L? to L.
Verify that o is a function from L? to L.
(b) Now also suppose Re(\) # 0. Define the function f: € — R by

Re(A¢)

HOES Re()) for any ¢ € C.

Prove the statement (%):
(%) There exists some bijective function h : L — R such that (for any ¢ € C, h([¢]) = f(¢)) and (for any
0,7 € €, h(a([o],[7])) = flo) + f(7))-
23. Write Z* = Z\{0}.
Define the subset F of (Z x Z*)? by

F= {((x,y), (@', y")) | z, 7' € Z and y,y € Z* and 2y’ = 2’y }

Define Q = (Z x Z*,Z x Z*, F)

For any x € Z,y € Z*, define [z,y] = {(s,t) | s € Z and t € Z* and ((z,vy), (s,t)) € F'}.

Let ® = {[z,y] | r € Z and y € Z*}.

Throughout this question, you may take the validity of the statements (S1), (S2), (S3) for granted:
(S1) Q is an equivalence relation in Z x Z*.

(S2) For any x € Z, for any y € Z*, (z,y) € [(z,y)].

(S3) For any x,a’ € Z, for any y,y' € Z*, the statements (f), (), (b) are equivalent:
#  ((@y), (@ y)) eF. [yl ="y ) fzylnfa’,y] #0.

(a) Define the subset G of ®2 x ® by

6 ={((wo)u

There exist some x,2’ € Z,y,y € Z*
such that u = [z,y] and v = [2/,y] and w = [y + ya', yy'].

Define o = (®2,®,G). Note that « is a relation from G? to G.
Verify that « is a function.
(b) For any u,v € ®, we write a(u,v) as u @ v.
Verify the statements below:
i. For any u,v € ®, u®v =v S u.
ii. For any u,v,w € ®, (ud®v)Pw=u® (vdw).
iii. There exists some unique e € ® such that for any u € ¢, uPe =u and e Hu = u.

iv. For any u € ®, there exists some unique v € ® such that u® v = e and v ® u = e. (Here e is the unique
element of ® which satisfies u @ e =u =e ® u for any u € P.)



