
MATH1050 Well-order relations and the Well-ordering Principle.

0. This handout is a continuation of the Handout Partial orderings and total orderings.

1. Definition.
Let A be a set, and T be a partial ordering in A with graph G. Write u ≼ v exactly when (u, v) ∈ G.
Let B be a subset of A.

Let λ ∈ B. We say λ is a
{

greatest
least

}
element of B with respect to T if, for any x ∈ B,

{
x ≼ λ
x ≽ λ

}
.

Remark. A subset of A has at most one greatest/least element with respect to T . Hence it makes sense to refer
to such an element of A as ‘the’ greatest/least element with respect to T , if it exists.

Here in this Handout we focus on the question of existence of greatest/least elements for sets with respect to total
orderings.

2. Example (A’). (Usual ordering for real numbers.)

The notion of greatest/least element for subsets of R with respect to the usual ordering for real numbers reduces to
that for ‘greatest/least element for subsets of R’, introduced in the Handout Greatest/least element, upper/lower
bound.

(a) According to the Well-ordering Principle for Integers, for any subset B of N, if B is non-empty, then B has a
least element (with respect to the usual ordering for natural numbers).
A non-empty subset of N does not necessarily have any greatest element.

(b) Let a, b be real numbers. Supposed a < b.

least element greatest element
(a, b) nil nil
[a, b) a nil
(a, b] nil b

[a, b] a b

least element greatest element
(a,+∞) nil nil
[a,+∞) a nil
(−∞, b) nil nil
(−∞, b] nil b

3. Definition.
Let A be a set, and T be a partial ordering in A. We say T is a well-order relation in A if the statement (λ)

holds:

(λ) For any subset B of A, if B is non-empty then B has a least element with respect to T .

We also say that A is well-ordered by T , and that the poset (A, T ) is well-ordered.
Simple examples and non-examples of well-ordered sets.

(a) N is well-ordered by the usual ordering for natural numbers, according to Example (A’). (This is just a re-
formulation of the statement of the Well-ordering Principle for Integers.)
This is the primordial example of well-ordered sets.

(b) Every non-empty subset of Z which is bounded below in Z is well-ordered by the usual ordering for integers.
Z is not well-ordered by the usual ordering for integers. (Why?)

(c) Q is not well-ordered by the usual ordering for rational numbers. (Why?)

(d) R is not well-ordered by the usual ordering for real numbers. (Why?)

4. Lemma (8).
Let A be a set, and T is a partial ordering in A.
Suppose A is well-ordered by T . Then A is totally ordered by T .
Proof of Lemma (8).
Let A be a set, and T be a partial ordering in A with graph G. Suppose A is well-ordered by T .
Pick any x, y ∈ A. Define B = {x, y}. Then B is a non-empty subset of A.
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By assumption, A is well-ordered by T . Then B has a least element with respect to T , say, x. Therefore, by
definition, (x, y) ∈ G. Therefore (x, y) ∈ G or (y, x) ∈ G.
It follows that A is totally ordered by T .

Non-examples on well-order relations.
According to Lemma (8), there is no chance for a partial ordering which is not a total ordering to be a well-order
relation.

• Refer to Example (B).
The partial ordering Tdiv in N defined by divisibility is not a well-order relation, because it is not a total
ordering in N.

• Refer to Example (C).
When E is a set which has at least two elements, (P(E),P(E), GE,subset) is not a well-order relation, because
it is not a total ordering in P(E).

Reminder. The converse of Lemma (8) is false: a total ordering in a set is not necessarily a well-order relation
in that set.
(For instance, the usual ordering for real numbers is a total ordering in R but it is not a well-order relation in R.)

5. Lemma (9).
Let A be a set. Suppose T is a well-order relation in A with graph G.

Then, for any subset B of A, (B,B,G ∩B2) is a well-order relation in B.

6. Theorem (10).
Let A be a non-empty set. Suppose T is a well-order relation in A with graph G. Write x ≼ y iff (x, y) ∈ G.
Then the statements below hold:

(a) There exists some unique λ ∈ A such that for any x ∈ A\{λ}, λ ≺ x.
(b) For any x ∈ A, if x is not a greatest element of A with respect to T then there exists some unique y ∈ A such

that x ≺ y and (for any z ∈ A, if x ≼ z ≼ y then z = x or z = y).

Remark. Theorem (10) brings out what is special about well-ordered posets.

• Statement (a) says that some unique element of A, namely the least element of A with respect to T , will be
the ‘starting element’ of A, in the sense that no element of A will precede it with respect to T .

• Statement (b) says that it makes sense to talk about the (unique) ‘next element’ of A for each element of A,
in the sense that no third element of A will be between these two.

This allows us to visualize the ‘ordering’ of all the elements of A, with respect to T , in the ‘chain of inequalities’

λ ≼ λ′ ≼ λ′′ ≼ λ′′′ ≼ · · ·

in which λ is the least element of A with respect to T , λ′ is the least element of A\{λ} with respect to T , λ′′ is the
least element of A\{λ, λ′} with respect to T , λ′′′ is the least element of A\{λ, λ′, λ′′} with respect to T , et cetera.
An illustration is how we may visualize the ‘ordering’ for all natural numbers with respect to its usual ordering:

0 ≤ 1 ≤ 2 ≤ 3 ≤ 4 ≤ · · ·

This cannot be done for the usual ordering for integers because Z has no least element. This cannot be done for
the usual ordering for rational numbers because the notion of ‘next rational’ number does not make sense: between
any two distinct rational numbers there is definitely a third rational number.
But we may ask: Is it possible to equip these sets with some other partial orderings which are well-order relations?

7. Example (D’). (Lexicographical ordering in N2 as a well-order relation in N2.)

The lexicographical ordering in N2 is a well-order relation in N2 because the statement (†) holds:

(†) For any subset B of N2, if B is non-empty, then B has a least element with respect to the lexicographical
ordering in N2.
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Below is the idea for the argument for the statement (†). (The detail is left as an exercise.)

Suppose B is a non-empty subset of N2. Then we may pick some element of B, say, the ordered pair of natural
numbers, say, (u, v).

The lexicographical ordering in N2 allows us to visualize the ‘ordering’ for all the elements of N2, up to and including
(u, v), through such a ‘chain of inequalities’ below:

(0, 0) ≤lex (0, 1) ≤lex (0, 2) ≤lex · · · ≤lex (1, 0) ≤lex (1, 1) ≤lex · · · ≤lex (2, 0) ≤lex · · · ≤lex (u, 0) ≤lex (u, 1) ≤lex · · · ≤lex (u, v)

So elements of B are listed in at least one of the rows (♯0), (♯1), (♯2), ..., (♯u), each with ‘constant’ first coordinate,
in the table below:

(♯0) : (0, 0) (0, 1) (0, 2) (0, 3) · · ·
(♯1) : (1, 0) (1, 1) (1, 2) (1, 3) · · ·
(♯2) : (2, 0) (2, 1) (2, 2) (2, 3) · · ·

...
...

...
...

...
...

(♯u) : (u, 0) (u, 1) (u, 2) (u, 3) · · ·

The Well-ordering Principle for Integers guarantees that there will be a row in this table with the ‘smallest value of
label’, say, s, so that some element of B, say, (s, w), is listed in the row (♯s).
Then the Well-ordering Principle for Integers further guarantees that amongst

(s, 0), (s, 1), (s, 2), · · · , (s, w − 1), (s, w),

there will be an element of B with the ‘smallest second coordinate’, say, t.

(s, t) will be the least element of B with respect to the lexicographical ordering in N2.

Example (D’) is an illustration of the idea in Theorem (11).

8. Theorem (11).
Let A,B be sets. Suppose R is a well-order relation in A, and S is a well-order relation in B.
Then the lexicographical ordering in A×B induced by R and S is a well-order relation in A×B.

9. Example (E). (Well-order relation in Z arising from the usual ordering for natural numbers.)
Recall that that Z is not well-ordered by the usual ordering for integers.
How, we may define a well-order relation in Z with the help of the usual ordering for natural numbers.
Define the function f : Z −→ N by

f(x) =

{
2x if x is non-negative
− 2x− 1 if x is negative

.

f is an injective function from Z to N.
Let G = {(x, y) | x ∈ Z and y ∈ Z and f(x) ≤ f(y)}, and S = (Z,Z, G).
S is a well-order relation in Z.
So we visualize the ‘ordering’ for all integers with respect to the well-order relation S, through the ‘chain of
inequalities’ below:

0 ≼
S
−1 ≼

S
1 ≼

S
−2 ≼

S
2 ≼

S
−3 ≼

S
3 ≼

S
· · · ≼

S
n− 1 ≼

S
−n ≼

S
n ≼

S
· · ·

This is simply a direct translation, via f and S, of the chain of inequalities

0 ≤ 1 ≤ 2 ≤ 3 ≤ 4 ≤ 5 ≤ 6 ≤ · · · ≤ 2n− 2 ≤ 2n− 1 ≤ 2n ≤ · · · .

Note that 0 ≺
S
−1 ≺

S
1 whereas −1 < 0 < 1. Hence S is certainly distinct from the usual ordering for integers.

10. Example (F). (Well-order relation in N2 which is not the same as the lexicographical ordering.)

Recall that the lexicographical ordering in N2 is a well-order relation in N2. We now introduce, via an injective
function from N2 to N, another well-order relation in N2 which is not the lexicographical ordering in N2.
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Define the function f : N2 −→ N by f(x, y) = 2x3y for any x, y ∈ N.

f is an injective function from N2 to N. (You need Euclid’s Lemma to justify this claim.)

Let G = {((s, t), (u, v)) | s, t, u, v ∈ N and f(s, t) ≤ f(u, v)}, and S = (N2,N2, G).

S is a well-order relation in N2.
So we visualize the ‘ordering’ for all the elements of N2 with respect to the well-order relation S, through the ‘chain
of inequalities’ below:

(0, 0) ≼
S
(1, 0) ≼

S
(0, 1) ≼

S
(2, 0) ≼

S
(1, 1) ≼

S
(3, 0) ≼

S
(0, 2) ≼

S
(2, 1) ≼

S
(4, 0) ≼

S
(1, 2) ≼

S
(3, 1) ≼

S
(0, 3) ≼

S
· · ·

This is simply a direct translation, via f and S, of the chain of inequalities

1 ≤ 2 ≤ 3 ≤ 4 ≤ 6 ≤ 8 ≤ 9 ≤ 12 ≤ 16 ≤ 18 ≤ 24 ≤ 27 ≤ · · · .

Note that (1, 0) ≺
S

(0, 1) ≺
S

(2, 0) whereas (1, 0) <lex (2, 0) <lex (0, 1). Hence S is certainly distinct from the
lexicographical ordering for N2.

Remark. Replacing f by another injective function from N2 to N, we will obtain another well-order relation in
N2 from such a construction. (For instance, what do you obtain with the injective function g : N2 −→ N given by
g(x, y) = 2x5y for any x, y ∈ N? Or how about the injective function h : N2 −→ N given by h(x, y) = 3x5y for any
x, y ∈ N?)

Example (E), Example (F) are illustrations of the idea in Theorem (12), which is concerned with general partial
orderings.

11. Theorem (12).
Let A,B be sets, and f : A −→ B be an injective function.
Suppose T is a partial ordering in B with graph H. Write u ≼

T
v exactly when (u, v) ∈ H.

Define G = {(x, y) | x, y ∈ A and f(x) ≼
T
f(y)}, and S = (A,A,G).

Then S is a partial ordering in A with graph G.
If T is a total ordering in B then S is a total ordering in A.
If T is a well-order relation in B then S is a well-order relation in A.
Remark on terminology and notation. In the context of Theorem (12), the partial ordering S defined by
the injective function f and the partial ordering T is called the partial ordering in A defined by the pullback
of T by f . It is denoted by f∗T , and its graph is denoted by f∗H.

12. Example (G). (Well-order relation in Q arising from the usual ordering for natural numbers.)
Recall that that Q is not well-ordered by the usual ordering for integers.
However, we may define a well-order relation in Q with the help of the usual ordering for natural numbers.

(a) Refer to Example (E). We have constructed a well-order relation in Z, namely, S, (with the help of the usual
ordering for natural numbers).

(b) By Theorem (11), Z2 is well-ordered by the lexicographical ordering in Z2 induced by S and S. We denote
this well-order relation in Z2 by T .

(c) We take the statement (♯) for granted:

(♯) For any r ∈ Q\{0}, there exist some unique pr, qr ∈ Z such that gcd(pr, qr) = 1 and qr > 0 and r =
pr
qr

.

(Justify the statement (♯) as an exercise.)
Define the function f : Q −→ Z2 by

f(r) =

{
(pr, qr) if r ∈ Q\{0}
(0, 1) if r = 0.

f is injective.
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(d) According to Theorem (12), the partial ordering f∗T in Q defined by the pullback of T by f is a well-order
relation in Q.

13. Well-ordering Principle.
Example (E) and Example (G) tell us that despite the fact that Z,Q themselves are not well-ordered by the usual
ordering for real numbers, it is still possible to equip them with various well-order relations.
We may ask: Can we do the same thing for R?

If R can be equipped with a well-order relation, say, T , then the lexicographical ordering in R2 induced by T will
be a well-order relation in R2, and will further provide a well-order relation for C.

We may further ask: Is it possible to equip any arbitrary set equipped with a well-order relation?
It turns out that the answers to these questions are not quite trivial.
Well-ordering Principle.
Suppose A is a set. Then there exists some partial ordering T in A such that A is well-ordered by T .
Remark. We do not ‘prove’ the Well-ordering Principle. It is taken as a fundamental assumption in mathematics.
(Of course, it is legitimate to choose between ‘believing’ the Well-ordering Principle and ‘not believing’ it.)
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